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Abstract

This paper discusses robust Ho, disturbance attenuation of uncertain
discrete-time systems that have time-varying delay in state. There have
been only a few results on H, disturbance attenuation for discrete-time
delay systems. Especially, few results on robust H., disturbance attenu-
ation for a class of uncertain discrete-time delay systems have appeared
in the literature. Therefore, the study of robust H,, disturbance at-
tenuation for uncertain discrete-time delay systems is a very important
problem. We first obtain an H., disturbance attenuation condition for
nominal discrete-time systems with time varying delay via linear matrix
inequalities (LMIs). To this end, we define a new Lyapunov function and
use Leibniz-Newton formula and free weighting matrix method, which
reduce the conservativeness and unnecessary LMI slack variables in our
robust H, disturbance attenuation conditions. Then we extend to a ro-
bust H, disturbance attenuation condition for uncertain discrete-time
delay systems. Finally, we give some numerical examples to show that
our conditions are less conservative than other results in the literature.
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1 Introduction

When we consider control problems of physical systems, we often see time-
delays in the process of control algorithms. Time-delays often appear in many
practical systems and mathematical formulations such as electrical system,
mechanical system, biological system, and transportation system. Hence, a
system with time-delay is a natural representation for them, and its analysis
and synthesis are of theoretical and practical importance. In the past decades,
research on continuous-time delay systems has been active. Difficulty that
arises in continuous time-delay systems is that it is infinite dimensional and a
corresponding controller can be a memory feedback. This class of controllers
may minimize a certain performance index, but it is difficult to implement it
to practical systems due to a memory feedback. To overcome such a difficulty,
a memoryless controller is used for time-delay systems. In the last decade,
sufficient stability conditions have been given via linear matrix inequalities
(LMIs), and stabilization methods by memoryless controllers have been inves-
tigated by many researchers. Since Li and de Souza considered robust stability
and stabilization problems in [8], less conservative robust stability conditions
for continuous time-delay systems have been obtained ([7], [10]). Recently, Ho,
disturbance attenuation conditions have also been given ([9], [14], [15]).

On the other hand, research on discrete-time delay systems has not at-
tracted as much attention as that of continuous-time delay systems. In addi-
tion, most results have focused on discrete-time systems with time-invariant
delays ([3], [11], [13], [17]). Only some results on discrete-time systems with
time-varying delays have appeared in the literature. Gao and Chen [4], Hara
and Yoneyama [5], [6] gave robust stability conditions. Fridman and Shaked [1]
solved a guaranteed cost control problem. Fridman and Shaked [2], Yoneyama
[16], Zhang and Han [18] considered the H,, disturbance attenuation. They
have given sufficient conditions via LMIs for corresponding control problems.
Nonetheless, their conditions still show the conservatism. Hara and Yoneyama
[5] and Yoneyama [16] gave least conservative conditions but their conditions
require many LMI slack variables, which in turn require a large amount of
computations. Furthermore, to authors’ best knowledge, no result on robust
H,, disturbance attenuation problem for uncertain discrete-time systems with
time-varying delays has given in the literature.

In this paper, we consider H, disturbance attenuation for nominal discrete-
time systems with time-varying delay and robust H,, disturbance attenuation
for uncertain system counterpart. First, we obtain a new H,, disturbance
attenuation condition for a nominal time-delay system. To this end, we define
a new Lyapunov function and use Leibniz-Newton formula and free weighting
matrix method. These methods are known to reduce the conservatism in
our H,, disturbance attenuation condition. Our method requires fewer LMI



Robust Hy, control for discrete-time delay systems 1305

variables than the existing results, and hence leads to a smaller amount of
computations. Then, we extend our H,, disturbance attenuation condition
to robust H,, disturbance attenuation condition for uncertain discrete-time
systems with time-varying delay. Finally, we give some numerical examples to
illustrate our results and to compare with existing results.

2 Time-Delay Systems

Consider the following discrete-time system with a time-varying delay and
uncertainties in the state.

e(k+1) = (A+AA)x(k) + (Ag + AA)x(k — di) + (B + AB)w(k)
Ak) = Cu(k)+ Dw(k), (1)
w(k) = 0,k € [~dy,0]

where z(k) € R" is the state, w(k) € ™ is the disturbance, z(k) € R is the
controlled output. A, Ay, B, C' and D are system matrices with appropriate
dimensions. dj is a time-varying delay and satisfies 0 < d,,, < d < dj; and
di+1 < di where d,,, dy; are known constants. Uncertain matrices are of the
form

AA = HF(K)E, AAy = HF(k)Es, AB = HF(k)E, 2)
where F'(k) € RV is an unknown time-varying matrix satisfying £ (k) F(k) <

I and H, E, E; and E; are constant matrices of appropriate dimensions.

Definition 2.1 The system (1) is said to be robustly stable if it is asymp-
totically stable for all admissible uncertainties (2).

Our problem is to find conditions such that the system (1) is robustly stable
with w = 0 and satisfies

J = i(zT(k)z(k‘) — Yl (k)w(k)) <0 Vw#0
k=0

for a prescribed 4 > 0. If such conditions are satisfied, we say the system (1)
achieves the robust H,, disturbance attenuation ~.
When we discuss a nominal system, we consider the following system.

r(k+1) = Ax(k)+ Agx(k — di) + Bw(k),
z(k) = Cuz(k)+ Dw(k), (3)
z(i) = 0,i€ [—dp,0].

The following lemma is useful to prove our results.
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Lemma 2.2 ([12]) Given matrices Q = QT, H, E and R = RT > 0 with
appropriate dimensions.

Q+HFk)E+E"FI'(KH" <0

for all F(k) satisfying FT(k)F(k) < R if and only if there exists a scalar € > 0
such that

1
Q+-HH" + eETRE < 0.
£

3 Analysis of H,, Disturbance Attenuation

This section analyzes H,, disturbance attenuation for discrete-time delay sys-
tems. Section 3.1 gives an H,, disturbance attenuation condition for nominal
systems and Section 3.2 extend to robust H,, disturbance attenuation.

3.1 H, Disturbance Attenuation

Theorem 3.1 Given integers d,, and dy;. Then the time-delay system (3)
achieves H,, disturbance attenuation vy if there exist matrices P, > 0, P, > 0,
Q1>0,0Q:>0,9>0, M >0, Ly, Ly, Ly, Ny, Ny, T\ and Ty satisfying

o O+ =2 +EN+Er Vdus, <0 (4)
* )
where
P, 0 0 0 0 0 1
* @22 0 0 0 OTD
o — * x  —0Qp 0 0 0
L * * * @44 —PQ 0 ’
* * * x  Py— (9 0
B * * * * Dge |
By = —Pi+ Q1+ (dy —dm)M +C'C,
@44 = P2+Q2+dMS7
s = —°I+D'D,
0
M
Zy = 0 )
—P,+ N,

Py
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L+ LT LY —L, 0 Lg—Ll 0 0
* —L,—LT 0 —Lg —Ly 0 0
- _ * * 0 0 0 0
- % * x —Ly—LY 0 0|’
* * * * 0 0
i * * * * * O_
[0 0 0 0 0 0]
*x Ni+NI' —N; NI 0 0
- = * 0 —-NJ 0 0
=Nk * * 0 0 0}’
* * * * 0 0
E * * * * 0]
[Ty + TF ] —TiA -TiAqg 0 0 —-TiB]
* —TQA — ATTQT —TQAd 0 0 —TQB
- * * 0 0 0 0
=T = * * * 0 0 0
* * * x 0 0
R * * k% 0 ]

Proof: Consider a Lyapunov function
Vi(k) = Vi(k) + Va(k) + V3(k) + Va(k)
where e(k) = z(k + 1) — (k) and

k) = WP+ S @R Y el
k—1 k-1
Vak) = D 2T()Qua(i) + D e (i)Qe(i),
i=k—d}, i=k—dj,
Bk = Y Y ()Sel)
—dm k—1

Vi(k) = Z Z 2T (1) Mx(i),

J=—dpu+1i=k+j

and Py, Py, Q1, D2, S and M are positive definite matrices to be determined.
Then we calculate the difference AV = V(k + 1) — V(k) and add following
zero quantities.

22T (k + 1)Ly + 27 (k) Ly + ¥ (k) Ls][z(k + 1) — (k) — e(k)] = 0,

20" (BNs + S RNalle(h) — 2l = de) = 3 e@)] =0,
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[z(k +1) — Az(k) — Agz(k — di) — Bw(k)] = 0.

Since AV;(k), i =1,---,4 are calculated as follows;

AV (k)

AVa(k)

AVs(k)

AVy(k)

we have

IN

IN

IN

T (k+1)Pa(k+1) + B > eT(i)Pg‘ S e(d)
ko1 e
—27 (k) Piw(k) — '_kz;d el (i) Py ‘_kz;d e(1)
Tk + 1) Pk + 1) — 27 (k) P (k) + 7 (k) Pe (k)
k—1
—2e" (k) Pye(k — dy) +2e" (k)P > e(i)
i=k—dj,
+€T(l€ — dk)Pge(k‘ — dk) — 2€T(]€ — dk»)PQ ‘ kz_: €(i),
N N i=k—dy,
) Z;d 2 (1) Qi () + . X}d e! (1)Qze(i)

- Z T ()Qlf(i)— Z 6T(¢)Q2€(i)

i=k—dy i=k—dy
2T (k)Qiz(k) + €T (k)Qqee(k) — 2™ (k — dy,)Qrz(k — dy,)
—GT(]C dk)Qge(k’ —kcikl),

derre’ (k)Se(k) — > el(i)Se(i)---— > e’ (i)Se(i)

dyre? (k) Se(k) — 4_;! e’ (i)Se(i),
* k—dm
(dys — do)2" (B)YMa(k) — Y 27 (i) Mx(3)
i=k—dp+1

(dar — d) 2™ (k)M (k),

AV (E) 4+ 27 (k) z(k) — v*w” (k)w(k)
= AVi(k) + AVa(k) + AVs(k) + AVi(k) + 2" (k)2(k) — *w” (k)w (k)

k—1

< (k)@ +EL+En+Erle(k) + > €N (k)25 2T E(k)
k—d

1= k

S €02+ T ()S)S T (ZTE(R) + Seld))

i=k—dy,

< (k)@ +EL +En +Zr + duZiST ZTIE(K)
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where ¢T(k) = [27(k+ 1) 27 (k) 27 (k — di) €(k) T (k —dy) wT(k)]. If (4)
is satisfied, then by Schur complement formula, we have &1 +=;, + =y + =7 +
dyZ1S™1ZE < 0. Tt follows that AV (k) + 27 (k)z(k) — v*w” (k)w(k) < 0. This
leads to AV (k) < 0 when w(k) = 0 and hence the stability with w(k) = 0 is
established. Summing up from k = 0 to k = oo, we get V(o0) — V(0) + J <
0. Since V(oco) > 0 and V(0) = 0, we have J < 0, which proves the Hy
disturbance attenuation +.

k-1
Remark 3.2 We employ Z (x) in our Lyapunov function instead of
i=k—d
k—1 ’
> (x). This gives a less conservative Hy, disturbance attenuation con-
i=k—das
dition.

Remark 3.3 [16] and Theorem 3.1 have the same number of LMI slack
variables. However, a size of LMI slack variables in [16] is larger than that of

Theorem 3.1. It implies that our method requires a shorter computation time
than [16].

3.2 Robust H, Disturbance Attenuation

By extending Theorem 3.1, we obtain a condition for robust H., disturbance
attenuation 7 of uncertain system (1).

Theorem 3.4 Given integers d,, and dy;. Then the time-delay system (1)
achieves H,, disturbance attenuation v if there exist matrices P, > 0, P, > 0,
Q1 >0,Q,>0,8>0, M >0, Ly, Lo, Ly, Ny, Ny, Ty and T5 and a scalar
A > 0 satisfying

_ [®+AETE HT
= * -\ |’ (5)

where

H = [-HTTT —HTTT 0 0 0 0 0],

and

E =10 E E; 0 0 E; 0].
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Proof: Replacing A, A; and B in (4) with A+ HF (k)E, Ag+HF(k)E, and
B+ HF(k)E, respectively, we obtain the robust H,, disturbance attenuation
(4) corresponding to the system (1):

®+H'F(K)E+ E"FT(K)H <0 (6)

By Lemma 2.2, a necessary and sufficient condition that guarantees (6) is that
there exists a scalar A > 0 such that

P
<I>+)\ETE+XHTH<O (7)

Applying Schur complement formula, we can show that (7) corresponding to

(5).

4 Examples

In this section, the following example is provided to illustrate the advantage
of the proposed results.

Example 4.1 Consider the following discrete-time delay system.:

ol )= |27 g s+ [To1 gy Jete -

* {061 091} w(k),

0 =% |70

where a satisfies |a| < & for a is an upper bound of a(k). First, we consider
the Hy, disturbance attenuation for a nominal time-delay system with a(k) = 0.
Theorem 3.1 gives minimum lower bound of v for different time-delay dy in
Table 1. When a constant delay dj, = 10 is considered, Theorem 3.1 gives a
smaller ~ than [11]. For a time-varying delay 0 < dp < 6, Table 1 shows
Theorem 3.1 gives better results than [2] and [18].

Table 1. The minimum lower bound of ~y

Time-Delay Approach | Minimum ~y
Time-Invariant [11] 4.7470
d = 10 Theorem 3.1 1.8102
Time-Varying [2] 1.0847
[18] 0.9265
0<d, <6 Theorem 3.1 0.5448




Robust Hy, control for discrete-time delay systems 1311

Next, we consider the robust H., disturbance attenuation for the uncer-
tain time-delay system with o(k) # 0. In this case, system matrices can be
represented in the form of (1) with matrices given by

0.8 0 0.1 0
A= { 0 0.97} Aa = [—0.1 —0.1

}, E=[1 0],E;=FE =1[0 0],

B:[Obl 0(.)1]’0:[065 0(.]5]’}[:[%]’]7(@:@'

For a time-varying delay 0 < d;. < 6, Theorem 3.4 gives minimum lower bound
of v for different & in Table 2.

Table 2. The minimum lower bound of ~y

Time-Delay | & | Minimum y
0.05 0.5760

0<d, <6 |0.10 0.6687
0.15 1.0318
0.20 4.1300

5 Conclusions

In this paper, we proposed new H., disturbance attenuation condition and
robust H,, disturbance attenuation condition for discrete-time systems with
time-varying delay. Our conditions were obtained by introducing new Lya-
punov function and using Leibniz-Newton formula and free weighting matrix
method. They have less LMI slack variables than those of the existing meth-
ods. Numerical examples showed that our conditions are less conservative than
other existing results.
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