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Abstract

In this work, we find a numerical solution to Belousov — Zhabontinskii system,
we use the traveling wavelets method. It is well known that this model describes a
chemical reaction. The results obtained are compared with those derived from the
finite difference method.

The principle of the traveling wavelets method consists in seeking the solution in
the form:

ux,t)= ZC('[)‘P(X t()tgt)J ,a, >0 , b,c eR

Where the function W is some wavelet function and c; , a;, b; are parameters
depending on time, amplitude, scale and position respectively. Without loss of
generality, we will focus our study only on the one dimensional case.
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1. Introduction

The Belousov-Zhabotinskii model is described by the system:

0 0’
%: 2u1+u1(1—u1—ru2)
0°x r and b are constants (1-1)
ou, 0°u,
—==——-buy,
ot 0°X

This system has been studied by a number of authors; in 1979 R.J. Field and W.
C. Troy [8] studies the existence of solitary Travelling Wave Solutions, G. B .Yu
, C.Z .Xiong [4] and L. Zhibin ,S. He[6] has found the solution by the
travelling wave method.

In this paper, we use the travelling wavelets method to find the solution of
Belousov-Zhabotinskii (for r=b=1), the basics of this method is described bellow
(see also[1], [10] for more details), it’s applied in several areas in astrophysics
by N.Benhamidouche, B.Torresani and R.Triay [7] and by J.Elezgaray [5] in
fluid mechanics.

By using this method we obtain a numerical solution which is exactly the same
when we use the finite difference method for some choice of the wavelet.

Global existence in time of solution to reaction diffusion systems: [3]

Global existence in time of solutions to reaction diffusion systems in the form:

ou
E‘—dlAul =f(u,u,)

(i%—dzAu2 =g(u,,u,)
Where d1=d,>0 are the coefficients of diffusion and f ,g: R? >R
Represent the non linear interactions, with the following two properties:
HDvu,u,>20:f(0, u,),9(u,0)>0
2) f(u,,u, )+g(u, ,u,)<0

In the Belousov-Zhabontinskii framework, the global existence in time of
solutions is verified with these two properties:
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l)vu17u220:f(0> uz):g(ulao)zo
2)u, +(r+bju, >1

2. The traveling wavelets method (TWM) [1]

The traveling wavelets method seeks an approximate solution of the evolution
problem:

ou
—+Au=0
ot (1-2)

U(x,0) = u,(x)

Under the form

u(xt) = ZC(t)‘P(X t(’gt)J a >0 , b.c eR

Where u(x, t) is a function of space and time variables, and Ay is a differential
linear or nonlinear operator, ¥ is any wavelet, C; A @;, b; are the parameters of
amplitude, scale, and position depending on time, governess the atom ' such
that:

¥(x,t)=c (t)‘P[X_—bi(t)]

a,(t)

The parameters C;j, @;, b are obtained by the minimizing problem where the error
is calculated at any moment t:

Mlnf dx

Ca|b|R

b
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Therefore, we obtain three equations which read as follows:

2 8_u+ Ax,a—u+ A )=0
ot ot

oc;

i<a—u+Ax,a—u+Ax>:0 fori=1,N
oa, ot ot

i<a—u+ Ax,a—u+ AX>=0
ob, ot ot

Where <,> is the inner product in L*(R).

Then the minimization problem leads to the system of 3N equations given by:

<a—“+ Axu,‘Pi>:O

at

<a—“+AXu,x\P">:o (1-3)
at

<a—“+ Axu,‘P'i>:0
ot

This method transforms the problem (1-3) to a system of ordinary differential,

equations of unknowns Ci s é.i , bi given in the form :
Ci

M (ci (), ai(t) , bi (1)) ai| = F(ci(t),ai(t), bi(t))
bi

Where M is a matrix in order 3N that comes from the term

ou
e and F the second member comes from the term AU .

3. The traveling wavelets method to solving the model of
Beélousov-Zhabontinskii
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With the traveling wavelets method we will seek the solutions of the system
(1-1) (for r=b=1) in the following form:
u,(x,t) = ' (x,t)
u,(X,t) = P (x,t)
w—aaq
a, (1)
u—maq

With
W%n0=qu{

¥ (X,t)=Cz(t)‘Pz( a ()

The initial conditions are:

(X — b1 (0)
a,(0)
(x=b,(0)

mumzqmﬂ{ me c,(0)=1,b(0)=0,a,(0) =1

u,(x,0) = cz(t)‘Pz( J with ¢,(0)=1,b,(0)=0,a,(0)=1

2

We note: (x¥')' = {(Xa_—?ti)(t)J\P'i

The minimization problem is written as follow:

2
_ lou,  8%u
.Mm. - - 21_u1(1_u1_uz)
¢ a6 Ot 0~ X
2
_lou o°u
Min - —2+uu,

2
¢, a2 b, O 07X

Therefore, we obtain six equations:
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ou, oy,
— -u,{l-u
<8t 0°X (-
ou, oy,
- —-u,{l-u
<6t 0°X (-,
ou, 0°u,
—_—— -u{l-u
<at 0°X (-u
u, o, uu,,¥’
ot o*x Y
ou z
<§2— —+u,u, , x¥
ou, o’ ,
<§2— —+uu,, P

Fl
FZ

j 1-4)

S. Benmehdi and N. Benhamidouche



Belousov-Zhabotinskii model 357

(W) (i) ()
with : M, = <X‘{"P> <X‘I’x\P> <X‘P‘P>

and
<‘P”1+‘P‘(1—‘P1 —‘Pz),‘P'> <‘P"2—‘P“I’2 ,‘I’2>
F :aif (w9 (1= - 97), x| F, :aij (-9, x )
(P -9 - ), ) (wre-why? e

To calculate the solution, it is necessary to make a choice of wavelets.

The family of the following functions:

m 2
Ko (0= 1y 2 p(2 j mal,

dx™

Where K, is a derivative of a Gaussian function, are good wavelet candidates for
the following reasons:

- The inner product in the matrix and the second member

expressed analytically by the function of unknown ¢;, a;, b; .

- The following properties of the integral are very interesting:

IxmK,(x)dx:O for m=0,1-1
R

IKm(x)Kn(x)Kl(x)dx=0 for m+n+1Iisan odd
R

-These wavelets have another property due mainly to which properties of Hermite
polynomials.

Then for ¥, (x) = K, (x), ¥, (x) = K, (x) .

In this case, our matrix will becomes as follows:
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2 2
2 ' a,chyr 2nl| 1 3
WP A ] DD W R B Vo 2. L A
2" m| 2 4 2 nt 2
1
0 0 m+l 0 O n+—
2 2

The following notation will be used:

with T, (U,V) = 8¢C, [ K, (ux+V)K, (x)dx
R

bl — bz
a,

a'l
w=— v=
a

and the second member is

2

Ca_leﬂ,m (L0)+acT, , 1,0)-c*J, . . (1,0,a) -
1
C2C12 mnm(u V a )
2
= (T (LO)+ (M + 1T, (1.0)) -
F = a ’ '
2,1 (T, 0 (1L0)+ (M+1)T,, (1,0))+ ,

Csl(‘]mmm+2(loa) m+1) mmm(lo’al))+

(
CZC 1( mnm+2(u v, a) (m+1) mn,m(u’v’al))
c 1‘]m,m,m+1(l 0,3, )+C ¢ 2Jm,n,m+1(u’v’a1)

2
2

(@]

Tn+2,n (1’0) C 2Cl ‘] m,n,n (U’V’ a1 )

|

2

Fz = -2 (Tn+2,n+2 (190) + (n + 1)Tn+2,n (1’0))+

2
'J m,n,n+1 (U,V, a1 )+ (n + 1)‘] m,n,n (U,V, al ))
C22C1‘Jm,n,n+1 (U,V, al)

(@]
(S

Q

/—\

Czc
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The system (1-4) is a system of nonlinear differential equations that can be
integrated by classical numeric method of integration. For the solution, we will
process by calculating the reverse of the matrix M |, M , by using an idea of the
conjugate gradient method .Then we integrate the system obtained, which gives
X=M " F by using the method of Adams-Bashfors, (Ref [7]).

For the accuracy of our solution, we need to evaluate the error depending on the
choice of m and n.

4. Evaluation of error [7], [9], [10]

Let: V(t)={¥0 w0 xp0 j=12}

From relations (1-2), we deduce that Z—l: + Au is orthogonal to V(t)

and as Z—l: belongs to V(t)

We find : 8_u+ Axu,a—u =0
ot ot

and thus if also AU belongs to V(t) then the method provides us an exact solution.
In our problem Ayu does not belong to V() and we must evaluate the errors:

Consider
ou, o, ’
Al(ul): E_ Pe _ul(l_ul u,
And s
ou, o
Az(uz)_ EZ_ 52 2 uu,
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2

2 2
%_52U1_u1(1_u1_u2 %—ﬁzuhrulu2
. . ot 00X ot 0
resd, = \/&; i=12 with g = - and &, = .
ou, ou,
ot ot

5. The numerical results

The numerical results obtained by this method are found on board

m=0,n=2
0,104 0,26 o
0,244
0,09 m=0,n=2
o~ 0,224
- 0,08+
=i ~ | 020
B )
c £
£ 0074 ‘g‘ L e
E £ 016+ m=0,n=1
g 0,064 b
[ 6 0,144
0,054 E 0,12
0,104
m=n=0 P
T T T T T T 0-08‘777, e -
1,00 1,02 1,04 1,06 1,08 110 112 114 T T T
. 1,00 1,02 1,04 1,06 1,08 110 112
time X
time
. - 2 . . 2
Comparison of errors2 in L” norm comparison of errorsl in L"norm

Figure (5-1)

Comment

The errors corresponding to the cases (m=n=0) is the weakest compared to the
other case (m=0, n=1), (m=0, n=2) therefore the approximate solution (m=n=0) is
the best solution.
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This is the behavior of the solution for the case m=n=0 , for various iteration:

12

initial condition

104

0,8

06

u2(t,x)
ul(t,x)

04

024

0,0+

X
. . . X
The solution u2(t,x) by the TWM for varoius time The solution ul(t,x) by the TWM for various time
for m=n=0 with dt=0.001,number of time steps=100 for m=n=0 with dt =0.001,number of time steps =100

Figure (5-2)

Conclusion:

The evaluation of the errors ensures us that the best solution obtained by the
TWM is the case m=n=0

6. B-Z solving by the finite differences method (FDM)

There are three types of basic methods for solving such equations: explicit,
implicit and Crank-Nicholson type methods.

We will solve our system by schema implicit.

The numerical results obtained by the FDM for m=n=0

For iteration 100
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initial condition

u2(t,x)

T T T T T T T
-4 3 2 -1 0 1 2 3 4

4 5 2 1 0 1 2 3 4
The solution u2(t,x) by FDM for various time The solution ul(t,x) bxy the FDM for various time
for m=n=0 with dt=0.001,number of time steps=100 for m=n=0 with dt = 0.001,number of time steps=100

Figure (6-1)

Comparison with the finite differences method:

By comparing our solutions obtained with those of the finite differences method
for various values of m and n, we notes that the case corresponding m=n=0,
provides practically the same solution, i.e. the behavior for the two methods is the
same (Figure (5-2)).

And for a detailed account of this step see the Ref [9].

——u2(t,x)by FDM _
—u2(t,x)by TWM

0,54 ul(t,x)by FDM

ul(t,x)by TWM .

044

034

u2(t,x)

014
014 / \\
0,04 0,04 )
4 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 4
X X
The solution u2(t,x)by the FDM and TWM The solution ul(t,x) by the FDM and by the TWM
for iteration:500 for iteration 500

Figure (6-2)

We will compare the absolute errors between the solutions obtained by the TWM
and the solution obtained by the FDM for various choices of m and n
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o

2

o

!

absolute errors beteen u2(fdm)and u2(
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0,008 o
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0,008 o 0,006

0,006 0,004 +
0,004

0,002 o
0,002

00004 7 0,000 -

absolute errors between ul(fdm)and ul(twm)

Comparison of the errors for varoius Comparison of the errors for various
value of m and n value of m and n

Figure (6-3)

For example the absolute error between the solutions obtained by the two
methods, for the case m=n=0 is of order 0.006 for the first solution and 0.003 for
the second solution (figure (5-3)), on the other hand for the other cases ,we notice
significant differences between various solutions obtained by the two methods,
the absolute error between the solutions for the case m=0, n=1 is of order 0.012
for the first solution and 0.004 for the second solution, for the case m=0, n=2 are
of order 0.006 for the first solution and 0.018 for the second solution.

Conclusion:

The traveling wavelets method gives us a very rich choice to represent the
solution of the system of Bélousov-Zhabotinskii . It appears that the m=n=0
choice gives the best approximation compared to other choices of m and n and
that corresponds to the condition of existence and uniqueness of the positive
solution.
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