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Abstract

Variational inequality problem can be formulated as a differentiable
optimization problem [3]. We propose a descent method to solve the
equivalent optimization problem inspired by the approach of Fukushima,
then we give theoretical results and numerical experimentations.
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1 Introduction

We consider the problem of finding a point T € C' such that:

(F(z),z—m) >0, for allz € C (1)

Where C is noempty closed convex subset of R" and F is
continuously differentiable mapping from R" into itself, and (.,.) denotes the
inner product in R"™. This problem is called variational inequality
problem. The relation between this problem and the optimization goes up
in the Seventies there were a difficulties in the obtained problem of optimiza-
tion (non-differentiability of the objective function). In the Nineties Fukushima
and others established the equivalence between the variational inequality and a
differentiable optimization problem with sufficient conditions of global
optimality. ~ However, the algorithms remain insufficient for a suitable
treatment: restrictive assumptions and slow convergence witch sometimes
difficult to establish.
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In our study, we introduce some algorithmic modifications leading
to interesting implementation.

The paper is organized as follows. In section 2, we introduce some definitions
and basic result concerning the connection between problem (1) and the op-
timization. Section 3 is devoted to the description of Fukushima’s method
and its related algorithm is presented. In section 4, we applied the algorithm
for some variational inequality problems [4]. Finally, we give in section 5 a
conclusion and future remarks.

2. Preliminaries
First R™ the space of n—dimensional vectors, let ||.||, denote the norm in R"

1
defined by ||z||5 = (z, Gz)?, where G is a symmetric positive defined matrix.
Given the projection of the point x onto the closed convex set C, denotes by
projc. is defined as the (unique) solution of the problem:

yeC min |y -zl

For a vector valued mapping F' from R"into itself, we have:
F(x) = (Fi(z), Fy(x),. .., F,(x))" with z € R".

Definitionl. Let F': R"— R" be a multivalued vector mapping.

e I is monotone on R”, if for all z,y € R",
(z —y)" (F(z) = Fy)) >= 0.
e [ is strictly monotone, if for all z,y € R", x # v,

(z—y)" (F(z) = F(y)) > 0

e [’ is strongly monotone if: there exists ¢ > 0,such that, for all z,y € R™:

(z—y)"(F(z) — F(y) > cllz —y|.
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2. Resolution of the problem (1) by the optimization’s techniques
2.1 Traditional approach

The problem when F' is the gradient of a differentiable convex function h :
R — R jie. (F(x) =Vh(x)),then (1) is noting other than the necessary and
sufficient condition ((Vh (ZT),x —Z) > 0for =z € C) for the following convex
optimization problem :

min A (x) subject to wxe€C (2)

Reciprocally, if F' is differentiable and the Jacobienne matrix VF (x) is sym-
metric Vo € C, then we can associate to (1) an equivalent differentiable
optimization problem of type (2). The difficulty arises in the case of asymmet-
ric problems (very frequent in practice ).

Auslender [1] was of the first having proposed an encouraging answer but with
restricted hypoteses particularly for the numerical aspect with the help of the
gap function: ¢ (z) =y € Cmax (F (z),z —y)

Thus (1) is equivalent to:

min g (x) subject to xeC (3)

Obviously g is not différentiable. Auslender shows that it is it if C' is strongly
convex i.e (V x1,29 € C (21 = x3) , YA € ]0,1[ ,3 r > 0 such as:

B((1 =Xz — Axq,r) C C'), difficult property to have in practice.

Thus, we can say that the contribution of Auslender is interesting in
theory but certainly not in practice, the assumption of strong convexity of C' is
too restrictive, what encouraged the researchers to develop other functions of
which the differentiability depends on F' and not on C. Let us note, however,
that the problem of associate to asymmetric variational inequality problem (1)
a practical differentiable optimization problem remained open question hang
several years.

Also, even work of Auslender does not have numerical impact, they constitute
with our direction a starting reference for all the later

development , in the occurrence the method of Fukushima which
represents mainly and even the results obtained by Auslender
especially in theory. This method will be the object of following section.
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3. Method of Fukusima

The principal idea consists in building a differentiable optimization problem
equivalent to 1, what constitutes the interest of this method.

3.1 Description of the method
Let F': R® — R a differentiable mapping, C' C R" is noempty closed convex
set , and z € R" be temporarily fixed and consider the following problem:

{ve cmx|r @0 - - 5yl (@)

Proposition 3.1 The problem (4) is equivalent to the following
problem:

{—y € C’min% Hy —(z - G'F (x))HZ, (5)
Proof. see [4]

Let us note that the solution y, of the problem (4) is nothing other than the
ortogonal projection of the element (x — G™'F (x)) onto the set C' with respect
to ||.|| 5 - From where the existence and the uniquness of y, (theorem traditional
of projection). However we can prove the existence and the uniqueness of the
solution for (5) by noticing that the objective is strongly convex in y and
C' is noempty closed, The result is a traditional consequence of Wieirstrass’s
theorem. Thus for each © € R" there exists a single y, what makes it possible
to define the mapping:

H:R'"— R"

x+— Yy, = H (z) = Projec (x — G7'F (z))

Proposition 3.2 Z is a solution for the variational inequality problem (1)
& T=H(Z).

Now we state the optimization problem equivalent to the variational inequality
problem (1) and the optimization problem of Fukushima [3].

3.2 equivalent optimization problem
Let the following optimization problem

min f (x) subject to wx€C (6)
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Where f: R — R is defined by:
f (@) =-(F(2),H (x) —2) = 5 |1 H (2) — z¢,

It is about the objective function of (4) in which y is replaced there by its
value.What correspond exactly with the function of Auslender increased by a

quadratic term. The following theorem established the equivalence between
the problem (1) and the (6).

Theorem 3.1 [3]

Let f the function defined in (6). Then f(x) > 0 for all z € C, and f (z) =0
if and only if x solves the optimization problem (6)

Proof. Again see [3].

Remark. The function of Fukushima has the same properties as the operator
F

in particular we have:

1. F' continuous = f continuous.

2. FeC'(R") = € C'(R")

in particular we have:

Vf(z)=F(x)+ (VF(x) - G)(H (z) — ) (7)

What in favour of the aspect practises contrary to the Auslender’s result, the
function f is not necessarily convex, which involves difficulties if the problem
(6) has local minimum or only stationary points.These difficulties can be over-
come with the help of this result [3].

Theorem 3.2 [3]

Assume that the mapping F' : R"— R" is continuously differentiable the Jaco-
bian VF(x) 1is positive definite for all =z € C. If z is a
stationary point of the problem (6), i.e.,

(Vf(z),z—y) forallr € C

then z is a global optimal solution of (6), hence Z is a solution of the problem

(1).
Proof. See [3].

3.3 Principle of the method
It means to solve (1) instead of (6) by a descent method, where the direction
in x is given by:

d=H(z)—=z
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Proposition 3.3 Assume that the mapping F': R"— R" is

continuously  differentiable and the Jacobian VF(z) 1is positive
definite for all x € C for each # € C, then the vector d = H (z) — x sat-
isfies the descent conditions:

(Vf(z),d) <0

Proposition 3.4
F' is strongly monotone = d = H (z) — z is a descent direction.

Now, we describe the:
3.3 Basic Algorithm

Step0: Data an initialization : Let ¢ > 0, G— n X n symetric positive

definite matrix, z° € C, and k := 0;

Stepl: compute the direction from: dy = H (z*) — z* such that
H (xk) = Projcc (xk -G 'F (xk)) X

While ||d|| > ¢ do:

Step2: compute the steplength: ¢ = arg mincp 1 f(aF +tdy).

Step3: compute the following iteration: z**! = a* 4+ t,d;, k = k + 1 and go
to Stepl.

For the calculation of steplength ¢, Fukushima the consider the
following Armijo-type f(z* + tdy) < f(z*) — A3*||d*||*, such that A > 0
and 0 < 3 < 1, then t;, the first 3* the last inequality.

Theorem 3.3 of convergence [3]. Suppose that is C' compact and the map-
ping F': R"— R" is differentiable and strongly monotone, suppose also that
F(z) and VF(z) are Lipsschitz continuous on C, and let the sequence gener-
ated by the iteration z*t! = ¥ +t.d;, k = 0,1, 2...,then for any starting point
2% € ¢, {«* }lies in C and converges to the unique solution of the problem (1).

3.4 Difficulties of the algorithm [ 4]

The method of Fukushima includes two operations particularly
difficult to realize for unspecified convex, the initialization to start the al-
gorithm and the calculation of the projection which intervenes in the compute

of the direction.

4. Implementation and experimental results



Variational inequality problems 2101

In this section, we present some numerical experiments applied to
different classes problems given in [4]. Our algorithms were programmed in
Pascal 7, the tolerance is ¢ = 107*. we display the following quantities iter
means iterations, size is the dimension of the problem, and Pr denotes the
problem.

The choice of the matrix G used in the projection and the steplength have a
great influence on the performance of the algorithm. Here, G is chosen as a
diagonal matrix ( the easier case ). For the steplength, we have adopted two
strategies: the constant step of type fixed point (lessexpensive) (Conststep)
and the variable step” rule of Armijo” (Varstep).

1- Nonlinear system of equations

In this case C = R" ,then the descent direction in ¥ is given by d* =
—-G7'F (xk) )
Table 1
Problem[4] | Size Tter & Time
Const step | Var step | Const step | Var step

1 4 5 22 0.27 0.39

2 4 35 37 0.24 0.33

3 20 41 29 0.38 0.38

2- Complementarity problem including the minimization of a dif-
ferentiable function on R’}
If C' = R", then the problem (1) is defined by:

finding T € R such that : }
F(@)>0; 'F(Z) =0

is called the complementarity problem. Thus the descent direction in z* is

given by:
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Table 2
Probl | Size Iter k Time
Const step | Var step | Const step | Var step

1 3 15 27 0.22 0.24
2 4 34 36 0.22 0.33
3 6 6 38 0.22 0.32
4 9 8 8 0.38 0.54
5 20 19 47 0.33 0.44

3- Variational inequality with hypercube

When ce take C' = []1"_, [a;, b;] (hypercube)then we calculate the descent di-

rection in 2% as following:

a; — ¥ sizk — G'F (mk) < a;
d*={ —G'F (xk) si a;<x® — GTIF (xk) < b
b, — ¥ st ot — GTF (2F) > b,
Table 3
Problem[4] | Size Iter k Time
Const step | Pas var | Const step | Pas var
1 4 9 29 0.22 0.25
2 4 141 47 0.33 0.39
3 9 19 40 0.38 0.39
4 20 39 40 0.39 0.43

5. GENERAL COMMENTS AND CONCLUSION

The techniques of optimization constitute a suitable tool for the resolution
of the variational inequality problem and have the necessary ingredients to
progress more in the numerical aspect.
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