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Abstract 
 

Steady two dimensional stagnation point flow of an incompressible viscous electrically 
conducting fluid over a flat plate is investigated. It is shown that the velocity at a point 
decreases/increases with increase in the magnetic field when free stream velocity is 
less/greater than the velocity of the plate. 
 
 
Nomenclature: 
 
MHD   - Magneto hydrodynamics 
u, v, w -  Velocity components in X, Y, Z directions respectively 
U, W- The mainstream velocity components 
ρ - Field density. 
ψ - Stream function 
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η  - The single independent variable 
σ - Electrical conductivity  
 g- Gravity, b- Unknown constant 

0B  - Imposed magnetic induction parallel to y – axis. 
 S - Magnetic field strength 

0S - Modified Hartmann number 

fC - Skin friction coefficient 
λ - Crocco independent variable 
φ - New dependent variable, nR - Reynold’s number 

1 2,α α - Flow parameter 
 
 
1. Introduction:  

 
Magneto hydrodynamics is the study of the motion of an electrically conducting 

fluid in the presence of a magnetic field. Due to the motion of an electrically conducting 
fluid in a magnetic field the electrical currents are induced in the fluid which produces 
their own magnetic field, called induced magnetic field, and these modify the original 
magnetic field. In addition to this the induced currents interacts with the magnetic field to 
produce electromagnetic forces perturbing the original motion. Thus the two important 
basic effects of Magneto hydrodynamics are (1) the motion of the fluid affects the 
magnetic field and (2) the magnetic field affects the motion of the fluid. 

Boundary layer flow of an electrically conducting fluid over moving surfaces 
emerges in a large variety of industrial and technological applications. It has been 
investigated by many researchers; Wu [1] has studied the effects of suction or injection in 
a steady two-dimensional MHD boundary layer flow of on a flat plate. Takhar et.al. [2] 
studied a MHD asymmetric flow over a semi infinite moving surface and numerically 
obtained the solutions. An analysis of heat and mass transfer characteristics in an 
electrically conducting fluid over a linearly stretching sheet with variable wall 
temperature was investigated by Vajravelu and Rollins [3]. Mahapatra and Gupta [4] 
treated the steady two-dimensional stagnation-point flow of an incompressible viscous 
electrically conducting fluid towards a stretching surface, the flow being permeated by a 
uniform transverse magnetic field. Jean-David Hoernel [5] has been investigated the 
similarity solutions for the steady laminar incompressible boundary layer governing 
MHD flow near forward stagnation-point of two-dimensional and axisymmetric bodies.    

 
The purpose of the present paper is to study the steady laminar, incompressible, 

viscous electrically conducting non-Newtonian power-law fluid at a stagnation point. The 
magnetic Reynolds number is assumed to be very small so that the induced magnetic 
field is neglected [6]. The governing momentum equation is solved numerically.     
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2. Flow Analysis:           
 
          The MHD equations for steady two-dimensional laminar incompressible stagnation 
point flow for viscous, electrically conducting non-Newtonian power-law fluid are, in the 
usual notation,  
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where the induced magnetic field is neglected .It is also assumed that the external electric 
field is zero and the electric field due to polarization of charges is negligible. In (2), U(x) 
stands for the stagnation- point velocity in the inviscid free stream. 
           The appropriate boundary conditions are 
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Introducing stream function ψ (x, y), where; 
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Now on applying the free-parameter method (one of the methods of similarity 

transformation) introducing function ( )f η ,where ( ) 1' uf
U U y

ψη ∂
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∂
, 

( ) ( )tx
yR nn ,
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η +=  here ( )tx,ξ  is an arbitrary function  we get The laminar two 

dimensional incompressible boundary layer equation for stagnation point non-Newtonian 
MHD flow can written as; 
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with boundary condition 
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where it is assumed that the magnetic induction is constant i.e. B = constant and therefore  
S0 = constant. To solve equation (7) approximately let’s introduce the Crocco 
independent variables λ instead of the independent variable η  
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φ is the new dependent variable. The corresponding boundary conditions are obtained by 
use of (7), (8) and (11) and the fact that ∞→= ηatf 0" . 
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 Combining (10) and (13) we obtain the so-called supplementary boundary 
conditions for equation (10) in the form  
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Using the Galerkin’s let us assume an approximate solution of equation (10) in the form, 
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 Which satisfies the boundary conditions (13) – (14) where b is an unknown 
constant substituting equation (15) into equation (10) and integrating this result with 
respect to λ , from λ  = 1 to λ  = 1, we obtain an equation that can be solved for the 
constant b, 
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and whose solution is  
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The skin-friction coefficient is  
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Putting the values of φ  and λ in (15) we get, 
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where b is given in (17) 
 
 
Table for the graph f” (0)  0S  is given below. 
 
Table 1: Values of the wall shear stress and so for various values of n. 
 
n = 0.1  

S0 0 0.2 0.4 0.6 0.8 
f" (0) 3.6031 4.0837 4.5587 5.0288 5.4946 

 
 n = 0.2  

S0 0 0.2 0.4 0.6 0.8 
f" (0) 2.125 2.3809 2.6305 2.8755 3.1164 

 
 n = 0.4  

S0 0 0.2 0.4 0.6 0.8 
f" (0) 1.4750 1.6219 1.7637 1.9010 2.0345 

 
n = 0.6  

S0 0 0.2 0.4 0.6 0.8 
f" (0) 1.3027 1.4137 1.5196 1.6213 1.7193 
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n = 0.8  

S0 0 0.2 0.4 0.6 0.8 
f" (0) 1.2419 1.3338 1.4208 1.5038 1.5833 
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                                             Figure 1: Values of the wall shear stress  
 
   
Conclusion: 
 
           Due to the increase in the modified Hartmann number 0S  , there is an increase in 
the wall shear stress. Also the wall shear stress increase with increasing magnetic field. 
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