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Abstract. This paper discusses linear fractional representations (LFR) of 
parameter-dependent nonlinear systems with real-rational nonlinearities and 
point-delayed dynamics. Sufficient conditions for robust global asymptotic 
stability both independent of and dependent on the delays are investigated via 
linear matrix inequalities. Such inequalities are obtained from the values of the 
time-derivatives of appropriate Lyapunov functions at all the vertices of the 
polytope which contains the parametrized uncertainties 

1   Introduction 

Time-delay systems are very common in nature like, for instance, related to 
transportation problems, population growing and signal transmission methods  (see, 
for instance, [1-2] and references therein). The stability and stabilization of those 
systems have been studied in the literature in connection, for instance, with  
Lyapunov  theory. Some of the related results are referred to either as being 
independent of the sizes of the delays or as dependent of those sizes. Within this last 
class of results, they merit special attention those related to the characterization of 
the first interval of admissible delay sizes allowing stabilization. On the other hand, 
the most involved group of results to obtain is that related to internal delays (i.e. in 
the state) since its associate dynamics possess infinitely many modes in general.  In 
this  
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paper, we consider a parameter-dependent (in general, nonlinear and time-varying) 
system subject to a finite set of point delays which may be, in general, defined by 
real-rational  nonlinearities, whose parameter vector H ∞  is restricted to lie in a 
polytope Θ ∈R n  containing the origin, This is called a so-called polytopic delayed 
system following the nomenclature used for delay-free systems in [3]]. The results 
developed in the following might be still applied if the set Θ  is not a polytope after 
replacing  it by some polytope Θ poly ⊃ Θ . The main arguments used to  develop the 
formalism are based on the fact that the polytope where the parameters belong to 
defines affine function matrices of vertices which may be calculated from those of 
the original  polytope Θ ∈R n of parametrized uncertainties. In the following, the 
robust global asymptotic stability of such a polytopic delayed system subject to point 
delays is investigated via  Lyapunov theory. 

 
1.1. Notation. ( )nmnm ×× CR  is the set of  real (complex) m × n matrices and 

0PP T >=  stands for a real symmetric positive-definite matrix. 
-   For a given set S,  one defines  σ S = { }Ss:s ∈σ   if σ  is a positive number. 
-   The convex hull of complex m × n  matrices ( )l21 ...,, ϑϑϑ , nm

i
×∈ϑ C  is  

     { }
⎭
⎬
⎫

⎩
⎨
⎧

≥λ≤λϑλ=ϑϑ=ϑϑϑ ∑∑
==

0,1,:...,, i
l

1i
ii

l

1i
il21Co  

- I m is the m-identity matrix with the subscript being omitted if its size follows 
directly  from context. 
- If Θ  is a polytope containing the origin and  ( )θΔ i  ( )r,0i =  , 0r ≥   being an 
integer, are real-valued rational matrix functions of any order of θ then 

( ){ }ΔΔ ∈θθΔ= :ii  and r10 ...ΔΔΔΔ ××= are polytopes of iv  vertices )k( i
i

Δ  , 

ii v,0k =  ; r,0i=  ; and  
( ) )k(

r
)k(

0
k...,,k,k r0r10 ... Δ××Δ=Δ , respectively, where  ´× ´ denotes the Cartesian 

product of matrices (considered as sets). In our context, Θ  is the polytope where the 
system parameters belong to while iΔ  is the polytope where the rational matrix 
function ( )θiA , defining the dynamics of the i-th delay h i  ( ( )θ0A  describes the 
delay-free dynamics; i.e. 0h  = 0) as the parameter vector θ runs over Θ ; i = 0, r . 

 
 
     2. Linear fractional descriptions 
 

Consider the parameter dependent system subject to r point delays ih ( )r,1i= : 

( ) ( ) ( ) )t(u)t(Bhtx)t(A)t(x i
r

0i
i θ+−θ= ∑

=
&                                                                    (1.a) 

( ) ( ) ( ) )t(u)t(Dtx)t(C)t(y θ+θ=                                                                                 (1.b) 
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where 0h 0= ,  n)t(x R∈  , un)t(u R∈ , yn)t(y R∈  are the state, input and measurable 
output signals, respectively, and ( )r,0iA i = , B , C and D  are real- valued rational 
functions of time-varying parameter vector )t(θ  with Θ∈θ  for all t ≥ 0  with 

( ) T
m21 )t(,...,)t(,)t()t( θθθ=θ  such that the real vector associated function 

Θ:θ ( ) [ ) mm t,0 RR →×⊂  is defined in such a way that (1) has a mild solution on [ )t,0  
for all 0t ≥  for any absolutely continuous function [ ] n0,h: R→−ϕ  of initial conditions 

)t()t(x ϕ≡ , [ ]0,ht −∈  with ( )i
ri1

hMaxh
≤≤

= . One defines: 

- The unforced system (1) is robustly globally asymptotically stable if )t(x is 
uniformly bounded and 0)t(xlim

t
=

∞→
 if 0u≡  for any bounded x(0). The system (1) is 

robustly stabilizable if there exists an output-feedback realizable control law 
( ) ( )t,)t(,yKtu θ=  such that the closed-loop system is robustly globally asymptotically 

stable. For terminology simplicity, since no confusion is expected, we refer in the 
sequel to robust global asymptotic stability simply as “robust stability”. 
- The robust stability (stabilizability) margin of (1) for an uncertainty set is 

( )=ρσ mm Sup { )(ρσ : System (1) is robustly stable (stabilizable) over Θγ  for all 
[ ]σ∈γ ,0  [ ]( )ρ∈γ ,0 . Now, first consider the unforced version of (1) given by: 

( ) ( )i
r

0i
i htx)t(A)t(x −θ= ∑

=
&   ; ( ) ( )tx)t(C)t(y θ=                                                         (2)   

 
2.1 First  LFR : Since ( ))t(A i θ  ( )r,0i=  is a real-valued rational matrix function of 
θ(t), the LFR description of each matrix function A i θ ( t )( ) exists for some 
appropriate matrices oiA ,  iqB ,   iqpD  ( )r,0i = : 
 

( ) ( ) ( )( ) ip
1

iiqpdiiqi0i C)t(DI)t(BA)t(A i
−θΔ−θΔ+=θ                                                  (3) 

 
for any Δ i ((θ (t)) such that the well-posedness condition ( )( ) 0)t(DIDet ipqid i ≠θΔ− , 

Θ∈θ∀  , all 0t ≥  where I d i
 is the  d i  identity matrix ( )r,0i= . In the following, the 

explicit dependence of θ (t) on time is omitted in the notation for the shake of 
simplicity when no confusion is expected. If (2) is quadratically stable then 
A 0 i ( )r,0i=  are strictly Hurwitzian (i.e. with all their eigenvalues in Re s < 0). A  
state-space realization of the state evolution of the dynamical system (2) using (3) is 
 

( ) ( )( )∑
=

−+−=
r

0i
iiiqii0 htqBhtxA)t(x& ; 

( ) ( )( ) )t(xCDI)t(qDtxC)t(p ip
1

iiqpiiqpipi
−θΔ−=+=    

( ) ( ) ( )( ) )t(xCDI)t(p)t(q ip
1

iiqpiiii
−θΔ−θΔ=θΔ=  ;                                                (4)   
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where id

iq R∈ ; id
ip R∈ ( )r,0i=  where ( )ik

ri1
i sMaxs

≤≤
=  ( )r,0i =  and the polytope 

( ){ }ΘΔΔ ∈θθ= :i  ( )r,0i=  are, respectively, the i-th LFR degree with respect to the 
delay h i  and the polytope of v i  vertices Δ i

( k )  ( )r,0i;v,1k i ==  for parametrizations of 
( )θiA  ( )r,0i = . In particular, s 0  is the LFR degree of the delay-free system (4) (i.e., 

for the case when A i =0 ; i =1, r ) of parametrization within a polytope 0Δ  of 0v  

vertices )k(
0

0Δ  ( )0v,1k= . All those vertices will become crucial in the subsequent 
stability analysis in the case of convex problems since it would be sufficient to check 
stability conditions from matrix inequalities at all the set of distinct vertices. Note 
that the role of the signals q (.)  is that of normalized “ equivalent inputs” from the “ 
equivalent outputs” (.)p  trough normalization matrices Δ (.)  which depend on the 
values of the uncertainty parameter vector. The LFR representation (4) will be the 
main tool of the robust stability analysis and stabilization procedure proposed in this 
paper. Note also that the LFR (4) of (2) is valid, in particular, for the case of 
commensurate delays ih = i h. ( )r,0i = .  The uncertainty 

( ) ( )( )rr00
~

ht,...,htDiaght −Δ−Δ=⎟
⎠
⎞

⎜
⎝
⎛ −Δ  is absorbed in the forward loop while the identity 

operator plays the role of the uncertainty. An alternative single-input LFR to (4) for 
the state of the system (2) is proposed in the following: 
 
2.2  Second LFR: Decompose the rational real-valued matrix function 

( ) ( )( ) ( )i
r

0i
i htU)t(A)t(A −θ=θ ∑

=
, U (t) being the unity Heaviside function, as 

 
( ) ( ) ( )( ) ( )( )iip

1
qpqi0

r

0i
htUC)t(DI)t(BA)t(A −θΔ−θΔ+=θ −

=
∑                                        (5) 

with  0).(A , qB , qpD  and ).(pC  are real matrices of appropriate sizes. Under well-
posedness; i.e. ( )( ) 0DIDet qp ≠θΔ− , this leads to the single-input multi-output LFR of 
the state equation of (2): 

( ) )t(qBhtxA)t(x qi
r

0i
i0 +−= ∑

=
&   ;    ( ) )t(p)t(q θΔ=  

( ) )t(qDhtxC)t(p qpi

r

0i
ip +−=∑

=

 ; ( ) ( )
m21 sms2s1 I,...,I,IDiag θθθ=θΔ                             (6) 

where dq R∈ , dp R∈ , dn
qB ×∈R  ,  nd

ipC ×∈ R  ( )r,0i = , and ( ) dd×∈θΔ R  is a matrix 
function of the time-varying parameter vector θ (t) in  Θ  and s = Max

1≤ i ≤ m
s i( ) is the 

LFR degree of (6). The polytope { }ΘΔ ∈θθΔ= :)(  has v vertices Δ ( i ) ; v,1i= , 

[ ]∏
=

=≤
r

0i
ivvv , which depends on that of the polytope Θwhich parametrizes the system, 

and the parameter vector θ ∈ Θ  parametrizes the whole dynamics of  A( θ ( t ) ).  An 
equivalent description to (5)-(6) is 
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( ) ( ) ( )( ) ( )( )ip
1

qpiqi0
r

0i
htUC)t(DI)t(BA)t(A −θΔ−θΔ+=θ −

=
∑  which leads to the multi-

input single-output LFR: 
 

( )( )∑
=

−+−=
r

0i
iiqii0 )ht(qBhtxA)t(x&   ;    ( ) )t(p)t(q θΔ=  

( ) )t(qDtxC)t(p qpp +=   ; ( ) ( )
m21 sms2s1 I,...,I,IDiag θθθ=θΔ                                           (7) 

 
where dq R∈ , dp R∈ , dn

iqB ×∈R  ,  nd
pC ×∈R  ( )r,0i = . The LFR ´ s  (6)-(7) may be 

rewritten in the form (4) by defining real matrices: 
 

[ ]rq1q0qq B,....,B,BB =    ;      [ ]TT
rp

T
1p

T
0pp C,....,C,CC =  

[ ]rqp1qp0qpqp D,....,D,DDiagBlockD =      ;   ( ) ( ) ( ) ( )[ ]θΔθΔθΔ=θΔ r10 ,....,,Diag              (8.a) 
 
and  

[ ]TT
r

T
1

T
0 )t(p,....),t(p,)t(p)t(p = ; [ ]TT

r
T
1

T
0 )t(q,....,)t(q,)t(q)t(q =                                   (8.b) 

 
to  yield : 

( ) ( ) ( )( ) ( )( )ihtUipC1)t(iiqpDidI)t(iiqBi0A
r

0i
)t(A −−θΔ−θΔ+∑

=
=θ  

     
2.3 Remarks. (1) The LFR´ s (6) and (7) are equivalent, the first one describing the 
delayed dynamics through equivalent output delays while the second one describes it 
through equivalent input delays.  
 (2) Eqns. 8 prove that the second LFR may be equivalently rewritten in the form (4), 
associated with the dynamics representations (3). The equivalence arises from the 
fact that either each A i  may be parametrized by a particular parameter vector ii Θ∈θ  

with the matrix function A (θ(t)) = ( ) ( )i
r

0i
i htU)t(A −θ∑

=
 being parametrized by 

( ) r10
TT

r
T
1

T
0 ...,...,, ΘΘΘΘ ×××=∈θθθ=θ  

Since the second LFR may be rewritten as the first one, the formalism presented in 
this manuscript will be developed for the first LFR with no loss in generality. 
 (3) Note that the overall number of distinct vertices of polytopes v to be checked is 

[ ]∏
=

=≤
r

0i
ivvv . That inequality may be strict depending on the problem at hand since, 

depending on the parametrization, some of the matrices defining (1) may eventually 
generate common vertices.  A simple case implying vv≠  is when two of those 
matrices are identical so that the associated set of vertices ).(

).(Δ  become identical. To 
simplify the notation, we consider in the following v = v  with no loss in generality 
noting that the stability for common vertices only require to be tested once.         
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Note that if the unforced system is globally asymptotically stable independent of 
delays then 00A  and ∑

=

r

0i
i0A  are both stability matrices since Θ  contains the origin 

0 =θ  (describing the uncertainty-free system) and such a system has to be stable for 
h i → ∞ and h i = 0  ( )r,0i = .  
 
 
3. Main results 
 
The following stability result is concerned with the first LFR eqns. 4. Its proof is 
omitted. 
  
3.1 Theorem 1. The (unforced) system (2) is globally asymptotically stable 
independent of the delays if there exist real matrices 0PP T >= , 0SS T

ii >=  ( )r,1i =  
such that, for every ( ) ii Δ∈θΔ , Θ∈θ  i = 0, r( ), there exist complex matrices 

( ) idn
i )(G ×

Δ ∈θΔ C  and ( ) ii dd
i )(H ×

Δ ∈θΔ C  such that the square ( ) d1rn ++  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

r

0i
idd  real symmetric matrix Q (Δ (θ)) defined as ))((Q θΔ  = Block Matrix 

[ ]3,1j,i;))((Q ji =θΔ  < 0,  where 
 

*
0

T
0p0p0

r

1i
i00

T
0011 GCCGSAPPAQ ΔΔ

=
++++= ∑ ; [ ]r02010

T
1221 AP,...,AP,APQQ ==  

T
13Q31Q = ( )[ ( ) ( ) ( ) ]rrqBP,...,11qBP*

0HT
0pC0G00qpD0G00qBP ΔΔΔ+Δ−ΔΔ+Δ= M  

[ ]r
*

r
T

rprpr1
*

1
T

1p1p122 SGCCG...SGCCGDiagBlockQ −+−+= ΔΔΔΔ MM   

Q
2 3

= Q
3 2
T = Block Diag  

( ) ( )[ ]*
rHT

rpCrGrrqpDrG...*
1HT

1pC1G11qpD1G Δ+Δ−ΔΔΔ+Δ−ΔΔ MM  

[ ( ) ( ) *
00

*
0

T
00qp00qp033 HHHDDHDiagBlockQ ΔΔΔΔ −−Δ+Δ=  

                               ( ) ( ) ]*
rr

*
r

T
rrqprrqpr HHHDDH... ΔΔΔΔ −−Δ+ΔMM                             (9)   

If ).(G Δ  and ).(H Δ  are restricted to have special forms such that Q (Δ (θ)) is convex 
for Θ  being convex, then it suffices that Q (Δ (θ)) < 0 for its evaluation at each 
particular  j-th vertex  Δ i

( k )  k = 0, v i ; i= 0 , r( )  generated from the vertices of Θ . 
Also, if the uncertainty parameter  vector  is θ = 0 then a well-known simplified 
version of Theorem 1 for 0)0(i =Δ  ; r,0i= , from the last equation in (4), guarantees 
global asymptotic stability independent of the delays of the (uncertainty-free)  
nominal system (2) . From simple matrix rank continuity arguments, that property is 
still guaranteed in a robustness stability context  within a certain  open neighborhood 
of  θ = 0. The subsequent Corollaries to Theorem 1 follow. 
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3.2  Corollary 1. The (unforced) system (2) is globally asymptotically stable 
independent of the delays if there exist real matrices 0PP T >=  , 0SS T

ii >=  ( )r,1i =  
such that, for every ( ) ii Δ∈θΔ , Θ∈θ  ( )r,0i = , there exist complex matrices 

( ) idn
i )(G ×

Δ ∈θΔ C  and H Δ i Δ ( θ )( ) ∈ C d i × d i  such that the square ( )1rn +   real 

symmetric matrix Q ' (θ) defined as ))((Q' θΔ  = Block Matrix ⎥⎦
⎤

⎢⎣
⎡ =θΔ 2,1j,i;))((Q '

ji   < 

0,  where 
'
11

r

1i
i00

T
00

'
11 Q~SAPPAQ +++= ∑

=
 ;       [ ] '

21r02010
T'

12
'
21 Q~AP,...,AP,APQQ +==  

[ ] '
22r1

'
22 Q~S,...,SDiagBlockQ +−−=                                                                            (10.a) 

where    
( )[ 00q

*
0

T
0p0p0

'
11 BPGCCGQ~ Δ++= ΔΔ  + ( ) ]*

0
T

0p000qp0 HCGDG ΔΔΔ +−Δ  

       ( ) ( ) T
00qp

T
0p0p

1
00qp DICCDI −− Δ−+Δ−  ( )[ ( ) ]0p0

*
0

*
0

T
00qp

T
00q CHGGDPB ΔΔΔ +−Δ+Δ   

 
˜ Q 12

' = ˜ Q 21
' T = ( )( ) ( )( )[ ]rp

1
rrqprrq1p

1
11qp11q CDIBP...CDIBP −− Δ−ΔΔ−Δ MM  

 
( ) ⎥⎦

⎤
⎢⎣
⎡ +−Δ++= ΔΔΔΔΔ

*
i

T
ipiiiqpi

*
i

T
ipipi

)i('
22 HCGDGGCCGQ~ ( ) ip

1
iiqp CDI −Δ−   

            + ( ) ( )[ ]ip
*

i
*

i
*

i
T

iiqp
T

iiqp
T

ip CHGGDDIC ΔΔΔ
− +−ΔΔ−                   

+ ( ) ( ) ( )[ ]*
ii

*
i

T
iiqpiiqpi

T
iiqp

T
ip HHHDDHDIC ΔΔΔΔ

− −−Δ+ΔΔ− ( ) ip
1

iiqp CDI −Δ− i =1, r( )   
(10.b)     

 
 
3.3 Corollary 2. Assume that the system (4) is time-invariant, nominally 
parametrized at 0 =∗θ  Θ∈  with no parametrical uncertainties; i.e.  0 = )τ( ∗ θ = )τ(θ for 
all time. Then, it is globally asymptotically stable independent of the delays if the 
real symmetric (r+1)n – square matrix 
 

02,1j,i;)2(
ji0QMatrixBlock)2(

0Q <⎥⎦
⎤

⎢⎣
⎡ ==  , where 

∑
=

++=
r

1i
i00

T
00

)2(
110 SAPPAQ  ;  [ ]r0201021

T)2(
120

)2(
210 AP,...,AP,APQQQ ===  

 [ ]r1
)2(
220 S,...,SDiagBlockQ −−=                                                                                     (11) 

for some real P = P T > 0  ; S i = S i
T >0  i =1, r( ). A necessary condition for Q 0

(2 ) < 0  is 
that A 0 0  be a stability matrix (i.e. of all its eigenvalues of negative real parts). Also, 
for some real R > 0, there exists an open neigborhood ( )R,0N  of Θ∈0 (the polytope 
of parametrical uncertainties)  of radius R such that  the system (4) (and then the  
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unforced system (2)) is globally asymptotically stable independent of the delays if 

( ){ }IΘN R,0∈θ  for all time 0t ≥ .   
                                                                                          
3.4 Corollary 3. The (unforced) system (2) is globally asymptotically stable 
independent of the delays if there exist if there exist [ ]∏

=
=

r

0i
ivv  matrices 

( ) ( )[ ]3,1j,i;k,...,k,kQMatrixBlockk,...,k,kQ r10
)3(

jir10
)3( ==  < 0 

for all r,0i;v,1k ii ==  for some real n-matrices 0PP T>= , 0MM T
ii >=  ; r,0i =  where 

 

0p0
T

0p
r

1i
i00

T
00

)3(
11 CMCSAPPAQ +++= ∑

=
  ; [ ]r0201021

)3(
12

)3(
21 AP,...,AP,APQQQ

T
===  

( ) ( )r0
T)3(

13r0
)3(

31
k,...,kQk,...,kQ =  

M⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Δ+⎟

⎠
⎞

⎜
⎝
⎛ Δ= )k(

00qp0
T
0p

)k(
00q

00 DMCBP  ⎥⎦
⎤

⎟
⎠
⎞⎜

⎝
⎛ Δ⎟

⎠
⎞⎜

⎝
⎛ Δ )k(

rq
)k(

1q
r

r
1

1
BP,...,BP  

[ ]rrpr
T

rp11p1
T

1p
)3(

22
SCMC,...,SCMCDiagBlockQ −−=   

( ) ( )T
r1

)3(
23r1

)3(
32 k,...,kQk,...,kQ =

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Δ⎟

⎠
⎞

⎜
⎝
⎛ Δ= )rk(

rrqpr
T

rp
)1k(

11qp1
T

1p DMC,...,DMCDiagBlock  

Q 3 3
( 3 ) k 0 ,... , k r

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ =Block  Diag ⎢

⎣

⎡
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ΔΔ+− MM ..

)0k(

00qpD0MT)0k(

00qpD0M  

                                 ⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔΔ+−

)rk(

rrqpDrMT)rk(

rrqpDrM                                      (12)   

3.5 Remark  4. Note that Corollary 3 may be tested for any set of real symmetric 
positive definite matrices ( )r,0iMi =  and holds, in particular, if the stability test 
becomes positive  for the v-matrices ( )r0

)3( k,...,kQ  < 0 for some identical  symmetric 
matrices ( )r,0i0MM i =>= .    Corollary 3 adopts the following parallel form, under 
weaker conditions, if the LFR degrees are unity with respect to all the delays. 

 
3.6 Corollary 4. Assume that 1s i = ; r,0i= . Then, the unforced system (4) is globally 
asymptotically stable independent of the delays if there exist P = P T > 0  and v real 
positive definite symmetric matrices M k i( ); k i =1, v i ; i = 0, r  such that the v real 
symmetric matrices : 

 
( ) ( )[ ]3,1j,i;k,...,k,kQMatrixBlockk,...,k,kQ r10

)4(
jir10

)4( == < 0 
where the block matrices have the same structures as in Corollary 3 with the 
replacements ( )ii kMM → ; r,0i;v,1k ii == .  It is obvious that Corollary 4 is stronger 
than  
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Corollary 3 since the v matrix negative definiteness tests might be tested  with ( )ikM  
distinct matrices  (one per vertex). Parallel results were first obtained for the delay-
free case in [3]. 

 
 

4. Asymptotic stability dependent on and independent of the delays 
 
Parallel results to those in the above Section II may be obtained depending on the 
first intervals for delays ensuring global asymptotic stability; i.e  [ ]0

ii h,0h ∈  ( )r,1i=  
and 0

00 hh =  =0. The results are obtained from Lyapunov’ s function candidates that 
include integral terms for the effects of coupled combined delays. The ´ad-hoc´ 
version of Theorem 1 for this situation is:  
 
4.1 Theorem 2. The (unforced) system (2) is globally asymptotically stable for all 

the delays [ ]0
ii h,0h ∈  i = 1, r( ) if there exist real matrices P = P T >0  , 0SS T

jiji >=  
( )r,0j;r,1i ==  such that, for every Δ

i
θ( )∈ Δ i , Θ∈θ  i = 0, r( ), there exist complex 

matrices ( ) idn
ji )(G ×

Δ ∈θΔ C  and ( ) ii dd
ji )(H ×

Δ ∈θΔ C  such that the square 

( ) dr1rn ++  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

r

0i
idd  real symmetric matrix ˆ Q (Δ (θ)) defined as 

 
))((Q̂ θΔ  = Block Matrix [ ]3,1j,i;))((Q̂ ji =θΔ  < 0                                                        (13) 

 
where 

ji0ji0ji Q
~
ˆQ̂Q̂ +=   ;  i, j = r,0  ; ∑ ∑∑∑

= ===
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

r

1i
ji

r

0j
0
i

r

0i i0
r

0i
T

i0110 ShAPPAQ̂  

[ ]ÂAPh,...,ÂAPhQ̂Q̂ r0
0
r10

0
1

T
120210 == ;  ( )[ ( ) ( ) ]rrq11q00q

T
130310 BP,...,BP,BPQ̂Q̂ ΔΔΔ==  

[ ]r
0
r1

0
1220 Rh,...,RhDiagBlockQ̂ −−=                                                                             (14) 

ˆ Q 023 = ˆ Q 032
T = 0  ; ˆ Q 033 = 0  

[ ] ( )1rnn
r10 A,...,A,AÂ +×∈= R ; [ ] ( ) ( )1rn1rn

ri1i0ii S,...,S,SR +×+∈= R , for r,1i=                 (15) 
 

0
1111 Q̂Q̂ =    ;   0

21021 Q̂Q̂ =  

( )[ ( ) :
:

*
00HT

0pC0G00qpD0G00qBPT
13Q̂31Q̂ Δ+Δ−ΔΔ+Δ==   ( ){

qnr

0,...,0,

qn

11qBP
43421
Δ  ( ){

⎥
⎥
⎥

⎦

⎤

Δ

qnr

0,...,0,

qn

rrqBP::...:
:

43421
 

 ( )[ :
:...:

:
*

01HT
1pC01G11qpD01GDiagBlockT

23Q̂32Q̂ Δ+Δ−ΔΔ==  ( ) ...
:

:
*

r1HT
1pCr1G11qpDr1G Δ+Δ−ΔΔ :

:  

 ( ) :
:...

:

:
*

0rHT
rpC0rGrrqpD0rG Δ+Δ−ΔΔ ( ) ]*

rrHT
rpCrrGrrqpDrrG Δ+Δ−ΔΔ  
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[ ( ) ( ) *
01HT

11qpD11qpD01HDiagBlock33Q̂ ΔΔ+ΔΔ=  

  
− H Δ 10 − H Δ 10

*
M ... M ( ) ( ) MM...*

r1Hr1H*
r1HT

11qpD11qpDr1H Δ−Δ−ΔΔ+ΔΔ  

( ) ( ) MM...*
0rH0rH*

0rHT
rrqpDrrqpD0rH Δ−Δ−ΔΔ+ΔΔ ( ) ( ) ]*

rrHrrH*
rrHT

rrqpDrrqpDrrH Δ−Δ−ΔΔ+ΔΔ  
                                                                                                                                  (16) 

Note that, since 0Q̂ 11 <  then the delay-free system, )t(zA)t(z
r

0i
i0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

=
&  is globally 

exponentially stable if Theorem 2 holds. Since (4) is a LFR of (2), the global 
asymptotic stability of (3), dependent on the delays, may be analyzed for all (constant 
or time-varying)  Θ∈θ  from that  of the LFR (4) by considering the vertices of the 
polytope Δ . Therefore, the following Corollaries 5-6 to Theorem 2 may be stated and 
proved in a similar way as  Corollaries  3-4 to Theorem 1.  
 
4.2 Corollary 5.  The (unforced) system (2) is globally asymptotically stable 
independent of the delays if there exist if there exist (at most) [ ]∏

=
=

r

0i
ivv  matrices 

( ) ( )[ ]3,1j,i;rk,...,1k,0k)5(
jiQ̂MatrixBlockrk,...,1k,0k)5(Q̂ == K  < 0 

for all r,0i;v,1k ii ==  for all the delays  [ ]( )r,0ih,0h 0
ii =∈  with 0hh 0

00 ==  and some real n-
matrices 0PP T>= , 0MM T

ii >=  ; r,0i =  , where: 
 

0p0
T

0p
r

1i
ji

r

0j
0
i

r

0i i0
r

0i
T
i0

)5(
11 CMCShAPPAQ̂ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑ ∑∑∑

= ===
 

)3(
21

)5(
12

)5(
21 QQ̂Q̂

T
==  ;  ( ) ( )r0

)3(
31

)5(
13r0

)5(
31 k,...,kQQ̂k,...,kQ̂

T
K==   (defined in eqns. 12 ) 

( ) ,DMCBPQ̂k,...,kQ̂ )k(
00qp0

T
0p

)k(
00q

T)5(
13r0

)5(
31

00⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Δ+⎟

⎠
⎞

⎜
⎝
⎛ Δ==

⎥⎦
⎤

⎟
⎠
⎞⎜

⎝
⎛ Δ⎟

⎠
⎞⎜

⎝
⎛ Δ )k(

rq
)k(

1q
r

r
1

1
BP,...,BP  

[ MM...S,...,S,ShCMCDiagBlockQ̂ r11101
0
11p1

T
1p

)5(
22

−−−= ]rr1r0r
0
rrpr

T
rp S,...,S,ShCMC −−−  

( ) )5(
23r1

)5(
32 Q̂k,...,kQ̂ =

{ {
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Δ⎟

⎠
⎞

⎜
⎝
⎛ Δ=

×× nrnr

)rk(
rrqpr

T
rp

nrnr

)1k(
11qp1

T
1p 0DMC...0DMCDiagBlock MMMM

( ) ( )r1
)3(

33r1
)5(

33 k,...,kQk,...,kQ̂ =                                                                                        (17)     
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