Numerical Solution to Belousov - Zhabotinskii

Model and a Comparison with

the Finite Difference Method

\author{

* S. Benmehdi and **N. Benhamidouche
 *University of Bourdj Bouarerridj, Algeria
 **University of M'Sila, Algeria
 sabah_benmehdi@yahoo.fr, benhamidouche@yahoo.fr
}

Abstract

In this work, we find a numerical solution to Belousov - Zhabontinskii system, we use the traveling wavelets method. It is well known that this model describes a chemical reaction. The results obtained are compared with those derived from the finite difference method.

The principle of the traveling wavelets method consists in seeking the solution in the form: $u(x, t)=\sum_{i=1}^{N} c_{i}(t) \Psi\left(\frac{x-b_{i}(t)}{a_{i}(t)}\right) \quad, a_{i}>0 \quad, \quad b_{i}, c_{i} \in R$

Where the function Ψ is some wavelet function and c_{i}, a_{i}, b_{i} are parameters depending on time, amplitude, scale and position respectively. Without loss of generality, we will focus our study only on the one dimensional case.

Mathematics Subject Classification: 35B40, 35K55, 35K57, 65 T 60

Keywords: Traveling wavelets method; reaction- diffusion system; BelousovZhabotinskii model; finite difference method

1. Introduction

The Belousov-Zhabotinskii model is described by the system:

$$
\begin{cases}\frac{\partial u_{1}}{\partial t}=\frac{\partial^{2} u_{1}}{\partial^{2} x}+u_{1}\left(1-u_{1}-r u_{2}\right) \\ \frac{\partial u_{2}}{\partial t}=\frac{\partial^{2} u_{2}}{\partial^{2} x}-b u_{1} u_{2} & r \text { and } b \text { are cons } \tan t s(1-1)\end{cases}
$$

This system has been studied by a number of authors; in 1979 R. J. Field and W. C. Troy [8] studies the existence of solitary Travelling Wave Solutions, G. B .Yu , C. Z. Xiong [4] and L. Zhibin , S. He [6] has found the solution by the travelling wave method.
In this paper, we use the travelling wavelets method to find the solution of Belousov-Zhabotinskii (for $\mathrm{r}=\mathrm{b}=1$), the basics of this method is described bellow (see also[1], [10] for more details), it's applied in several areas in astrophysics by N.Benhamidouche, B.Torresani and R.Triay [7] and by J.Elezgaray [5] in fluid mechanics.
By using this method we obtain a numerical solution which is exactly the same when we use the finite difference method for some choice of the wavelet.

Global existence in time of solution to reaction diffusion systems: [3]

Global existence in time of solutions to reaction diffusion systems in the form:

$$
\left\{\begin{array}{l}
\frac{\partial u_{1}}{\partial t}-d_{1} \Delta u_{1}=f\left(u_{1}, u_{2}\right) \\
\frac{\partial u_{2}}{\partial t}-d_{2} \Delta u_{2}=g\left(u_{1}, u_{2}\right)
\end{array}\right.
$$

Where $\mathrm{d} 1=\mathrm{d}_{2}>0$ are the coefficients of diffusion and $f, g: R^{2} \rightarrow R$
Represent the non linear interactions, with the following two properties:

1) $\forall u_{1}, u_{2} \geq 0: f\left(0, u_{2}\right), g\left(u_{1}, 0\right) \geq 0$
2) $f\left(u_{1}, u_{2}\right)+g\left(u_{1}, u_{2}\right) \leq 0$

In the Belousov-Zhabontinskii framework, the global existence in time of solutions is verified with these two properties:

1) $\forall u_{1}, u_{2} \geq 0: f\left(0, u_{2}\right)=g\left(u_{1}, 0\right)=0$
2) $u_{1}+(r+b) u_{2} \geq 1$

2. The traveling wavelets method (TWM) [1]

The traveling wavelets method seeks an approximate solution of the evolution problem:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A_{x} u=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Under the form

$$
u(x, t)=\sum_{i=1}^{N} c_{i}(t) \Psi\left(\frac{x-b_{i}(t)}{a_{i}(t)}\right), a_{i}>0 \quad, \quad b_{i}, c_{i} \in R
$$

Where $u(x, t)$ is a function of space and time variables, and A_{x} is a differential linear or nonlinear operator, Ψ is any wavelet, c_{i}, a_{i}, b_{i} are the parameters of amplitude, scale, and position depending on time, governess the atom ψ^{i} such that:

$$
\Psi^{i}(x, t)=c_{i}(t) \Psi\left(\frac{x-b_{i}(t)}{a_{i}(t)}\right)
$$

The parameters c_{i}, a_{i}, b_{i} are obtained by the minimizing problem where the error is calculated at any moment t :

$$
\underset{\substack{c_{i}, \dot{a}_{i}, b_{i} \\ \operatorname{Min}}}{ }\left|\frac{\partial u}{\partial t}+A_{x}\right|^{2} d x
$$

Therefore, we obtain three equations which read as follows:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial \dot{c_{i}}}\left\langle\frac{\partial u}{\partial t}+A_{x}, \frac{\partial u}{\partial t}+A_{x}\right\rangle=0 \\
\frac{\partial}{\partial \dot{a_{i}}}\left\langle\frac{\partial u}{\partial t}+A_{x}, \frac{\partial u}{\partial t}+A_{x}\right\rangle=0 \quad \text { for } i=1, N \\
\frac{\partial}{\partial \dot{b_{i}}}\left\langle\frac{\partial u}{\partial t}+A_{x}, \frac{\partial u}{\partial t}+A_{x}\right\rangle=0
\end{array}\right.
$$

Where $\langle.,$.$\rangle is the inner product in L^{2}(R)$.
Then the minimization problem leads to the system of 3 N equations given by:

$$
\left\{\begin{array}{l}
\left\langle\frac{\partial u}{\partial t}+A_{x} u, \Psi^{i}\right\rangle=0 \\
\left\langle\frac{\partial u}{\partial t}+A_{x} u, x^{\prime \Psi^{\prime i}}\right\rangle=0 \\
\left\langle\frac{\partial u}{\partial t}+A_{x} u, \Psi^{\prime i}\right\rangle=0
\end{array}\right.
$$

This method transforms the problem (1-3) to a system of ordinary differential, equations of unknowns $\dot{C}_{i}, \dot{a}_{i}, \dot{b}_{i}$ given in the form :

$$
\mathrm{M}(c i(t), a i(t), b i(t))\left(\begin{array}{c}
\dot{c i} \\
\dot{a} \\
\dot{b i}
\end{array}\right)=F(c i(t), a i(t), b i(t))
$$

Where M is a matrix in order 3 N that comes from the term $\frac{\partial u}{\partial t}$, and F the second member comes from the term $A_{x} u$.

3. The traveling wavelets method to solving the model of Bélousov-Zhabontinskii

With the traveling wavelets method we will seek the solutions of the system (1-1) (for $r=b=1$) in the following form:
With $\begin{aligned} & u_{1}(x, t)=\Psi^{1}(x, t) \\ & u_{2}(x, t)=\Psi^{2}(x, t)\end{aligned}$
$\Psi^{1}(x, t)=c_{1}(t) \Psi_{1}\left(\frac{\left(x-b_{1}(t)\right.}{a_{1}(t)}\right)$
$\Psi^{2}(x, t)=c_{2}(t) \Psi_{2}\left(\frac{\left(x-b_{2}(t)\right.}{a_{2}(t)}\right)$

The initial conditions are:
$u_{1}(x, 0)=c_{1}(0) \Psi_{1}\left(\frac{\left(x-b_{1}(0)\right.}{a_{1}(0)}\right)$ with $\quad c_{1}(0)=1, b_{1}(0)=0, a_{1}(0)=1$
$u_{2}(x, 0)=c_{2}(t) \Psi_{2}\left(\frac{\left(x-b_{2}(0)\right.}{a_{2}(0)}\right)$ with $c_{2}(0)=1, b_{2}(0)=0, a_{2}(0)=1$
We note: $\left(x \Psi^{\prime}\right)^{i}=\left(\frac{\left(x-b_{i}(t)\right.}{a_{i}(t)}\right) \Psi^{\prime^{i}}$

The minimization problem is written as follow:

$$
\begin{aligned}
& \operatorname{Min}_{\substack{c_{1}, \dot{a}_{1}, b_{1}}}\left\|\frac{\partial u_{1}}{\partial t}-\frac{\partial^{2} u_{1}}{\partial^{2} x}-u_{1}\left(1-u_{1}-u_{2}\right)\right\|^{2} \\
& \underset{\substack{\dot{c}_{2}, \dot{a}_{2}, \dot{b}_{2}}}{\operatorname{Min}}\left\|\frac{\partial u_{2}}{\partial t}-\frac{\partial^{2} u_{2}}{\partial^{2} x}+u_{1} u_{2}\right\|^{2}
\end{aligned}
$$

Therefore, we obtain six equations:

$$
\left\{\begin{array}{l}
\left\langle\frac{\partial u_{1}}{\partial t}-\frac{\partial^{2} u_{1}}{\partial^{2} x}-u_{1}\left(1-u_{1}-u_{2}\right), \Psi^{1}\right\rangle=0 \\
\left\langle\frac{\partial u_{1}}{\partial t}-\frac{\partial^{2} u_{1}}{\partial^{2} x}-u_{1}\left(1-u_{1}-u_{2}\right), x \Psi^{\prime^{\prime}}\right\rangle=0 \\
\left\langle\frac{\partial u_{1}}{\partial t}-\frac{\partial^{2} u_{1}}{\partial^{2} x}-u_{1}\left(1-u_{1}-u_{2}\right), \Psi^{\prime \prime}\right\rangle=0 \\
\left\langle\frac{\partial u_{2}}{\partial t}-\frac{\partial^{2} u_{2}}{\partial^{2} x}+u_{1} u_{2}, \Psi^{2}\right\rangle=0 \\
\left\langle\frac{\partial u_{2}}{\partial t}-\frac{\partial^{2} u_{2}}{\partial^{2} x}+u_{1} u_{2}, x \Psi^{\prime 2}\right\rangle=0 \\
\left\langle\frac{\partial u_{2}}{\partial t}-\frac{\partial^{2} u_{2}}{\partial^{2} x}+u_{1} u_{2}, \Psi^{\prime 2}\right\rangle=0
\end{array}\right.
$$

Which are written as a linear system of ordinary differential equation in the form :

$$
\left(\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right)\left(\begin{array}{c}
\frac{\dot{c_{1}}}{c_{1}} \\
-\frac{\dot{a_{1}}}{a_{1}} \\
-\frac{\dot{b_{1}}}{a_{1}} \\
\dot{c_{2}} \\
c_{2} \\
\dot{a_{2}} \\
-\frac{a_{2}}{a_{2}} \\
-\frac{\dot{b_{2}}}{a_{2}}
\end{array}\right)=\binom{F_{1}}{F_{2}} \quad(1-4)
$$

with : $M_{i}=\left(\begin{array}{ccc}\left\langle\Psi^{i}, \Psi^{i}\right\rangle & \left\langle\Psi^{i}, x \Psi^{\prime i}\right\rangle & \left\langle\Psi^{i}, \Psi^{\prime i}\right\rangle \\ \left\langle x \Psi^{\prime i}, \Psi^{i}\right\rangle & \left\langle x \Psi^{\prime i}, x \Psi^{\prime i}\right\rangle & \left\langle x \Psi^{\prime \prime}, \Psi^{\prime i}\right\rangle \\ \left\langle\Psi^{\prime i}, \Psi^{i}\right\rangle & \left\langle\Psi^{\prime i}, x \Psi^{\prime i}\right\rangle & \left\langle\Psi^{\prime i}, \Psi^{\prime i}\right\rangle\end{array}\right)$
and

$$
F_{1}=\frac{1}{a_{1}^{1}}\left[\begin{array}{l}
\left\langle\Psi^{\prime \prime 1}+\Psi^{1}\left(1-\Psi^{1}-\Psi^{2}\right), \Psi^{1}\right\rangle \\
\left\langle\Psi^{\prime \prime 1}+\Psi^{1}\left(1-\Psi^{1}-\Psi^{2}\right), x \Psi^{\prime 1}\right\rangle \\
\left\langle\Psi^{\prime \prime 1}+\Psi^{1}\left(1-\Psi^{1}-\Psi^{2}\right), \Psi^{\prime 1}\right\rangle
\end{array}\right], F_{2}=\frac{1}{a_{2}^{2}}\left[\begin{array}{l}
\left\langle\Psi^{\prime \prime 2}-\Psi^{1} \Psi^{2}, \Psi^{2}\right\rangle \\
\left\langle\Psi^{\prime \prime 2}-\Psi^{1} \Psi^{2}, x \Psi^{\prime 2}\right\rangle \\
\left\langle\Psi^{\prime \prime 2}-\Psi^{1} \Psi^{2}, \Psi^{\prime 2}\right\rangle
\end{array}\right]
$$

To calculate the solution, it is necessary to make a choice of wavelets.
The family of the following functions:

$$
K_{m}(x)=(-1)^{m} \frac{d^{m}}{d x^{m}} \exp \left(\frac{-x^{2}}{2}\right), m \geq 1,
$$

Where K_{m} is a derivative of a Gaussian function, are good wavelet candidates for the following reasons:

- The inner product in the matrix and the second member expressed analytically by the function of unknown c_{i}, a_{i}, b_{i}.
- The following properties of the integral are very interesting:

$$
\begin{aligned}
& \int_{R} x^{m} K_{l}(x) d x=0 \text { for } m=0, l-1 \\
& \int_{R} K_{m}(x) K_{n}(x) K_{l}(x) d x=0 \text { for } m+n+l \text { is an odd }
\end{aligned}
$$

-These wavelets have another property due mainly to which properties of Hermite polynomials.
Then for $\Psi_{1}(x)=K_{m}(x), \Psi_{2}(x)=K_{n}(x)$.
In this case, our matrix will becomes as follows:

$$
M_{1}=\frac{a_{1} c^{2} 1 \sqrt{\pi}}{2^{2 m}} \frac{2 m!}{m!}\left(\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
-\frac{1}{2} & m+\frac{3}{4} & 0 \\
0 & 0 & m+\frac{1}{2}
\end{array}\right), M_{2}=\frac{a_{2} c^{2} 2 \sqrt{\pi}}{2^{2 n}} \frac{2 n!}{n!}\left(\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
-\frac{1}{2} & n+\frac{3}{4} & 0 \\
0 & 0 & n+\frac{1}{2}
\end{array}\right)
$$

The following notation will be used:
with $T_{m n}(u, v)=a_{1} c_{1} c_{2} \int_{R} K_{m}(u x+v) K_{n}(x) d x$ $w=\frac{a_{1}}{a_{2}}, v=\frac{b_{1}-b_{2}}{a_{2}}$
and the second member is

$$
\begin{aligned}
& F_{1}=\left(\begin{array}{c}
\frac{c^{2}{ }_{1}}{a_{1}} T_{m+2, m}(1,0)+a_{1} c^{2}{ }_{1} T_{m, m}(1,0)-c^{3}{ }_{1} J_{m, m, m}\left(1,0, a_{1}\right)- \\
c_{2} c_{1}{ }^{2} J_{m, n, m}\left(u, v, a_{1}\right) \\
-\frac{c^{2}{ }_{1}}{a_{1}}\left(T_{m+2, m+2}(1,0)+(m+1) T_{m+2, m}(1,0)\right)- \\
a_{1} c^{2}{ }_{1}\left(T_{m+2, m}(1,0)+(m+1) T_{m, m}(1,0)\right)+ \\
c^{3}\left(J_{m, m, m+2}\left(1,0, a_{1}\right)+(m+1) J_{m, m, m}\left(1,0, a_{1}\right)\right)+ \\
c_{2} c^{2}\left(J_{m, n, m+2}\left(u, v, a_{1}\right)+(m+1) J_{m, n, m}\left(u, v, a_{1}\right)\right) \\
c^{3}{ }_{1} J_{m, m, m+1}\left(1,0, a_{1}\right)+c_{1} c^{2}{ }_{2} J_{m, n, m+1}\left(u, v, a_{1}\right)
\end{array}\right), \\
& F_{2}=\left(\begin{array}{c}
\frac{c^{2}{ }_{2}}{a_{2}} T_{n+2, n}(1,0)-c^{2}{ }_{2} c_{1} J_{m, n, n}\left(u, v, a_{1}\right) \\
-\frac{c^{2}{ }_{2}}{a_{2}}\left(T_{n+2, n+2}(1,0)+(n+1) T_{n+2, n}(1,0)\right)+ \\
c^{2}{ }_{2} c_{1}\left(J_{m, n, n+1}\left(u, v, a_{1}\right)+(n+1) J_{m, n, n}\left(u, v, a_{1}\right)\right) \\
c^{2}{ }_{2} c_{1} J_{m, n, n+1}\left(u, v, a_{1}\right)
\end{array}\right),
\end{aligned}
$$

The system (1-4) is a system of nonlinear differential equations that can be integrated by classical numeric method of integration. For the solution, we will process by calculating the reverse of the matrix $\mathrm{M}_{1}, \mathrm{M}_{2}$ by using an idea of the conjugate gradient method.Then we integrate the system obtained, which gives $\mathrm{X}=\mathrm{M}^{-1} \mathrm{~F}$ by using the method of Adams-Bashfors, (Ref [7]).

For the accuracy of our solution, we need to evaluate the error depending on the choice of m and n.

4. Evaluation of error [7], [9], [10]

Let: $V(t)=\left\{\Psi^{(i)}, \Psi^{\prime(i)}, x \Psi^{\prime(i)} i=1,2\right\}$
From relations (1-2), we deduce that $\frac{\partial u}{\partial t}+A_{x} u$ is orthogonal to $V(t)$
and as $\frac{\partial u}{\partial t}$ belongs to $V(t)$
We find : $\left\langle\frac{\partial u}{\partial t}+A_{x} u, \frac{\partial u}{\partial t}\right\rangle=0$
and thus if also $A_{x} u$ belongs to $V(t)$ then the method provides us an exact solution. In our problem $A_{x} u$ does not belong to $V(t)$ and we must evaluate the errors:

Consider

$$
\Delta_{1}\left(u_{1}\right)=\left\|\frac{\partial u_{1}}{\partial t}-\frac{\partial^{2} u_{1}}{\partial^{2} x}-u_{1}\left(1-u_{1}-u_{2}\right)\right\|^{2}
$$

And

$$
\Delta_{2}\left(u_{2}\right)=\left\|\frac{\partial u_{2}}{\partial t}-\frac{\partial^{2} u_{2}}{\partial^{2} x}+u_{1} u_{2}\right\|^{2}
$$

We put

$$
\operatorname{resd}_{i}=\sqrt{\varepsilon_{i}} \quad i=1,2 \text { with } \varepsilon_{1}=\frac{\left\|\frac{\partial u_{1}}{\partial t}-\frac{\partial^{2} u_{1}}{\partial^{2} x}-u_{1}\left(1-u_{1}-u_{2}\right)\right\|^{2}}{\left\|\frac{\partial u_{1}}{\partial t}\right\|^{2}} \text { and } \varepsilon_{2}=\frac{\left\|\frac{\partial u_{2}}{\partial t}-\frac{\partial^{2} u_{2}}{\partial^{2} x}+u_{1} u_{2}\right\|^{2}}{\left\|\frac{\partial u_{2}}{\partial t}\right\|^{2}}
$$

5. The numerical results

The numerical results obtained by this method are found on board

Figure (5-1)

Comment
The errors corresponding to the cases $(\mathrm{m}=\mathrm{n}=0)$ is the weakest compared to the other case $(m=0, n=1),(m=0, n=2)$ therefore the approximate solution $(m=n=0)$ is the best solution.

This is the behavior of the solution for the case $\mathrm{m}=\mathrm{n}=0$, for various iteration:

The solution $u 1(t, x)$ by the TWM for various time for $\mathrm{m}=\mathrm{n}=0$ with $\mathrm{dt}=0.001$, number of time steps $=100$

Figure (5-2)

Conclusion:

The evaluation of the errors ensures us that the best solution obtained by the TWM is the case $m=n=0$

6. B-Z solving by the finite differences method (FDM)

There are three types of basic methods for solving such equations: explicit, implicit and Crank-Nicholson type methods.
We will solve our system by schema implicit.

The numerical results obtained by the FDM for $\mathrm{m}=\mathrm{n}=0$
For iteration 100

The solution $u 2(t, x)$ by FDM for various time for $\mathrm{m}=\mathrm{n}=0$ with $\mathrm{dt}=0.001$, number of time steps=100

The solution $u 1(\mathrm{t}, \mathrm{x})$ by the FDM for various time for $\mathrm{m}=\mathrm{n}=0$ with $\mathrm{dt}=0.001$, number of time steps $=100$

Figure (6-1)

Comparison with the finite differences method:

By comparing our solutions obtained with those of the finite differences method for various values of m and n , we notes that the case corresponding $\mathrm{m}=\mathrm{n}=0$, provides practically the same solution, i.e. the behavior for the two methods is the same (Figure (5-2)).
And for a detailed account of this step see the Ref [9].

The solution $u 2(\mathrm{t}, \mathrm{x})$ by the FDM and TWM for iteration:500

The solution $\mathrm{u} 1(\mathrm{t}, \mathrm{x})$ by the FDM and by the TWM for iteration 500

Figure (6-2)
We will compare the absolute errors between the solutions obtained by the TWM and the solution obtained by the FDM for various choices of m and n

Figure (6-3)

For example the absolute error between the solutions obtained by the two methods, for the case $\mathrm{m}=\mathrm{n}=0$ is of order 0.006 for the first solution and 0.003 for the second solution (figure (5-3)), on the other hand for the other cases, we notice significant differences between various solutions obtained by the two methods, the absolute error between the solutions for the case $m=0, n=1$ is of order 0.012 for the first solution and 0.004 for the second solution, for the case $m=0, n=2$ are of order 0.006 for the first solution and 0.018 for the second solution.

Conclusion:

The traveling wavelets method gives us a very rich choice to represent the solution of the system of Bélousov-Zhabotinskii. It appears that the $m=n=0$ choice gives the best approximation compared to other choices of m and n and that corresponds to the condition of existence and uniqueness of the positive solution.

References

[1] C. Basdevant, M. Holschneider et V. Perrier, La méthode des ondelettes mobiles, C.R.Acad .Sci.Paris, (1990), 647-652.
[2] D. Euvrard, Résolution numériques des équations aux dérivées partielles. Paris, 1994.
[3] D. Schmith, Existence globales pour des systèmes de réaction diffusion avec contrôle de masse, Nancy I, 1995.
[4] G. B. Yu, C. Z. Xiong: Analytic solutions of Noyes-Field system for Belousov-Zhabotinskii reaction, Partial Differential Equations, 2(1995), 174-192.
[5] J. Elezgaray , Traveling wavlets for the simulation of a Hele-Shaw Flow with surface tension, Applied and Computational Harmonic analysis , 6 (1999), 103108.
[6] L. Zhibin, S. He: Exact solutions for Belousov-Zhabotinskii reaction-diffusion system, Gaoxiao Yingyong Shuxue Xuebao, 1 (1996), 125.
[7] N. Benhamidouche, Instabilité gravitationnelle et ondelettes mobiles, AIXMarseille II, 1995.
[8] R. J. Field , W. C. Troy, The Existence of Solitary Travelling Wave Solutions of a Model of the Belousov-Zhabotinskii Reaction. Journal on Applied Mathematics, 3(1979), 561-587.
[9] S. Benmehdi, Application de la méthode des ondelettes mobiles aux systèmes de réaction diffusion non linéaires, M'Sila, 2001.
[10] V. Perrier, Ondelettes et simulations numérique. Paris 6, 1990.

