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Abstract

In topology optimization problems, we are often forced to deal with
large-scale numerical problems, so that the domain decomposition method
occurs naturally. Consider a typical topology optimization problem, the
minimum compliance problem of a linear isotropic elastic continuum
structure, in which the constraints are the partial differential equations
of linear elasticity. We subdivide the Partial differential equations into
two subproblems posed on non-overlapping subdomains, each of which
has boundary data that depends on the solution of the other subprob-
lem. In this paper we present a new formulation of the minimum com-
pliance problem based on the domain decomposition methods, and then
we prove the equivalence of the two problems..
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1 Introduction

The topology optimization has for objective to find an optimal shape with-
out any a priori assumption about its topology, i.e., on the nature and the
connectivity of elements which constitute it. Mathematically, the topology
optimization problem takes the form:

min
ω⊂Ω

f(u(ω), ω) (1)

s.t: {
gi(ω) ≤ 0 1 ≤ i ≤ m
hj(ω) = 0 1 ≤ j ≤ n

f is the objective function, gi and hj are the functions defining the constraints,
in practice they are implicit and nonlinear functions in ω. Their evaluation
then requires the resolution of a state equation and the topology optimization
problem (1) is reformulated as follows:

min
ω⊂Ω

f(u(ω), ω) (2)

s.t: {
gi(u(ω), ω) ≤ 0 1 ≤ i ≤ m
hj(u(ω), ω) = 0 1 ≤ j ≤ n

where u is the solution of the state equation L(u(ω), ω) = 0.
One can find various methods of topology optimization in the literature for

solving the problem (2), methods based on the shape gradient, evolutionary
methods [7, 12], and methods which employ a material distribution approach
for a fixed reference domain, especially the homogenization methods [2, 20, 1],
and the fictitious or power-law materials also called SIMP (Solid Isotropic Ma-
terial with Penalization) method which has seen widespread academic use and
has proven very popular and extremely tempting to solve practical applications
[3, 4].

In spite of its effectiveness in structural design, topology optimization is not
yet largely widespread in the industry, the principal reason is that the topology
optimization problem is a large scale optimization problem; it is characterized
by a very significant number of design variables, which amplifies the difficulty
of its resolution. It is common to introduce 1000 to 10000 design variables to
solve a real problem, thus the computation time is typically very high since the
problem requires repeated solution of finite element analysis of the equilibrium
equations.
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However, during two last decades, the parallel computers knew a great evo-
lution, in particular in computing power and storage capacity [16]. Domain
decomposition methods (called also subdomains methods) are a valuable ap-
proach when solving partial differential equation (PDE) problems on parallel
computers [10, 15].

Any domain decomposition method is based on the assumption that the
given computational domain is partitioned into subdomains which may or may
not overlap. Next, the original problem can be reformulated upon each subdo-
main, yielding a family of subproblems of reduced size, that are coupled one to
another through the values of the unknown solution at sub-domain interfaces.

Reviewing the literature, it seems that the application of parallel computing
in topology optimization is rare, and devoted only to the discrete case [21, 13,
5], there is no mathematical formulation of the topology optimization problem
in the continuum case. Thus, The main objective of the present work is to
propose a new mathematical formulation of the minimum compliance problem
of an isotropic linear elastic structure based on domain decomposition methods
when the design domain is partitioned into two non-overlapping subdomains,
the domain decomposition method for the problem of linear elasticity is then
based on a constrained minimization problem for which the objective functional
measures the jumps in the solution across the interface between subdomains,
the constraints are the partial differential equations.

The remainder of this paper is organized as follows. Section 2 describes
the formulation of the topology optimization problem which ensures at least
the existence of the solution in a simple case of linear elasticity. In section 3,
the equivalent formulation is given when the design domain is partitioned into
two non-overlapping sub-domains, then we propose an algorithm of resolution
of the finding optimality system.

2 Preliminary Notes

The topology optimization problem is a nonlinear optimization problem, often
non convex, the objective function depends on a state variable describing the
operational mode and the design variables determine the shape and topology,
the state variable must satisfy a boundary value problem, here we deals with
a typical problem of topology optimization which consists in minimizing the
compliance of an isotropic linear elastic structure (see figure 1).

Figure 1: Topology optimization of the MBB-beam
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Consider an elastic body in the configuration region Ω ⊂ R
d,(d = 2, 3) with

boundary Γ. The problem of linear elasticity is given as follows:

Find u : Ω → R
d such that:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(−divσ(u))i = fi in Ω, i = 1, ..., d,
u = ϕD on ΓD

d∑
j=1

σij (u) nj = (ϕN )i on ΓN i = 1, ..., d.

(3)

where n denotes the unit outward normal vector on Γ. f is the vector of volume
forces acting on the body, ϕD is the given displacement on the portion of the
domain boundary ΓD, while ϕN are the tractions applied on the complementary
part ΓN , and σ = (σij)1≤i,j≤d the stress tensor.

Take, for simplicity, ΓN = ∅ and ϕD = 0, thus the system of equations of
linear elasticity (3) becomes the following Dirichlet boundary value problem:

Find u : Ω → R
d such that:⎧⎨

⎩ −2μ
d∑

j=1

∂
∂xj

εij(u) − λ ∂
∂xi

div(u) = fi in Ω 1 ≤ i ≤ d

ui = 0 on Γ 1 ≤ i ≤ d

(4)

where μ > 0, λ ≥ 0 are the Lamé’s constants and ε = (εij)1≤i,j≤d is the strain
tensor given by:

εij =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

).

The variational formulation of (4) reads:

Find u ∈ H1
0 (Ω)d such that : a(u, v) = l(v) ∀v ∈ H1

0 (Ω)d (5)

where

a(u, v) = 2μ
d∑

i,j=1

∫
Ω

εij(u)εij(v)dΩ + λ

∫
Ω

div(u)div(v)dΩ,

and

l(v) =

∫
Ω

fvdΩ.

The Korn’s inequality states that there exists a constant CΩ > 0 such that [8]:

d∑
i,j=1

∫
Ω

(εij(v))2dΩ ≥ CΩ‖v‖2
H1

0 (Ω)d ∀v ∈ H1
0 (Ω)d (6)

Hence, the form a is coercive, furthermore it is easily seen that a (resp. l)
is bilinear and continuous in H1

0 (Ω)d (respectively linear and continuous in
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H1
0 (Ω)d), when the problem (5) admits a unique solution u ∈ H1

0 (Ω)d by a
straightforward application of the Lax-Milgram theorem [6]. In orthonormal
base, we have [17]:

a(u, v) =

∫
Ω

Eijklεij(u)εkl(v)dΩ

The medium supposed non homogeneous thus we uses Eijkl(x) instead of Eijkl

for each x ∈ Ω. Consequently the minimum compliance (maximum global
stiffness) problem takes the following form in the SIMP approach [4]:⎧⎪⎨

⎪⎩
min

ρ
l(u)

aρ(u, v) = l(v) ∀v ∈ U ⊆ H1
0 (Ω)d

Eijkl(x) = ρp(x)E0
ijkl

(7)

with the following constraints on ρ:∫
Ω

ρ(x)dΩ ≤ V, 0 < ρmin < ρ(x) ≤ 1, ∀x ∈ Ω

U is the set of admissible displacements, V is a limit on the amount of mate-
rial at our disposal, E0

ijkl represents the material properties of a given isotropic
material, ρ which is interpreted as a density of material is the design variable
and p is the penalty factor which penalizes intermediate densities in order
to end up with (nearly) ’solid and void’ distributions. Normally, one writes
Eijkl ∈ L∞(Ω) to indicate the relevant functional space for our problem, unfor-
tunately, in this case, the problem (7) lacks existence of solutions in its general
continuum setting. To ensure existence of solutions, the power-law approach
must be combined with a perimeter constraint, a gradient constraint or with
filtering techniques [18]. Here we use a gradient constraint by which we mean
the norm of the function ρ in the Sobolev space H1(Ω), see [4]:

‖ρ‖H1(Ω) =

[∫
Ω

(
ρ2 + ‖∇ρ‖2

)
dΩ

] 1
2

≤ M where 1 < p <
d

d − 2

(
Ω ⊂ R

d
)

where

‖∇ρ‖2 =
∑

i

(
∂ρ

∂xi

)2

.

Bendsøe has proved existence of solutions when including this bound in the
minimum compliance problem [4]. Thus, we will choose the new formulation
due to Bendsøe: {

min
u,ρ∈H1(Ω)

l(u)

aρ(u, v) = l(v) ∀v ∈ U
(8)
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with the following constraints on ρ:∫
Ω

ρ(x)dΩ ≤ V, 0 < ρmin < ρ(x) ≤ 1, ∀x ∈ Ω

and the gradient constraint

‖ρ‖H1(Ω) =

[∫
Ω

(ρ2 + (∇ρ)2)dΩ

]1/2

≤ M

where:

aρ(u, v) =

∫
Ω

ρp(x)E0
ijklεij(u)εkl(v)dΩ.

3 Main Results

Let Ω be a bounded domain in R
d where d = 2, 3 with Lipschitz boundary Γ.

Further, we suppose that Ω is partitioned into two non-overlapping subdomains
Ω1 and Ω2 with interface Γ0 i.e. Γ0 = Ω1 ∩ Ω2. Let Γi = Ωi

⋂
Γ i = 1, 2 (see

figure 2).

Figure 2: Decomposition of Ω

The problem of linear elasticity (5) can be written as:
Find ui ∈ H1

Γi
(Ωi)

d, i = 1, 2; such that:

aρ1(u1, v1) = (f, v1)Ω1 + (g, v1)Γ0 ∀v1 ∈ H1
Γ1

(Ω1)
d (9)

aρ2(u2, v2) = (f, v2)Ω2 − (g, v2)Γ0 ∀v2 ∈ H1
Γ2

(Ω2)
d (10)

u1 = u2 on Γ0. (11)

where

gl =

d∑
j=1

σlj(u1)n
1
j = −

d∑
j=1

σlj(u2)n
2
j

and

g = (gl)1≤l≤d with (g, v)Γ0 =

∫
Γ0

gvdΓ0
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The existence and uniqueness of the solution to both problems (9) and (10) is
a straightforward consequence of the Lax-Milgram Theorem. In fact, for the
problem (9), the bilinear form aρ1 is continuous in H1

Γ1
(Ω1)

d, the coerciveness
follows from the Korn’s inequality (6) (see also [14]), in addition, let us define:

l1(v1) =

∫
Ω1

fv1dΩ1 +

∫
Γ0

gv1dΓ0 ∀v1 ∈ H1
Γ1

(Ω1)
d.

It is clear that l1 is a continuous linear form in H1
Γ1

(Ω1)
d therefore the problem

(9) has a unique solution u1 ∈ H1
Γ1

(Ω1)
d, the same argument for the problem

(10). In addition, as aρ1 is coercive then

∃K1 > 0 / ‖u1‖2
H1

Γ1
(Ω1)d ≤ K1aρ1(u1, u1)

i.e.:

‖u1‖2
H1

Γ1
(Ω1)d ≤ K1

(∫
Ω1

fu1dΩ1 +

∫
Γ0

gu1dΓ0

)

≤ K1

(
‖f‖L2(Ω1)d ‖u1‖H1(Ω1)d + ‖g‖L2(Γ0)d ‖u1 | Γ0‖L2(Γ0)d

)
where u1 | Γ0 denotes the trace of u1 on Γ0, and according to the trace in-
equality

∃K2 > 0 / ‖u1 | Γ0‖L2(Γ0)d ≤ K2 ‖u1‖H1
Γ1

(Ω1)d

Consequently,

∃C1 > 0 / ‖u1‖H1
Γ1

(Ω1)d ≤ C1

(
‖f‖L2(Ω1)d + ‖g‖L2(Γ0)d

)
,

the same argument for u2, hence

∃C > 0 / ‖ui‖H1
Γi

(Ωi)d ≤ C
(
‖f‖L2(Ωi)d + ‖g‖L2(Γ0)d

)
i = 1, 2. (12)

For an arbitrary choice for the control g, the solutions u1 and u2 of the problem
(9) and the problem (10), respectively, do not agree with the solution u of (5) in
the respective sub-domains, i.e., u1 �= u | Ω1 and u2 �= u | Ω2. The discrepancy
is due to the fact that for an arbitrary choice of g, we have that u1 �= u2 along
Γ0, even in a weak sense. In addition, there exists clearly a choice of g, namely
such that the solutions of the problems (9) and (10) coincide with the solution
of (5) on the corresponding subdomains. Thus, we consider a functional that
measures the jumps of solutions across the interface between subdomains with
a penalty term to regularize the problem, put:

Jδ(u1, u2, g) =
1

2

∫
Γ0

(u1 − u2)
2dΓ0 +

δ

2

∫
Γ0

g2dΓ0.
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Let (ρ1, ρ2) ∈ H1(Ω1) × H1(Ω2) then we consider the following optimization
problem:

min
g

Jδ(u1, u2, g) (13)

aρ1(u1, v1) = (f, v1)Ω1 + (g, v1)Γ0 ∀v1 ∈ H1
Γ1

(Ω1)
d (14)

aρ2(u2, v2) = (f, v2)Ω2 − (g, v2)Γ0 ∀v2 ∈ H1
Γ2(Ω2)

d (15)

Let the admissibility set be defined by:

Uad =

{
(u1, u2, g) ∈ H1

Γ1
(Ω1)

d × H1
Γ2(Ω2)

d × L2(Γ0)
d/

(9) and (10) are satisfied and Jδ(u1, u2, g) < ∞
}

(16)

we have the following result:

Theorem 3.1 The problem (13)-(15) has a unique optimal solution.

Proof. Let ρ ∈ H1(Ω), it was seen that the problem (5) admits a unique

solution u ∈ H1
0 (Ω)d while ui = u/Ωi

, ρi = ρ/Ωi
and gl =

d∑
j=1

σlj(u)nj, we have

(u1, u2, g) ∈ H1
Γ1

(Ω1)
d × H1

Γ2(Ω2)
d × L2(Γ0)

d satisfying (9) and (10), hence

(u1, u2, g) ∈ Uad i.e. Uad �= ∅. Let then
{(

u
(n)
1 , u

(n)
2 , g(n)

)}
be a minimizing se-

quence in Uad. Then, from (16), we have that the sequence
{
g(n)

}
is uniformly

bounded in L2(Γ0)
d. And, by (12), (u

(n)
1 )n and (u

(n)
2 )n are uniformly bounded.

Consequently, there exists a subsequence
{(

u
(ni)
1 , u

(ni)
2 , g(ni)

)}
such that:

u
(ni)
1 → û1 in H1

Γ1
(Ω1)

d

u
(ni)
2 → û2 in H1

Γ2
(Ω2)

d

g(ni) → ĝ in L2(Γ0)
d

By the process of passing to the limit, we have that (û1, û2, ĝ) satisfies (9) and
(10) therefore (û1, û2, ĝ) ∈ Uad. Also, the fact that the functional Jδ(., ., .) is
lower semi-continuous implies that

inf
(u1,u2,g)∈Uad

Jδ(u1, u2, g) = lim
ni→∞

inf Jδ(u
(ni)
1 , u

(ni)
2 , g(ni)) ≥ Jδ(û1, û2, ĝ)

We conclude Jδ(û1, û2, ĝ) = inf Jδ(u1, u2, g) then (û1, û2, ĝ) is an optimal solu-
tion. Uniqueness follows from the convexity of the functional Jδ, Uad and the
linearity of the constraints [9].

Theorem 3.2 For each δ > 0, let (uδ
1, u

δ
2, g

δ) denotes the optimal solution
of the problem (13)-(15). If û is the solution of (5), putting ûi = û/Ωi∪Γ0

then∥∥uδ
i − ûi

∥∥
H1

Γi
(Ωi)d → 0 as δ → 0, for i = 1, 2.
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Proof. Let ĝl =

d∑
j=1

σlj(û1)nj on Γ0 1 ≤ l ≤ d.

Let (uδ
1, u

δ
2, g

δ)δ denotes a sequence of optimal solutions, then

Jδ(u
δ
1, u

δ
2, g

δ) ≤ Jδ(û1, û2, ĝ) ∀δ > 0

i.e.
1

2

∫
Γ0

(uδ
1 − uδ

2)
2dΓ0 +

δ

2

∫
Γ0

(gδ)2dΓ0 ≤ δ

2

∫
Γ0

(ĝ)2dΓ0 ∀δ > 0

Then,
∥∥gδ

∥∥
L2(Γ0)d is uniformly bounded in L2(Γ0)

d and

∥∥uδ
1 − uδ

2

∥∥
L2(Γ0)d → 0 as δ → 0.

By (12),
∥∥uδ

1

∥∥
H1

Γ1
(Ω1)d and

∥∥uδ
2

∥∥
H1

Γ2
(Ω2)d are also uniformly bounded. Hence, as

δ → 0, there exists a subsequence which converges to some
(u∗

1, u
∗
2, g

∗) ∈ H1
Γ1

(Ω1)
d × H1

Γ2(Ω2)
d × L2(Γ0)

d and the fact that∥∥uδ
1 − uδ

2

∥∥
L2(Γ0)d → 0 yields u∗

1 = u∗
2 on Γ0. By passing to the limit u∗

1 and u∗
2

satisfy (9) and (10) respectively. Let

u∗ =

{
u∗

1 in Ω1 ∪ Γ0

u∗
2 in Ω2 ∪ Γ0

Then u∗ satisfies (5) and by the uniqueness of the solution of (5), we conclude
that û = u∗.

Remark 3.3 In the problem (13)-(15) for each (ρ1, ρ2) and each δ > 0 there
exists a unique optimal solution (uδ

1, u
δ
2, g

δ) without uδ
1 = uδ

2 on Γ0, but accord-
ing to Theorem 3.2, if δ → 0, the sequence of optimal solutions (uδ

1, u
δ
2, g

δ)δ con-
verges to the unique optimal solution (u∗

1, u
∗
2, g

∗) for which u∗
i = u | Ωi (i = 1, 2)

where u is the unique solution of the problem
aρ(u, v) = (f, v)Ω with

ρ =

{
ρ1 in Ω1

ρ2 in Ω2

which yields the following corollary.

Corollary 3.4 For each (ρ1, ρ2) ∈ H1(Ω1)×H1(Ω2), an admissible solution
(u1, u2, g) is the optimal solution of (13)-(15) corresponding (see remark 3.3)
if and only if u1 = u2 on Γ0.

Proof. For (ρ1, ρ2) ∈ H1(Ω1)×H1(Ω2) if (u1, u2, g) is the optimal solution,
it follows from the above mentioned remark that u1 = u2 on Γ0.
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On the other hand, if u1 = u2 on Γ0, let (û1, û2, ĝ) be the optimal solution
corresponding to some (ρ1, ρ2) ∈ H1(Ω1) × H1(Ω2), hence û1 = û2 on Γ0.
Setting

u =

{
u1 in Ω1 ∪ Γ0

u2 in Ω2 ∪ Γ0
and û =

{
û1 in Ω1 ∪ Γ0

û2 in Ω2 ∪ Γ0

As (û1, û2, ĝ) is the optimal solution then for

ρ =

{
ρ1 in Ω1 ∪ Γ0

ρ2 in Ω2 ∪ Γ0

We have: aρ(û, v) = (f, v)Ω for all v ∈ H1
0 (Ω)d, whereas aρ(u, v) = (f, v)Ω for

all v ∈ H1
0 (Ω)d for the same ρ. By the uniqueness of the solution of (5), we

have u = û therefore (u1, u2, g) is the optimal solution.

Consequently, we have the fundamental Theorem of this paper.

Theorem 3.5 The problem (8) can be equivalently reformulated as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
u1,u2,ρ1,ρ2

l1(u1) + l2(u2)

min
g

Jδ(u1, u2, g)

aρ1(u1, v1) = (f, v1)Ω1 + (g, v1)Γ0 ∀v1 ∈ H1
Γ1

(Ω1)
d

aρ2(u2, v2) = (f, v2)Ω2 − (g, v2)Γ0 ∀v2 ∈ H1
Γ2

(Ω2)
d

(17)

with the following constraints on ρi:

2∑
i=1

∫
Ωi

ρi(x)dΩi ≤ V 0 < ρi ≤ 1 ∀x ∈ Ωi, i = 1, 2.

and the gradient constraint ‖ρi‖H1(Ωi)
≤ Mi with i = 1, 2, where

li(ui) =

∫
Ωi

fuidΩi + (−1)i+1

∫
Γ0

guidΓ0.

Let us start by defining the admissibility set to each problem;

• For the problem (8):

U∗ =
{
u ∈ H1

0 (Ω)d/∃ρ ∈ G∗, aρ(u, v) = (f, v)Ω ∀v ∈ H1
0 (Ω)d

}
where

G∗ =
{
ρ ∈ H1(Ω)/the constraints of the problem (8) on ρ

}
.
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• For the problem (17), the admissibility set is defined by:

U∗ =

{
(u1, u2, g) ∈ Uad / (u1, u2, g) is the optimal solution
of (13) − (15) corresponding to some (ρ1, ρ2) ∈ G∗

}

where

G∗ =

{
(ρ1, ρ2) ∈ H1(Ω1) × H1(Ω2)/the constraints

of the problem (17) on ρi i = 1, 2.

}

In order to prove Theorem 3.5, we need to show the following Lemma:

Lemma 3.6 u ∈ U∗ if and only if (u1, u2, g) ∈ U∗ where ui = u/Ωi
and

g = (gl)1≤l≤d with gl =
d∑

j=1

σlj(u)nj.

Proof. Let u ∈ U∗ then ∃ρ ∈ G∗, aρ(u, v) = (f, v)Ω for all v ∈ H1
0 (Ω)d and

set ui = u/Ωi
, ρi = ρ/Ωi

and g = (gl)1≤l≤d where gl =

d∑
j=1

σlj(u)nj while n =

(nj)1≤j≤d denotes the unit outward normal vector on Γ, this yields immediately
(9) and (10).
It is clear that (u1, u2, g) ∈ H1

Γ1
(Ω1)

d × H1
Γ2

(Ω2)
d × L2(Γ0)

d, consequently,
(u1, u2, g) ∈ Uad. Moreover, ρ ∈ H1(Ω) implies that
(ρ1, ρ2) ∈ H1(Ω1) × H1(Ω2), as ‖ρ‖H1(Ω) ≤ M , then it exists M1, M2 ∈ R

+,
‖ρi‖H1(Ωi)

≤ Mi with i = 1, 2, in addition∫
Ω

ρ(x)dΩ ≤ V ⇒
∫

Ω1

ρ1(x)dΩ1 +

∫
Ω2

ρ2(x)dΩ2 ≤ V

we have
0 < ρ(x) ≤ 1, x ∈ Ω ⇒ 0 < ρi(x) ≤ 1, x ∈ Ωi

hence (ρ1, ρ2) ∈ G∗. Put : n1 = (n1
j)j = (nj)j = n = (−n2

j )j = −n2 ; thus:

d∑
j=1

σlj(u)nj =

d∑
j=1

σlj(u1)n
1
j = −

d∑
j=1

σlj(u2)n
2
j = gl on Γ0

thus, (u1, u2, g) ∈ U∗ if and only if for (ρ1, ρ2) ∈ G∗ defined in the beginning of
this proof, (u1, u2, g) is the optimal solution of (13)-(15) corresponding, this is
equivalent to u1 = u2 on Γ0, which is true since ui = u|Ωi

, with i = 1, 2.
On the other hand, let (u1, u2, g) ∈ U∗. Setting

u =

{
u1 in Ω1

u2 in Ω2
and ρ =

{
ρ1 in Ω1

ρ2 in Ω2
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while

gl =

d∑
j=1

σlj(u1)nj =

d∑
j=1

σlj(u2)nj

Given that (u1, u2, g) ∈ U∗ then ∃(ρ1, ρ2) ∈ G∗ such that (u1, u2, g) is the
optimal solution of (13)-(15) corresponding, hence u1 = u2 on Γ0, thus one can
put:

u =

{
u1 in Ω1 ∪ Γ0

u2 in Ω2 ∪ Γ0

Then, taking v ∈ H1
0 (Ω)d and vi = v/Ωi

∈ H1
Γi

(Ωi)
d, we have that

aρ(u, v) =

∫
Ω

ρp(x)E0
ijklεij(u)εkl(v)dΩ

=

∫
Ω1

ρp
1(x)E0

ijklεij(u1)εkl(v1)dΩ1 +

∫
Ω2

ρp
2(x)E0

ijklεij(u2)εkl(v2)dΩ2

+

∫
Γ0

ρp(x)E0
ijklεij(u)εkl(v)dΓ0

= (f, v)Ω1 + (g, v)Γ0 + (f, v)Ω2 − (g, v)Γ0 + (f, v)Γ0

= (f, v)Ω

Finally, we have: aρ(u, v) = (f, v)Ω for all v ∈ H1
0 (Ω)d.

Given that (u1, u2, g) ∈ U∗, therefore (u1, u2) ∈ H1
Γ1

(Ω1)
d × H1

Γ2
(Ω2)

d with
u1 = u2 on Γ0, thus u ∈ H1

0 (Ω)d, in addition (ρ1, ρ2) ∈ G∗ then we check
easily that ρ ∈ G∗ such that aρ(u, v) = (f, v)Ω ∀v ∈ H1

0 (Ω)d, consequently
u ∈ U∗.
Proof of Theorem 3.5 Let û ∈ U∗ be an optimal solution of (8), ûi = û/Ωi

and ρi = ρ/Ωi
with i = 1, 2. Putting ĝl =

d∑
j=1

σlj(û)nj , according to Lemma

3.6, (û1, û2, ĝ) ∈ U∗. To show that (8) implies (17), it remains to be shown that
(û1, û2, ĝ) is a corresponding optimal solution (see Remark 3.3), when u1 = u2

on Γ0, thus one can put:

u =

{
u1 in Ω1 ∪ Γ0

u2 in Ω2 ∪ Γ0

it follows from Lemma 3.6, that u ∈ U∗, and as û is an optimal solution of (8),
we obtain l(û) ≤ l(u), we finally have l1(û1) + l2(û2) ≤ l1(u1) + l2(u2).

On the other hand ; let (û1, û2, ĝ) ∈ U∗ be an optimal solution of (17),
therefore one can put:

û =

{
û1 in Ω1 ∪ Γ0

û2 in Ω2 ∪ Γ0

because û1 = û2 on Γ0, thus, by Lemma 3.6, û ∈ U∗.
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Let v ∈ U∗ , vi = v/Ωi
, if we put gl =

d∑
j=1

σlj(v)nj , then a new application

of the Lemma 3.6 enables us to have (v1, v2, g) ∈ U∗, whereas (û1, û2, ĝ) is an
optimal solution of (17) implies

l1(û1) + l2(û2) ≤ l1(v1) + l2(v2)

that is l(û) ≤ l(v) which is true for all v ∈ U∗, hence, û is an optimal solution
of (8).

The lagrangian of the minimization problem (13)-(15):
L(u1, u2, g, λ1, λ2) = Jδ(u1, u2, g)−aρ1(u1, λ1)+(f, λ1)Ω1+(g, λ1)Γ0−aρ2(u2, λ2)+
(f, λ2)Ω2 − (g, λ2)Γ0

where
(u1, u2, g, λ1, λ2) ∈ H1

Γ1
(Ω1)

d × H1
Γ2(Ω2)

d × L2(Γ0)
d × H1

Γ1
(Ω1)

d × H1
Γ2(Ω2)

d

The optimality system is derived by setting to zero
∂L
∂ui

,
∂L
∂λi

and
∂L
∂g

and given

by the following equations:

aρ1(u1, v1) = (f, v1)Ω1 + (g, v1)Γ0 ∀v1 ∈ H1
Γ1

(Ω1)
d

aρ2(u2, v2) = (f, v2)Ω2 − (g, v2)Γ0 ∀v2 ∈ H1
Γ2(Ω2)

d

aρ1(ξ, λ1) = (u1 − u2, ξ)Γ0 ∀ξ ∈ H1
Γ0

(Ω1)
d (18)

aρ2(ξ, λ2) = −(u1 − u2, ξ)Γ0 ∀ξ ∈ H1
Γ0

(Ω2)
d

(g, r)Γ0 = −1

δ
(λ1 − λ2, r)Γ0 ∀r ∈ L2(Γ0)

d

This optimality system may be viewed as a weak formulation of the problems
respectively:
for i = 1, ..., d:

(−divσ(u1)i = fi in Ω1; u1 = 0 on Γ1;
d∑

j=1

σij(u1)n
1
j = gi

(−divσ(u2)i = fi in Ω2; u2 = 0 on Γ2;−
d∑

j=1

σij(u2)n
2
j = gi

(divσ(λ1)i = 0 in Ω1; λ
i
1 = 0 on Γ1 and

d∑
j=1

σij(λ1)n
1
j = ui

1 − ui
2

(divσ(λ2)i = 0 in Ω2; λ
i
2 = 0 on Γ2 and

d∑
j=1

σij(λ2)n
2
j = −(ui

1 − ui
2)
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and

g = (gi)1≤i≤d where gi =
−1

δ
(λi

1 − λi
2) on Γ0 (19)

We choose a gradient method to obtain a parallelizable algorithm.
Define: Mδ(g) = Jδ(u1(g), u2(g), g) where for a given g

ui(g) : g ∈ L2(Γ0)
d → H1

Γi
(Ωi)

d i = 1, 2

are the solutions of (14) and (15) respectively, then the minimization prob-
lem (13)-(15) is equivalent to determine g ∈ L2(Γ0)

d which minimize Mδ(g),
combining some previous results yields that the first derivative of Mδ(g) is :

dMδ(g)

dg
= δg + (λ1 − λ2)/Γ0

hence for n = 1, 2, ... g(n+1) = g(n) − α

δ

dMδ(g)

dg
where

α

δ
is the step size,

combining with the formule (19) we obtain an update formula for g:

g(n+1) = (1 − α)g(n) − α

δ
(λ

(n)
1 − λ

(n)
2 )

and the algorithm is given as follows:

Step1: Choose g(0)

For n=0,1,2,...

Step2: Choose ρ
(0)
1 and ρ

(0)
2

1. Solve the topology optimization problem on each subdomain to de-
termine ρ

(opt)
1 andρ

(opt)
2

For m=0,1,2,...
min
ρ
(m)
i

li(ui)

a
ρ
(m)
1

(u1, v1) = (f, v1)Ω1 + (g(n), v1)Γ0 ∀v1 ∈ H1
Γ1

(Ω1)
d

a
ρ
(m)
2

(u2, v2) = (f, v2)Ω2 − (g(n), v2)Γ0 ∀v2 ∈ H1
Γ2(Ω2)

d∫
Ωi

ρ
(m)
i (x)dΩi ≤ Vi

0 < ρmin ≤ ρ
(m)
i (x) ≤ 1 i = 1, 2 such that V1 + V2 ≤ V

and the constraint on the gradient to ensure existence of the solu-
tion [4] :
‖ρi‖H1(Ωi)

≤ Mi i = 1, 2.
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2. determine λ
(n)
1 , λ

(n)
2 from:

aρopt
1

(λ
(n)
1 , R) = (u

(n)opt
1 − u

(n)opt
2 , R)Γ0 ∀R ∈ H1

Γ1
(Ω1)

d

aρopt
2

(λ
(n)
2 , R) = −(u

(n)opt
1 − u

(n)opt
2 , R)Γ0 ∀R ∈ H1

Γ2
(Ω2)

d

3. update g:

g(n+1) = (1 − α)g(n) − α

δ
(λ

(n)
1 − λ

(n)
2 )

with the optimality condition given previously:

gi = −1

δ
(λi

1 − λi
2)

δ is fixed, for a suitable choice of the step size
δ

α
we control the

value of α

Remark 3.7 We need a good ”g” or an optimal g, gopt which satisfy

(gopt, u1)Γ0 = (gopt, u2)Γ0

hence the decomposition of the compliance l(u) on Ω in l(u1, u2, g) on Ω1 and
Ω2 is given by:

l(u1, u2, g) = l1(u1) + l2(u2) (20)

where :

li(ui) =

∫
Ωi

fuidΩi + (−1)i+1

∫
Γ0

guidΓ0 i = 1, 2

allow us to retrieve the global compliance l(u) in a unique choice of g ”g = gopt”
that is :

(g, u1)Γ0 = (g, u2)Γ0 if and only if g = gopt

or
l(u) = l(u1, u2, g) ⇔ g = gopt

and the problem (17) takes the following form :

min
ρ1,ρ2

l(u1, u2, g
opt)

min
g

Jδ(u1, u2, g)

aρ1(u1, v1) = (f, v1)Ω1 + (g, v1)Γ0 ∀v1 ∈ H1
Γ1

(Ω1)
d

aρ2(u2, v2) = (f, v2)Ω2 − (g, v2)Γ0 ∀v2 ∈ H1
Γ2(Ω2)

d

(21)

with the constraints on ρi :

2∑
i=1

∫
Ωi

ρi(x)dΩi ≤ V 0 < ρi ≤ 1 ∀x ∈ Ωi, i = 1, 2.

which is a bilevel formulation that we’ll develop in
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