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1. Introduction

Most control systems will unavoidably encounter disturbances, both internal

(pertaining to unknown, nonlinear, time-varying plant dynamics) and exter-

nal, and the system performance largely depends on how effectively the control

system can deal with them. Thus, one of the original and fundamental research

topic in control theory is to study the problem of disturbances rejection. In re-

gard to external disturbances, it is well known that good disturbance rejection

is achieved with a high gain loop together with a high bandwidth, assuming

that the plant is linear, time-invariant (LTI) and accurately described in a

mathematical model. Things get a little complicated and interesting when

such assumptions do not hold, as in most practical applications, where it is

the internal disturbance that is most significant. In many regards, much of the

literature on control can be seen as various responses to this dilemma. That

is, how do we take a well-formulated and time-tested, classical control theory

and apply it to nonlinear, time-varying (NTV) and uncertain plants in the real

world?

To this end, two technology upgrades, figuratively speaking, are offered in the

modern control framework: adaptive control ([1]) and robust control theory

([31]). The former refers to a class of controllers whose gains are adjusted

using a particular adaptation law to cope with the unknowns and changes in

the plant dynamics; while the latter is based on the optimal control solution,

assuming that the plant dynamics is mostly known and LTI, with the given

bound on the uncertainties in frequency domain. The combination of the two

offers the third alternative: robust adaptive control ([14]). While these pro-

posed solutions show awareness of the problem and progress toward solving it,

they are far from resolving it because, among other reasons, they still rely on

accurate and detailed mathematical model of the plant and they often produce

solutions, such as the H∞ design, that are rather conservative. Therefore, as

improvements of, rather than departure from, the model-based design par-

adigm, adaptive control and robust control, as solutions to the disturbance

rejection problem, didn’t travel very far from their source: model-based clas-

sical control theory. Such approaches are deemed passive as they accept dis-

turbances as they are and merely deal with them as one of the design issues.

In contrast, from the 70s in the last century to the present, there have been

many researchers, although scattered and overlooked for the most part, who

suggested various approaches to disturbance rejection that, compare to the

modern control framework, are truly active. They are distinctly different from

the standard methods in that the disturbance, mostly external, is estimated
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using an observer and canceled out, allowing control design to be reduced

to one that is disturbance free. Thus the disturbance rejection problem is

transformed to the disturbance observer design, a survey of which can be

found in ([24]). To be sure, most of these disturbance observers, including

the disturbance observer (DOB) ([2], [3], [23], [25]), the perturbation observer

(POB) ([4], [15],[16], [20]), the unknown input observer (UIO) ([28], [11], [10]),

can be traced to internal model control (IMC) ([27]), where the LTI model

of the plant is explicitly used in the observer design. As for the NTV plants

with both internal and external disturbances, the results are scarce. Two

such solutions, model estimator (ME) ([29]) and time-delay control (TDC)

([12], [30]), are proposed where both the internal and external disturbances

are estimated and rejected. The trade-off is they require the measurement

and feedback of the derivatives of plant output up to the (n-1)th and (n+1)th

order, respectively, making their practicality questionable.

This brings us to the focus of this paper, the active disturbance rejection

control (ADRC) ([6],[13]), as the only comprehensive, systematic solution to

disturbance estimation and rejection. It was first proposed by J. Han in 1995

([13]) and is simplified and parameterized, and thus made practical, by Gao

([8]). ADRC has been successfully implemented in a wide range of applications

including motion control ([5], [7], [9], [21], [22], [33] ), jet engines control ([32]),

MEMS Gyroscope control ([35]), and process control ([26]), etc.

Although ADRC has demonstrated the validity and advantage in many appli-

cations, its stability characteristics has not been fully understood. Bounded

input and bounded output (BIBO) stability was suggested in [8]. Frequency

domain stability analysis for linear plants is shown in [34]. The convergence

and the bounds of the estimation and tracking errors are presented in [19].

Khalil in [17] applied output feedback variable structure control (VSC) along

with a nonlinear high-gain observer to guarantee boundness of all variables of

the closed-loop system, and output tracking of a given reference signal in the

presence of modeling uncertainty and time-varying disturbance. One notice

that the system in [17] is more general than the system in ADRC design, that

implies the control algorithm in [17]’s designed needs more information than

ADRC algorithm. Otherwise, the controller cannot be designed. The purpose

of this paper is to show analytically how to use singular perturbation theory to

obtain the sufficient condition of exponentially stability of the closed-loop sys-

tem of ADRC, and thus, establish a lower bound for the observer bandwidth.

The paper is organized as follows. In Section 1, we review some of the back-

ground of ADRC and motivation behind this research. Section 2 presents
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a description of ADRC which will be analyzed in this study, which the er-

ror dynamic of the nth-order plant with ADRC is derived and formulated as

a standard singular perturbed system. The exponentially stability condition

is provided, and the lower bound for the observer bandwidth is determined

to guarantee the exponential stability of the closed-loop system in Section 3.

Some final remarks are given in Section 4.

2. Active Disturbance Rejection Control (ADRC)

In this section we give a brief review of ADRC and introduce the problem of

stability analysis.. Most of the results are well known.

Consider a plant, described by a nth-order nonlinear differential equation with

unknown dynamics and external disturbances described by

y(n) = f(x, ẏ, · · · , y(n−1), w, u) + bu(2.1)

where u and y are the input and output of the plant, respectively. The external

disturbance w is combined with unknown dynamics of the form f(x, ẏ, ..., y(n−1)).

For the sake of simplicity, we denote f(·) = f(x, ẏ, ..., y(n−1), which is a general

nonlinear, time-varying (NTV) dynamics and represents the total disturbance.

Instead of following the traditional design path of modeling to obtain an ex-

plicit mathematical expression of f(·) , ADRC offers an alternative that greatly

reduces the dependence on explicit modeling. The strategy is to actively es-

timate f(·) and then cancel it in real time. Thereby reducing the problem to

the control of an integral plant. That is, if an estimate of f(·) is obtained as

f̂(·) , then

u = −(f̂(·) + u0)/b(2.2)

reduces the plant in 2.1 to a cascade integral form:

y(n) = f(·) − f̂(·) + u0 ≈ u0(2.3)

At this point, the original unknown NTV plant of (2.1) is transformed to a

simple plant that is quite easy to control. This is the key idea and main benefit

of ADRC. It only works, of course, if f(·) can be estimated effectively, which

we will discuss next.

Before proceed to estimate f(·), we make the following two assumptions.

Assumption A: f(·) and its derivative η(·) are locally Lipchitz in their ar-

guments and bounded within the domain of interest. In addition, the initial

conditions are assumed such that f(·)|t=0 = 0, and η(·)|t=0 = 0.
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Assumption B: That the desired output of (2.1) and its derivatives up to

(n+2)th order are bounded.

Now we are ready to introduce the extended state observer.

The Extended State Observer (ESO)

To obtain f̂(·), we extend the state vector to include f(·) as an additional

state. That is, define

x = [x1, x2, ..., xn+1]
T = [y, ẏ, ..., f(·)]T ,

then the plant in (2.1) can be expressed as

ẋ = AeXe + Beu + Eη(2.4)

where

Ae =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

(n+1)×(n+1)

, Be =

⎡
⎢⎢⎢⎢⎢⎣

0

0
...

b

0

⎤
⎥⎥⎥⎥⎥⎦

(n+1)×1

, E =

⎡
⎢⎢⎢⎢⎢⎣

0

0
...

0

1

⎤
⎥⎥⎥⎥⎥⎦

(n+1)×1

,

and η = f(·). A state observer of (2.4), denoted as ESO, is constructed as a

system of differential equation

ż = Aez + Beu + l(y − ŷ)

ŷ = Cz
(2.5)

where z = x = [z1, z2, ..., zn+1]
T , l = [l1, l2, ..., ln+1]

T , C = [1, 0, ..., 0].

By setting λ(s) = |sI−(Ae−lC)| = (s+ω0)
n+1, the observer gains are selected

as l = [β1ω0, β2ω0
2, · · · , βn+1ω0

n+1]T , where ω0 is the bandwidth and the only

tuning parameter ω0 of the observer (see [6]), and βi, i = 1, 2, ..., n + 1, are

chosen such that the roots of sn+1 + β1s
n + · · · + βns + βn+1 = 0 are in the

open left-half complex plane. In this case, if we put all the poles into the same

pole location by let ω0, we can easily obtain the coefficient of βi for all i.

Define the estimation error vector of ESO as

ẽ = x − z(2.6)

Subtracting (2.5) from (2.4), the error dynamics of the ESO is as follows

˙̃e = (A − lC)ẽ + Eη(2.7)
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For the purpose of parameterization and the stability analysis, we introduce

the following change of coordinates,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẽ1 = ωoξ1

...

ẽn = ωn
o ξn

ẽn+1 = ωn+1
o ξn+1

(2.8)

Equation (2.8) can be written as

ẽ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ωo 0 0 · · · 0

0 ω2
o 0 · · · 0

...
... ωi

o

...
...

0 0 0
. . . 1

0 0 0 · · · ωn+1
o

⎤
⎥⎥⎥⎥⎥⎥⎦

ξ = Λξ(2.9)

where ẽ = [ẽ1, ẽ2, . . . , ẽn+1]
T , ξ = [ξ1, ξ2, . . . , ξn+1]

T ,

Λ = diag[ωo,ω
2
o , · · · , ωn+1

o ],

Λ−1
i = diag[ω−1

o ,ω−2
o , · · · , ω−(n+1)

o ],

and ωo is the design parameter. Substitute (2.9) into (2.7), we have

Λξ̇ = (Ae − lC)Λξ + Eη(2.10)

Since matrix Λ is a diagonal matrix and invertible, equation (2.10) could be

transformed as follows:

ξ̇ = Λ−1(AzΛξ + Λ−1Eη),(2.11)

where

Az =

⎡
⎢⎢⎢⎢⎢⎣

−β1 1 0 · · · 0

−β2 0 1 · · · 0
...

...
...

. . .
...

−βn 0 0 · · · 1

−βn+1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦(2.12)

(2.11) can be rewritten as

ξ̇ = ωoAzξ + ω−(n+1)
o Eη,(2.13)

that is the error dynamic that to be used later.

Control Law
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The control law is designed as

u =
1

b
(−zn+1 + u0)(2.14)

which reduces the plant (2.1) to approximate a n-order integral plant

y(n) = (f − zn+1) + u0 ≈ u0(2.15)

which can be controlled using

u0 = k1(yr − z1) + k2(ẏr − z2) + · · ·+ kn(y(n)
r − zn)(2.16)

For the tracking reason, we define the desired track state vector as

xr = [yr, ẏr, . . . , yr
(n+1)],

and the tracking error vector as follows

e = x − xr = [e1, e2, . . . , en]T ,(2.17)

then the error dynamics of the plant (2.1) is as follows

ė = A1e + B1u + Bff(2.18)

where

A1 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

(n+1)×(n+1)

, B1 =

⎡
⎢⎢⎢⎢⎢⎣

0

0
...

0

b

⎤
⎥⎥⎥⎥⎥⎦

(n+1)×1

, Bf =

⎡
⎢⎢⎢⎢⎢⎣

0

0
...

0

1

⎤
⎥⎥⎥⎥⎥⎦

(n+1)×1

,

From equation(2.6), it can be concluded that

zn+1 = f − ẽn+1(2.19)

Substitute (2.16) and (2.19) into (2.14), and we obtain the control input

u =
1

b
[−Ke + Kf ẽ − f ](2.20)

where K = [k1, k2, . . . , kn]
T , which is designed to make Af = A1 − BfK a

Hurwitz matrix, and Kf = [K, 1]T .

Substitute controller defined by (2.20) into error dynamics (2.13), the error

dynamics of the closed-loop system is as follows:

ė = Afe + BfKfΛξ(2.21)
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Combine the observer error dynamics by (2.13), we obtain and the tracking

error dynamics by (2.21), we can get the error dynamics of the closed-loop

system as follows: {
ė = Afe + BfKfΛξ,

ξ̇ = ωoAzξ + ω−(n+1)
o Eη.

(2.22)

As the close-loop system dynamics, (2.22) is thereby served as the starting

point for the next step stability analysis. We are particularly interested in

knowing when under what condition (2.22) is asymptotically stable, and what

is the relationship between ω0 and the performance (error) of the control sys-

tem.

3. STABILITY ANALYSIS

In this section we study stability characteristics of ADRC. In particular, we

wish to determine the stability condition of the closed-loop error dynamics

described by (2.22). This is guided by the insight that the observer dynamics,

the second equation in (2.22), is usually much faster than that of the state

feedback. The task of analysis is perhaps made easier if we can separate the

fast dynamics from the slow one, and this is a problem dealt with in singular

perturbation theory. Specifically, a nonlinear system is said to be singularly

perturbed if it can be expressed in the following form:{
ẋ = f(t, x, z, ε), x(t) = x0, x ∈ Rn

εż = g(t, x, z, ε), z(t) = x0, z ∈ Rm(3.1)

where ε represents a small parameters to be neglected. The functions f and

g are assumed to be sufficiently smooth, that is, they are continuously dif-

ferentiable functions of all variables t, x, z, and ε. Throughout the paper, we

assume that ||x|| is defined as the Euclidean norm of x in l2 space. Note that

(2.22) can be easily formulated in the form of (3.1) if ε is chosen as ε = 1/ω0,

which results {
ė = Afe + BfKfΛξ

εξ̇ = Azξ + εn+2Eη
(3.2)

Clearly, the singular perturbation theory developed for dynamic systems of

the form of (3.1) can now be applied to analyze stability of (3.2). We first

state the following three theorems (Theorem 3.1, Theorem 3.2 and Theorem

3.3) from [18] and [19]), which proved to be especially useful to our stability

analysis:
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Theorem 3.1. Consider the singularly perturbed system{
ẋ = f(t, x, z, ε)

εż = g(t, x, z, ε)
(3.3)

Assume that the following assumptions are satisfied for all

(t, x, ε) ∈ [0,∞) × Br × [0, ε0], where Br = {x ∈ Rn| ||x|| ≤ r} with r > 0.

• 1. f(t, 0, 0, ε) = 0 and g(t, 0, 0, ε) = 0.

• 2. The equation g(t, x, z, 0) = 0 has an isolated root z = h(x, t) such that

h(t, 0) = 0.

• 3. The functions f , g, h and their derivatives are bounded up to the

second order for z − h(x, t) ∈ Bρ, where Bρ = {s ∈ Rm| ||s|| ≤ ρ ≤ r}
with 0 < ρ ≤ r.

• 4. The origin of the reduced system ẋ = f(t, x, h(x, t), 0) is exponentially

stable.

• 5. The origin of the boundary-layer system dy
dτ

= g(τ, x, y + h(x, τ), 0) is

uniformly and exponentially stable in (x, τ), where τ is a scaling variable

of t when ε > 0 is small.

Then, there exists ε∗ > 0 such that for all ε < ε∗, the origin of (3.3) is

exponentially stable.

Theorem 3.2. Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(t, x)(3.4)

where f : [0,∞)×D → Rn is continuous differentiable, D = {x ∈ Rn| ‖x‖ < r}
and the Jacobian matrix [∂f/∂x] is bounded uniformly on D in t. Let k, λ and

r0 be positive constants with r0 < r/k, and define D0 = {x ∈ Rn| ‖x‖ < r0}.
Assume that the trajectories of the system satisfy

‖x(t)‖ ≤ k ‖x(t0)‖ e−λ(t−t0), ∀x(t0) ∈ D0, ∀t ≥ t0 ≥ 0.(3.5)

Then there is a function V : [0,∞) × D0 → R that satisfies the inequalities

c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2 ,(3.6)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −c3 ‖x‖2 ,(3.7)

∥∥∥∥∂V

∂x

∥∥∥∥ ≤ c4 ‖x‖ ,(3.8)

for some positive constants c1, c2, c3 and c4. Moreover, if r = ∞ and the

origin is globally exponentially stable, then V (t, x) satisfies the aforementioned
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inequalities on Rn. Furthermore, if the system is autonomous, V (t, x) can be

chosen independent of t.

Now consider the slow system

ẋ = f(x, u),(3.9)

where x ∈ Rn and u ∈ Γ ⊂ Rm for all t ≥ 0. Suppose f(x, u) is locally

Lipschitz on Rn × Γ for every u ∈ Γ, the equation (3.9) has a continuously

differentiable isolated root.

To analyze the stability properties of the frozen equilibrium point x = h(α),

we shift it to the origin via the change of variables z = x− h(α) to obtain the

equation

ż = f(x + h(α), α)
def
= g(z, α).(3.10)

Then we have the following theorem.

Theorem 3.3. Consider the system (3.10), suppose g(z, α) is continuous dif-

ferentiable and the Jacobian matrices [∂g/∂z] and [∂g/∂z] satisfy∥∥∥∥∂g

∂z
(z, α)

∥∥∥∥ ≤ L1,

∥∥∥∥ ∂g

∂α
(z, α)

∥∥∥∥ ≤ L2 ‖z‖(3.11)

for all (z, α) ∈ D×Γ where D = {z ∈ Rn| ‖z‖ < r}. Let k, γ, and r0 be positive

constants with r0 < r/k, and define D0 = {z ∈ Rn| ‖z‖ < r0}. Assume that

the trajectories of the system satisfy

‖z(t)‖ ≤ k ‖z(0)‖ e−γt, ∀z(0) ∈ D0, α ∈ Γ, ∀t ≥ 0,(3.12)

then there is a function W : D0 × Γ → R that satisfies (3.13) through (3.16).

Moreover, if all the assumptions hold globally in z, then W (z, α) is defined and

satisfies (3.13) through (3.16) on Rn × Γ

b1 ‖z‖2 ≤ W (z, α) ≤ b2 ‖z‖2 ,(3.13)

∂W

∂z
g(z, α) ≤ −b3 ‖z‖2 ,(3.14)

∥∥∥∥∂W

∂z

∥∥∥∥ ≤ b4 ‖z‖ ,(3.15)

∥∥∥∥∂W

∂α

∥∥∥∥ ≤ b5 ‖z‖ ,(3.16)

for all z ∈ D = {z ∈ Rn| ‖z‖ < r} and α ∈ Γ, where bi, i = 1, . . . , 5 are

positive constants independent of α.
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Before proceeding to derive our two main theorems in stability analysis, we

further assume that system (2.1) satisfies Assumption A and Assumption B of

Section 2. Recall

Assumption A: It is assumed that f(·) and its derivative η(·) are locally

Lipschitz in their arguments and bounded within the domain of interest.

Furthermore, the initial conditions f(·)|t=0=0, and η(·)|t=0 = 0.

Assumption B: It is assumed that the desired output of (2.1) and its

derivatives up to (n + 2)th order are bounded.

Applying Theorem 3.1 to (3.2), we obtain our first main result in stability

analysis.

Theorem 3.4. Consider the ADRC error dynamics in (3.2). Let Assumption

A and Assumption B hold for (2.1), then there exists an ε∗ > 0 such that for

all ε < ε∗ , the origin of (3.2) is exponentially stable.

Proof: In order to apply Theorem 3.1, we need to show is that system (3.2)

satisfies all five assumptions of Theorem 3.1. Comparing (3.2) and (3.3), it is

clearly that

f = Afe + BfKfΛξ(3.17)

g = Azξ + εn+2Eη(3.18)

By the definitions of f , g, and Assumption A, η()̇ = 0. One can easily see that

Assumptions 1 is satisfied.

For Assumption 2, we need to separate the slow and fast model from the

original system defined by (3.2) and follow the procedures described in [18].

To obtain the quasi-steady-state model, let ε = 0, and solve the algebraic

equation:

Azξ + ε(n+2)Eη = 0.(3.19)

The solution of (3.19) has the form

ξ̄ = φ(ē, t) = 0(3.20)

Obviously, ξ̄ is an isolated root for (3.20), and Assumption 2 is therefore sat-

isfied.

To check Assumption 3, we need to show that function f , g, φ and their partial

derivatives are bounded. Since e and ξ vanish at the origin for all ε ∈ [0, ε0]
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, they are Lipschitz in ε linearly in the state (e, ξ) ([18]). By Assumption A

and Assumption B: both η(·) and η̇(·) are bounded, we have

‖BfKfΛξ‖ � L1 ‖ξ‖(3.21)

‖η‖ � L2(‖e‖ + ‖ξ‖)(3.22)

‖η̇‖ � L3(‖ė‖ +
∥∥∥ξ̇∥∥∥)(3.23)

where L1, L2 and L3 are positive constants. Hence, we can show that f , g, φ

and their partial derivatives are bounded:

f = Afe + BfKfΛξ � Af ‖e‖ + L1 ‖ξ‖(3.24)

ḟ = Af ė + BfKfΛξ̇ � Af ‖ė‖ + L1

∥∥∥ξ̇∥∥∥(3.25)

g = Azξ + εn+2Eη � Az ‖ξ‖ + εn+2EL2(‖e‖ + ‖ξ‖)(3.26)

ġ = Az ξ̇ + εn+2Eη̇ � Az

∥∥∥ξ̇∥∥∥+ εn+2EL3(‖ė‖ +
∥∥∥ξ̇∥∥∥)(3.27)

φ(ē, t) = 0.(3.28)

Therefore, we conclude that Assumption 3 is satisfied.

Substitute (3.20) into the first equation of (3.2), we obtain the quasi-steady-

state model as follows:

ė = Afe(3.29)

Since Af is a Hurwitz matrix, it is obvious that Assumption 4 holds.

The boundary layer system, which is the fast dynamics, is obtained by intro-

ducing a time scale of

τ = t/ε(3.30)

As ε → 0, we have

dξ

dτ
= Az(τ)ξ(τ).(3.31)

This is the fast dynamics of (3.2). Since Az is a Hurwitz matrix, it is obvious

that Assumption 5 holds.

Note that all the assumptions are satisfied. By Theorem 3.1, the origin of (3.2)

is exponentially stable. We finish the proof.

Remarks
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1. Theorem 4 indicates that there exists an upper bound of ε for (3.2) to be

exponentially stable, which means that observer bandwidth ωo must have a

lower bound.

2. The advantage of the proposed approach is that the singular perturbation

analysis divides the original problem into two systems: the slow subsystem or

quasi-steady state system and the fast subsystem or boundary-layer system.

The separated system can then be studied independently.

3. Theorem 3.1 shows proved that there exists a certain ε∗ that can guarantee

the origin of (3.2) is exponentially stable. Since (3.2) is a linear system, our

next goal is to obtain the upper bound of ε explicitly.

In the spirit of Theorem 3.2 and Theorem 3.3, we are ready to introduce our

next main result to obtain the upper bounds of ε in Theorem 3.5.

Theorem 3.5. Consider singular perturbed system (3.2). Assume that As-

sumption A and Assumption B hold for (2.1), then there exist an upper bond

of ε∗, such that

ε∗ ≤ min

⎛
⎝ n+1

√
[2(1 − d)c3 − c4L1(1 − d)] /db4L2,

db3

c4L1(1 − d)
, n+1

√
1

3

c4L1(1 − d)

db4L2

⎞
⎠

where bi(i = 1, . . . , 4), ci(i = 1, . . . , 4), L1, and L2 are nonnegative constants,

0 < d < 1. Then for all ε ≤ ε∗, the origin of (3.2) is exponentially stable.

Proof: By Theorem 3.3, there is a Lyapunov function V (e) for the reduced

system that satisfies

c1 ‖e‖2 ≤ V (e) ≤ c2 ‖e‖2 ,(3.32)

∂V

∂x
Afe ≤ −c3 ‖e‖2 ,(3.33)

∥∥∥∥∂V

∂e

∥∥∥∥ ≤ c4 ‖e‖ ,(3.34)

for some positive constants ci, i = 1, . . . , 4 and for e ∈ Br0 with r0 ≤ r.

From Theorem 3.4, there is a Lyapunov function W (ξ) for the boundary layer

system that satisfies

b1 ‖ξ‖2 ≤ W (ξ) ≤ b2 ‖ξ‖2 ,(3.35)

∂W

∂ξ
Azξ ≤ −b3 ‖ξ‖2 ,(3.36)
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∂ξ

∥∥∥∥ ≤ b4 ‖ξ‖ ,(3.37)

for some positive constants bi(i = 1, . . . , 4) and for ξ ∈ Bρ0 with ρ0 ≤ ρ.

Since e and ξ vanish at the origin for all ε ∈ [0, ε0], they are Lipschitz in ε

linearly in the state (e, ξ). In particular,

‖BfKfΛξ‖ ≤ L1 ‖ξ‖(3.38)

‖Eη‖ ≤ L2 (‖e‖ + ‖ξ‖)(3.39)

where L1 and L2 are two positive constants.

We set

Vcl(e, ξ) = (1 − d)V (e) + dW (ξ)(3.40)

as a Lyapunov function candidate for system (3.2), where d is a weighting

variable, 0 < d < 1. By the properties of functions and using the estimates

from (3.32) to (3.39), one can verify that the derivative of (3.40) along the

trajectories of (3.2) satisfies the following inequalities:

V̇cl = (1 − d)
∂V

∂e
(Afe + BfKfΛξ) + d

∂W

∂ξ
(
1

ε
Azξ + Eη)

= (1 − d)
∂V

∂e
Afe + (1 − d)

∂V

∂e
BfKfΛξ + d

∂W

∂ξ

1

ε
Azξ + d

∂W

∂ξ
Eη

≤ −(1 − d)c3 ‖e‖2 + (1 − d)c4 ‖e‖L1 ‖ξ‖ − d

ε
b3 ‖ξ‖2

+db4 ‖ξ‖ [L2 (‖e‖ + ‖ξ‖)]
≤ −(1 − d)c3 ‖e‖2 − d

ε
b3 ‖ξ‖2 + db4ε

n+1L2 ‖ξ‖2

+
(
c4L1(1 − d) + db4ε

n+1L2

) ‖e‖ ‖ξ‖
≤ −(1 − d)c3 ‖e‖2 +

[
db4ε

n+1L2 − d

ε
b3

]
‖ξ‖2

+
(
c4L1(1 − d) + db4ε

n+1L2

)(‖e‖2 + ‖ξ‖2

2

)

≤
[
−(1 − d)c3 +

1

2
c4L1(1 − d) +

1

2
db4ε

n+1L2

]
‖e‖2

+

[
3

2
db4ε

n+1L2 − d

ε
b3 +

1

2
c4L1(1 − d)

]
‖ξ‖2

≤ −μ1 ‖e‖2 − μ2 ‖ξ‖2(3.41)
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where

⎧⎪⎪⎨
⎪⎪⎩

μ1 = (1 − d)c3 − 1

2
c4L1(1 − d) − 1

2
db4ε

n+1L2

μ2 =

[
d

ε
b3 − 1

2
c4L1(1 − d) − 3

2
db4ε

n+1L2

]

In order to obtain the desired vcl ≤ 0, we need to make both μ1 and μ2 be

positive. From (3.41), we first let μ1 ≥ 0, then

μ1 = (1 − d)c3 − 1

2
c4L1(1 − d) − 1

2
db4ε

n+1L2 ≥ 0

⇒ ε∗1 ≤ n+1
√

[2(1 − d)c3 − c4L1(1 − d)] /db4L2.
(3.42)

Nexy let μ2 ≥ 0, we have

μ2 =

[
d

ε
b3 − 1

2
c4L1(1 − d) − 3

2
db4ε

n+1L2

]
≥ 0

⇒

⎧⎪⎨
⎪⎩

d

ε
b3 − 1

2
c4L1(1 − d) ≥ 1

2
c4L1(1 − d)

1

2
c4L1(1 − d) ≥ 3

2
db4ε

n+1L2

⇒ ε∗2 ≤ min

⎛
⎝ db3

c4L1(1 − d)
, n+1

√
1

3

c4L1(1 − d)

db4L2

⎞
⎠

(3.43)

Based on the selection of ε∗1 and ε∗2, it is guaranteed that

V̇cl ≤ −min(μ1, μ2)
[‖e‖2 + ‖ξ‖2](3.44)

which completes the proof.

Remarks

(1). Theorem 3.5 is an extension of Theorem 3.2, in which equation (3.42)-

(3.44) determine the upper bound of ε. Since ε = 1/ωo, it means that the

lower bound of observer bandwidth ωo can be obtained based on Theorem 3.5.

(2). The ESO in the fast time scale τ is faster than the dynamics of the plant

and the controller, we are able to make the estimated state converge to the

real state faster. This explains why ESO can actively reject the disturbance,

since the extended state can estimate the unknown dynamics very well.

The above results show that for the closed-loop system, when controlled by

ESO and ADRC control law, presented in (2.22) achieves exponentially as-

ymptotic convergence of the tracking errors.
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4. CONCLUSION

This paper we presents a singular perturbation approach to analyze the sta-

bility characteristics of the ADRC control system for nonlinear time-variant

plant. The closed-loop system is reformulated to allow the application of sin-

gular perturbation method, which enables the decomposition of the original

system into a relatively slow subsystem and a relatively fast subsystem. Based

on the decomposed subsystems, the composite Lyapunov function method is

used to show that the closed-loop system, achieves exponentially stable under

certain conditions. In the framework of singular perturbation, the observer

error and the tracking error of the system are exponentially stable ε = 0.

Since it is practically impossible, we establish the existence of the lower bound

for the observer bandwidth that guarantees the exponential stability of the

closed-loop system.
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