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Abstract

This paper discusses robust H∞ disturbance attenuation of uncertain
discrete-time systems that have time-varying delay in state. There have
been only a few results on H∞ disturbance attenuation for discrete-time
delay systems. Especially, few results on robust H∞ disturbance attenu-
ation for a class of uncertain discrete-time delay systems have appeared
in the literature. Therefore, the study of robust H∞ disturbance at-
tenuation for uncertain discrete-time delay systems is a very important
problem. We first obtain an H∞ disturbance attenuation condition for
nominal discrete-time systems with time varying delay via linear matrix
inequalities (LMIs). To this end, we define a new Lyapunov function and
use Leibniz-Newton formula and free weighting matrix method, which
reduce the conservativeness and unnecessary LMI slack variables in our
robust H∞ disturbance attenuation conditions. Then we extend to a ro-
bust H∞ disturbance attenuation condition for uncertain discrete-time
delay systems. Finally, we give some numerical examples to show that
our conditions are less conservative than other results in the literature.
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1 Introduction

When we consider control problems of physical systems, we often see time-
delays in the process of control algorithms. Time-delays often appear in many
practical systems and mathematical formulations such as electrical system,
mechanical system, biological system, and transportation system. Hence, a
system with time-delay is a natural representation for them, and its analysis
and synthesis are of theoretical and practical importance. In the past decades,
research on continuous-time delay systems has been active. Difficulty that
arises in continuous time-delay systems is that it is infinite dimensional and a
corresponding controller can be a memory feedback. This class of controllers
may minimize a certain performance index, but it is difficult to implement it
to practical systems due to a memory feedback. To overcome such a difficulty,
a memoryless controller is used for time-delay systems. In the last decade,
sufficient stability conditions have been given via linear matrix inequalities
(LMIs), and stabilization methods by memoryless controllers have been inves-
tigated by many researchers. Since Li and de Souza considered robust stability
and stabilization problems in [8], less conservative robust stability conditions
for continuous time-delay systems have been obtained ([7], [10]). Recently, H∞
disturbance attenuation conditions have also been given ([9], [14], [15]).

On the other hand, research on discrete-time delay systems has not at-
tracted as much attention as that of continuous-time delay systems. In addi-
tion, most results have focused on discrete-time systems with time-invariant
delays ([3], [11], [13], [17]). Only some results on discrete-time systems with
time-varying delays have appeared in the literature. Gao and Chen [4], Hara
and Yoneyama [5], [6] gave robust stability conditions. Fridman and Shaked [1]
solved a guaranteed cost control problem. Fridman and Shaked [2], Yoneyama
[16], Zhang and Han [18] considered the H∞ disturbance attenuation. They
have given sufficient conditions via LMIs for corresponding control problems.
Nonetheless, their conditions still show the conservatism. Hara and Yoneyama
[5] and Yoneyama [16] gave least conservative conditions but their conditions
require many LMI slack variables, which in turn require a large amount of
computations. Furthermore, to authors’ best knowledge, no result on robust
H∞ disturbance attenuation problem for uncertain discrete-time systems with
time-varying delays has given in the literature.

In this paper, we consider H∞ disturbance attenuation for nominal discrete-
time systems with time-varying delay and robust H∞ disturbance attenuation
for uncertain system counterpart. First, we obtain a new H∞ disturbance
attenuation condition for a nominal time-delay system. To this end, we define
a new Lyapunov function and use Leibniz-Newton formula and free weighting
matrix method. These methods are known to reduce the conservatism in
our H∞ disturbance attenuation condition. Our method requires fewer LMI
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variables than the existing results, and hence leads to a smaller amount of
computations. Then, we extend our H∞ disturbance attenuation condition
to robust H∞ disturbance attenuation condition for uncertain discrete-time
systems with time-varying delay. Finally, we give some numerical examples to
illustrate our results and to compare with existing results.

2 Time-Delay Systems

Consider the following discrete-time system with a time-varying delay and
uncertainties in the state.

x(k + 1) = (A + ΔA)x(k) + (Ad + ΔAd)x(k − dk) + (B + ΔB)w(k)

z(k) = Cx(k) + Dw(k), (1)

x(k) = 0, k ∈ [−dM , 0]

where x(k) ∈ �n is the state, w(k) ∈ �m is the disturbance, z(k) ∈ �q is the
controlled output. A, Ad, B, C and D are system matrices with appropriate
dimensions. dk is a time-varying delay and satisfies 0 ≤ dm ≤ dk ≤ dM and
dk+1 ≤ dk where dm, dM are known constants. Uncertain matrices are of the
form

ΔA = HF (k)E, ΔAd = HF (k)Ed, ΔB = HF (k)E1 (2)

where F (k) ∈ �l×j is an unknown time-varying matrix satisfying F T (k)F (k) ≤
I and H , E, Ed and E1 are constant matrices of appropriate dimensions.

Definition 2.1 The system (1) is said to be robustly stable if it is asymp-
totically stable for all admissible uncertainties (2).

Our problem is to find conditions such that the system (1) is robustly stable
with w = 0 and satisfies

J =
∞∑

k=0

(zT (k)z(k) − γ2wT (k)w(k)) < 0 ∀ w �= 0

for a prescribed γ > 0. If such conditions are satisfied, we say the system (1)
achieves the robust H∞ disturbance attenuation γ.

When we discuss a nominal system, we consider the following system.

x(k + 1) = Ax(k) + Adx(k − dk) + Bw(k),

z(k) = Cx(k) + Dw(k), (3)

x(i) = 0, i ∈ [−dM , 0].

The following lemma is useful to prove our results.
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Lemma 2.2 ([12]) Given matrices Q = QT , H, E and R = RT > 0 with
appropriate dimensions.

Q + HF (k)E + ET F T (k)HT < 0

for all F (k) satisfying F T (k)F (k) ≤ R if and only if there exists a scalar ε > 0
such that

Q +
1

ε
HHT + εET RE < 0.

3 Analysis of H∞ Disturbance Attenuation

This section analyzes H∞ disturbance attenuation for discrete-time delay sys-
tems. Section 3.1 gives an H∞ disturbance attenuation condition for nominal
systems and Section 3.2 extend to robust H∞ disturbance attenuation.

3.1 H∞ Disturbance Attenuation

Theorem 3.1 Given integers dm and dM . Then the time-delay system (3)
achieves H∞ disturbance attenuation γ if there exist matrices P1 > 0, P2 > 0,
Q1 > 0, Q2 > 0, S > 0, M > 0, L1, L2, L3, N1, N2, T1 and T2 satisfying

Φ =
[
Φ1 + ΞL + ΞN + ΞT

√
dMZ1

∗ −S

]
< 0 (4)

where

Φ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 0 0 0 0 0
∗ Φ22 0 0 0 CT D
∗ ∗ −Q1 0 0 0
∗ ∗ ∗ Φ44 −P2 0
∗ ∗ ∗ ∗ P2 − Q2 0
∗ ∗ ∗ ∗ ∗ Φ66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Φ22 = −P1 + Q1 + (dM − dm)M + CT C,

Φ44 = P2 + Q2 + dMS,

Φ66 = −γ2I + DT D,

Z1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
N1

0
−P2 + N2

P2

⎤
⎥⎥⎥⎥⎥⎥⎦

,



Robust H∞ control for discrete-time delay systems 1307

ΞL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 + LT
1 LT

2 − L1 0 LT
3 − L1 0 0

∗ −L2 − LT
2 0 −LT

3 − L2 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ −L3 − LT

3 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ΞN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
∗ N1 + NT

1 −N1 NT
2 0 0

∗ ∗ 0 −NT
2 0 0

∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ΞT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 + T T
1 T T

2 − T1A −T1Ad 0 0 −T1B
∗ −T2A − AT T T

2 −T2Ad 0 0 −T2B
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof: Consider a Lyapunov function

V (k) = V1(k) + V2(k) + V3(k) + V4(k)

where e(k) = x(k + 1) − x(k) and

V1(k) = xT (k)P1x(k) +
k−1∑

i=k−dk

eT (i)P2

k−1∑
i=k−dk

e(i),

V2(k) =
k−1∑

i=k−dk

xT (i)Q1x(i) +
k−1∑

i=k−dk

eT (i)Q2e(i),

V3(k) =
−1∑

i=−dk

k−1∑
j=k+i

eT (j)Se(j),

V4(k) =
−dm∑

j=−dM+1

k−1∑
i=k+j

xT (i)Mx(i),

and P1, P2, Q1, Q2, S and M are positive definite matrices to be determined.
Then we calculate the difference ΔV = V (k + 1) − V (k) and add following
zero quantities.

2[xT (k + 1)L1 + xT (k)L2 + eT (k)L3][x(k + 1) − x(k) − e(k)] = 0,

2[xT (k)N1 + eT (k)N2][x(k) − x(k − dk) −
k−1∑

i=k−dk

e(i)] = 0,
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2[xT (k + 1)T1 + xT (k)T2]
[x(k + 1) − Ax(k) − Adx(k − dk) − Bw(k)] = 0.

Since ΔVi(k), i = 1, · · · , 4 are calculated as follows;

ΔV1(k) = xT (k + 1)P1x(k + 1) +
k∑

i=k+1−dk+1

eT (i)P2

k∑
i=k+1−dk+1

e(i)

−xT (k)P1x(k) −
k−1∑

i=k−dk

eT (i)P2

k−1∑
i=k−dk

e(i)

≤ xT (k + 1)P1x(k + 1) − xT (k)P1x(k) + eT (k)P2e(k)

−2eT (k)P2e(k − dk) + 2eT (k)P2

k−1∑
i=k−dk

e(i)

+eT (k − dk)P2e(k − dk) − 2eT (k − dk)P2

k−1∑
i=k−dk

e(i),

ΔV2(k) =
k∑

i=k+1−dk+1

xT (i)Q1x(i) +
k∑

i=k+1−dk+1

eT (i)Q2e(i)

−
k−1∑

i=k−dk

xT (i)Q1x(i) −
k−1∑

i=k−dk

eT (i)Q2e(i)

≤ xT (k)Q1x(k) + eT (k)Q2e(k) − xT (k − dk)Q1x(k − dk)
−eT (k − dk)Q2e(k − dk),

ΔV3(k) = dk+1e
T (k)Se(k) −

k−1∑
i=k−dk+1

eT (i)Se(i) · · · −
k−1∑

i=k−dk

eT (i)Se(i)

≤ dMeT (k)Se(k) −
k−1∑

i=k−dk

eT (i)Se(i),

ΔV4(k) = (dM − dm)xT (k)Mx(k) −
k−dm∑

i=k−dM+1

xT (i)Mx(i)

≤ (dM − dm)xT (k)Mx(k),

we have

ΔV (k) + zT (k)z(k) − γ2wT (k)w(k)

= ΔV1(k) + ΔV2(k) + ΔV3(k) + ΔV4(k) + zT (k)z(k) − γ2wT (k)w(k)

≤ ξT (k)[Φ1 + ΞL + ΞN + ΞT ]ξ(k) +
k−1∑

i=k−dk

ξT (k)Z1S
−1ZT

1 ξ(k)

−
k−1∑

i=k−dk

(ξT (k)Z1 + eT (i)S)S−1(ZT
1 ξ(k) + Se(i))

≤ ξT (k)[Φ1 + ΞL + ΞN + ΞT + dMZ1S
−1ZT

1 ]ξ(k)
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where ξT (k) = [xT (k + 1) xT (k) xT (k − dk) eT (k) eT (k − dk) wT (k)]. If (4)
is satisfied, then by Schur complement formula, we have Φ1 + ΞL + ΞN + ΞT +
dMZ1S

−1ZT
1 < 0. It follows that ΔV (k)+ zT (k)z(k)−γ2wT (k)w(k) < 0. This

leads to ΔV (k) < 0 when w(k) = 0 and hence the stability with w(k) = 0 is
established. Summing up from k = 0 to k = ∞, we get V (∞) − V (0) + J <
0. Since V (∞) ≥ 0 and V (0) = 0, we have J < 0, which proves the H∞
disturbance attenuation γ.

Remark 3.2 We employ
k−1∑

i=k−dk

(�) in our Lyapunov function instead of

k−1∑
i=k−dM

(�). This gives a less conservative H∞ disturbance attenuation con-

dition.

Remark 3.3 [16] and Theorem 3.1 have the same number of LMI slack
variables. However, a size of LMI slack variables in [16] is larger than that of
Theorem 3.1. It implies that our method requires a shorter computation time
than [16].

3.2 Robust H∞ Disturbance Attenuation

By extending Theorem 3.1, we obtain a condition for robust H∞ disturbance
attenuation γ of uncertain system (1).

Theorem 3.4 Given integers dm and dM . Then the time-delay system (1)
achieves H∞ disturbance attenuation γ if there exist matrices P1 > 0, P2 > 0,
Q1 > 0, Q2 > 0, S > 0, M > 0, L1, L2, L3, N1, N2, T1 and T2 and a scalar
λ > 0 satisfying

Π =
[
Φ + λĒT Ē H̄T

∗ −λI

]
, (5)

where

H̄ = [−HT T T
1 −HT T T

2 0 0 0 0 0 ] ,

and

Ē = [ 0 E Ed 0 0 E1 0 ] .
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Proof: Replacing A, Ad and B in (4) with A+HF (k)E, Ad+HF (k)Ed and
B + HF (k)E1, respectively, we obtain the robust H∞ disturbance attenuation
(4) corresponding to the system (1):

Φ + H̄T F (k)Ē + ĒT F T (k)H̄ < 0 (6)

By Lemma 2.2, a necessary and sufficient condition that guarantees (6) is that
there exists a scalar λ > 0 such that

Φ + λĒT Ē +
1

λ
H̄T H̄ < 0 (7)

Applying Schur complement formula, we can show that (7) corresponding to
(5).

4 Examples

In this section, the following example is provided to illustrate the advantage
of the proposed results.

Example 4.1 Consider the following discrete-time delay system:

x(k + 1) =
[
0.8 + α 0

0 0.97

]
x(k) +

[−0.1 0
−0.1 −0.1

]
x(k − dk)

+
[
0.1 0
0 0.1

]
w(k),

z(k) =
[
0.5 0
0 0.5

]
x(k)

where α satisfies |α| ≤ ᾱ for ᾱ is an upper bound of α(k). First, we consider
the H∞ disturbance attenuation for a nominal time-delay system with α(k) = 0.
Theorem 3.1 gives minimum lower bound of γ for different time-delay dk in
Table 1. When a constant delay dk = 10 is considered, Theorem 3.1 gives a
smaller γ than [11]. For a time-varying delay 0 ≤ dk ≤ 6, Table 1 shows
Theorem 3.1 gives better results than [2] and [18].

Table 1. The minimum lower bound of γ
Time-Delay Approach Minimum γ

Time-Invariant [11] 4.7470
dk = 10 Theorem 3.1 1.3102

Time-Varying [2] 1.0847
[18] 0.9265

0 ≤ dk ≤ 6 Theorem 3.1 0.5448
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Next, we consider the robust H∞ disturbance attenuation for the uncer-
tain time-delay system with α(k) �= 0. In this case, system matrices can be
represented in the form of (1) with matrices given by

A =
[
0.8 0
0 0.97

]
, Ad =

[−0.1 0
−0.1 −0.1

]
, E = [ 1 0 ] , Ed = E1 = [ 0 0 ] ,

B =

[
0.1 0
0 0.1

]
, C =

[
0.5 0
0 0.5

]
, H =

[
ᾱ
0

]
, F (k) =

α(k)

ᾱ
.

For a time-varying delay 0 ≤ dk ≤ 6, Theorem 3.4 gives minimum lower bound
of γ for different ᾱ in Table 2.

Table 2. The minimum lower bound of γ
Time-Delay ᾱ Minimum γ

0.05 0.5760
0 ≤ dk ≤ 6 0.10 0.6687

0.15 1.0318
0.20 4.1300

5 Conclusions

In this paper, we proposed new H∞ disturbance attenuation condition and
robust H∞ disturbance attenuation condition for discrete-time systems with
time-varying delay. Our conditions were obtained by introducing new Lya-
punov function and using Leibniz-Newton formula and free weighting matrix
method. They have less LMI slack variables than those of the existing meth-
ods. Numerical examples showed that our conditions are less conservative than
other existing results.
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