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Abstract 

 
 A new numerical method, based on the normalized Bernstein polynomials for 
solving singular integral equations of Abel type is presented here in this paper. 
We construct an othonormal family { }n

inib
0=

 of polynomials of degree n  from 

the thn  degree Bernstein polynomials niB  and use them as a basis to approximate 
the known and unknown functions )(xf and )(xϕ respectively in the Abel’s 
integral equations. Then orthogonality is used to reduce the integral equation to a 
system of algebraic equations which can be solved easily. The method is quite 
accurate and stable even when the approximations are performed by orthonormal 
Bernstein polynomials nib  of degree as low as 5 , as illustrated by the given 
numerical examples with varying degree of noise terms ε  added to )(xf .        
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1. Introduction 

Abel’s integral equation [1] occurs in many branches of science. Usually, 
physical quantities accessible to measurement are quite often related to physically 
important but experimentally inaccessible ones by Abel’s integral equation. Some 
of the examples are: microscopy [2] , seismology [3-4] , radio astronomy [5], 
satellite photometry of airglows [6] , electron emission [7] , atomic scattering [8], 
radar ranging [9] , optical fiber evaluation [10-12] . But it is most extensively 
used in flame and plasma diagnostics [13-15] and X-ray radiography [16-19]. In 
flame and plasma diagnostics the Abel’s integral equation relates the emission 
coefficient distribution function of optically thin cylindrically symmetric 
extended radiation source to the line-of-sight radiance measured in the laboratory. 
Obtaining the physically relevant quantity from the measured one requires, 
therefore, the inversion of the Abel’s integral.               
Abel’s integral equation can be written as  
                                     

                     dt
tx

txf
x

∫ −
=

0

)()( ϕ
     10 ≤≤ x ,                                     (1) 

where )(xf , is the data function and )(tϕ  is the unknown function. The exact 
solution is given by  

                                 ∫ −
=

x

dt
td
tdf

tx
x

0 )(
)(11)(

π
ϕ ,   10 ≤≤ x ,   [20]                   (2) 

assuming, without loss of generality, ( ) 00 =f . 
As the process of estimating the solution function )(tϕ , if the data function 

)(xf is given approximately and only at a discrete set of data points, is ill-posed 
since small perturbations in the data )(xf  might cause large errors in the 
computed solution )(xϕ . In fact, two explicit analytic inversion formulae were 
given by Abel [1], but their direct application amplifies the experimental noise 
inherent in the radiance data significantly. This is due to the fact these formulae 
require differentiating the measured data. In 1982, a third, analytic but derivative 
free inversion formula was obtained by Deutsch and Beniaminy [21] to avoid this 
problem. In addition, many numerical inversion methods [22-35] have been 
developed with varying degree of success with the inherent limitations of all 
measured data. Consequently, the direct use of (2) is restricted and stable 
numerical methods become important.               
The aim of the present paper is to propose a new stable (with respect to small 
perturbations in the data function )(xf ) algorithm based on orthonormal 
Bernstein polynomials to invert the Abel’s integral equation (1), also known as 
singular Volterra integral equation of first kind and 
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                            dt
tx

txfx
x

∫ −
+=

0

)()()( ϕϕ  , 10 ≤≤ x ,                                    (3)  

the Volterra integral equation of second kind. 
 
 
2. The Bernstein polynomials  
 
A Bernstein polynomial, named after Sergei Natanovich Bernstein, is a 
polynomial in the Bernstein form, that is a linear combination of Bernstein basis 
polynomials. 
The Bernstein basis polynomials of degree n  are defined by 

                      nifortt
i
n

tB ini
ni ,,2,1,0,)1()(, L=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= − .             (4)                                   

There are thnn )1( +  degree Bernstein basis polynomials forming a basis for the 
linear space nV  consisting of all polynomials of degree less than or equal to n  in 
R[x]-the ring of polynomials over the field R. For mathematical convenience, we 
usually set 0, =niB  if 0<i  or ni > . 
Any polynomial )(xB  in nV   may be written as 

                                  )()( ,
0

xBxB ni

n

i
i∑

=

= β .                                                       (5) 

Then )(xB  is called a polynomial in Bernstein form or Bernstein polynomial of 
degree n . The coefficients iβ  are called Bernstein or Bezier coefficients. But 
several mathematicians call Bernstein basis polynomials )(, xB ni as the Bernstein 
polynomials. We will follow this convention as well. These polynomials have the 
following properties: 
 

0, )0()( iniBi δ=    and   niniB δ=)1(,  ,  where δ  is the Kronecker delta function. 
)()( , tBii ni  has one root, each of multiplicity i  and in − , at 0=t  and 1=t     

      respectively. 
0)()( , ≥tBiii ni  for ]1,0[∈t  and )()1( ,, tBtB ninni −=− . 

)(iv For 0≠i , niB ,  has a unique local maximum in ]1,0[  at nit /=  and the   

       maximum value  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− −−

i
n

inni inni )(  . 

)(v The Bernstein polynomials form a partition of unity i.e. 1)(
0

,∑
=

=
n

i
ni tB . 

)(vi It has a degree raising property in the sense that any of the lower-degree    
       polynomials (degree n< ) can be expressed as a linear combinations of   
       polynomials of degree n . We have, 



 

244                                   Vineet K. Singh, Rajesh  K. Pandey and  Om  P. Singh 
 
 

                          )(1)()( ,1,1, tB
n

itB
n

intB ninini +− ⎟
⎠
⎞

⎜
⎝
⎛ +

+⎟
⎠
⎞

⎜
⎝
⎛ −

=  . 

)(vii Let −∈ ]1,0[)( Cxf  (the class of continuous functions on ]1,0[ ), then      
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)(viii Let −∈ ]1,0[)( )(kCxf (the class of −k times differentiable function with   

         )(kf  continuous), then 
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)(
L  is   

          an eigen value of nB ; the corresponding eigen function is a polynomial of   
          degree k . 
 
 
3. The orthonormal polynomials 
 
Using Gram- Schmidt orthonormalization process on niB , , we obtain a class of 
orthonormal polynomials from Bernstein polynomials. We call them orthonormal 
Bernstein polynomials of order n  and denote them by nnnno bbb ,,, 1 L . For 

5=n  the five orthonormal polynomials are given by 
 

5
50 )1(11)( ttb −=  
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4. Function approximation 
 
A function ]1,0[2Lf ∈  may be written as  
 

                       ∑
=

∞→
=

n

i
ninin

tbctf
0

)(lim)( ,                                                                (7) 

where, nini bfc ,=  and ,  is the standard inner product on ]1,0[2L .  
If the series (7) is truncated at mn = , then we have  

                         )(
0

tBCbcf T
m

i
mimi =≅ ∑

=

,                                                         (8)  

where, C  and )(tB  are 1)1( ×+m  matrices given by                                       
                          T

mmmm cccC ],,,[ 10 L=                                                             (9) 
and   
                        T

mmmm tbtbtbtB )](,),(),([)( 10 L= .                                           (10) 
           
 
 
5. Solution of Abel’s integral equation 
 
In this section we solve Abel’s integral equation (1) and singular Volterra integral 
equations (3) by using orthonormal Bernstein polynomials.  
Using Eq.(8), we approximate )(xϕ  and )(xf as 
                          )()( xBCx T=ϕ , )()( xBFxf T=                                              (11) 
where the matrix F  is  known. Then from equations (1), (3) and (11) we have 
 

 for the first kind:           ∫ −
=

x T
T dt

tx
xBCxBF

0

)()(                                                (12)  

 and  

  for the second kind:    ∫ −
+=

x T
TT dt

tx
xBCxBFxBC

0

)()()( .                              (13) 

From equations (6), (10) and the well known formula  

                                
)

2
3(

)1(
)

2
1(

0 +Γ

+Γ
=

−

+

∫
n

nxdt
tx

t
nx n π ,                                       (14) 

it is obvious that 

                                  ∫ =
−

x

xBPdt
tx

tB

0

)()( ,                                                       (15) 
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where P  is a )1()1( +×+ mm  matrix, which we call as modified Bernstein 
operational matrix of integration for singular Volterra integral equations with 
Abel kernel.  
Substituting (15) in (12) and (13), we get 
                                                               
                             1−= PFC TT      (for the first kind)                                      (16)                 
and  
                             1)( −−= PIFC TT   .  (for the second kind).                        (17) 
 
Hence, the approximate solutions )(tϕ  for the Abel’s integral equation (1) and 
second kind singular Volterra integral equation (3) are obtained by putting the 
values of TC  from (16) and (17) in (11) respectively. 
 
 
6. Illustrative Examples 
 
The following examples are solved with and without noise terms to illustrate the 
efficiency and stability of our method. Note that in all the examples to follow, the 
series (8) is truncated at level 5=m and hence the modified operational matrix P  
in (15) is of order 66× .  
 
 
Example.1 
 
Consider the following singular Volterra integral equation: 

                    ∫ −
−+=

x

dt
tx

tyxxxy
0

2/52 )(
15
16)( ,   [29]                                      (18) 

 which has the exact solution 2)( xxy = . Equations (11) and (17) give the 
approximate solution )()( xBCxy T= , 
 
where ]166667.0,255684.0,252889.0,185833.0,089286.0,019742.0[=TC . 
 
Now, we introduce a perturbation term ε  in )(xf and denote the new function by 

)(xf ε , so that the new  function εε ++= 2/52

15
16)( xxxf .  

 
We study the behaviour of the solution by taking .01.0 and  002.0,001.0=ε  Fig. 
3. denotes the error Ei(t)= Approximate. solution obtained with perturbation iε - 
the exact solution, 3,2,1=i . 
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Fig.1. The exact and the approximate solutions of the singular Volterra integral 
equation(18) in Example 1 are represented by )(ty (solid line) and )(1 ty (dotted 
line)  respectively. 
 
 

 
Fig.2 The error for the singular Volterra integral equation (18) in Example 1. 
 
 

 
Fig.3. The errors for the singular Volterra integral equation (18) in Example 1 
with different perturbations. 

0 0.17 0.33 0.5 0.67 0.83 1
0.3

0.0833

0.13

0.35

0.57

0.78

1

y t( )

y1 t( )

t

 

0 0.17 0.33 0.5 0.67 0.83 1
8.07 .10 8

1.54 .10 8

1.12 .10 7

2.08 .10 7

3.04 .10 7
4 .10 7

y1 t( ) y t( )−

t

0 0.17 0.33 0.5 0.67 0.83 1

0

0.005

0.01

E1 t( )

E2 t( )

E3 t( )

t

 



 

248                                   Vineet K. Singh, Rajesh  K. Pandey and  Om  P. Singh 
 
 
Example.2 
 
 Consider the singular Volterra integral equation: 

         ∫ −
−+=

x

dt
tx

tyxxxy
0

2/3 )(
3
4)( ,    [36]                                                    (19) 

 which has the exact solution xxy =)( . The approximate solution is given by 
                                         )()( xBCxy T= ,  
where ]166667.0,272179.0,30879.0,289773.0,214286.0,078967.0[=TC . 

Fig.4.The exact and the approximate solutions of the singular Volterra integral 
equation (19) in Example 2 are represented by )(ty (solid line) and )(1 ty (dotted 
line) respectively. 

Fig.5. The error for the singular Volterra integral equation (19) in Example 2.  

Fig.6. The errors for the singular Volterra integral equation (19) in Example 2 
with different perturbations. 

0 0.17 0.33 0.5 0.67 0.83 1
0.3

0.0667

0.17

0.4

0.63

0.87

1.1

y t( )

y1 t( )

t

 

0 0.17 0.33 0.5 0.67 0.83 1
2 .10 7

0

2 .10 7

4 .10 7

y1 t( ) y t( )−

t

0 0.17 0.33 0.5 0.67 0.83 1

0

0.005

0.01

E1 t( )

E2 t( )

E3 t( )

t



 

New stable numerical solutions                                                                         249 
 
 
Example.3 
 
Next, we consider the Abel integral equation given by, 

                      ∫ =
−

x
rxdt

tx
ty

0

)( ,              10 << x   [33]                                    (20) 

where r  is any positive number. This is a first kind Volterra integral equation 
with weak singularity. 
The exact solution of the integral equation (20) is given by, 

                   2
1212

)2(
))((2)(

−−

Γ
Γ

=
rr

x
r

rrxy
π

.                                                          (21)   

We apply our proposed method to solve the above Abel’s integral equation by 
taking 5,5.1,1=r ,  and study the solution with noise term ε  added to the 
observable data )(xf .  
When 1=r , the data function xxf =)(  with exact inverse Abel transform 

xxy
π
2)( = . 

Fig.7 shows the approximate solution (dotted line) and the exact solution (solid 
line). The next Fig. 8 shows the error between exact and approximate solutions. 
Now, we add noise term ε  to the data function )(xf so that it becomes 

εε += )()( xfxf  and compute the inverse function )(xy using the proposed 
method. Fig. 9 shows errors at three different noise levels, 

.01.0 and  002.0,001.0=ε  This problem was studied by Murio et. al. [32] with  
001.0=ε . The stability of our method is better than [32]. 

The other two cases for the data function )(xf  with 5 and 5.1=r  having exact 

inversions as  xxy
4
3)( =  and 2/9

315
1280)( xxy

π
=  respectively, have been treated in 

exactly the same way as was done for 1=r .  The Figures 10 to 15 corresponds to 
figures 7 to 9 for the other two cases pertaining to 5 and 5.1=r  respectively. 

Fig.7. The exact and the approximate solutions of the Abel integral equation   
(20) in Example 3 are represented by )(ty (solid line) and )(1 ty (dotted line)     
 respectively, 1=r .  
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Fig.8. The error for the Abel’s integral equation (20) in Example 3, 1=r .  
 
 

 
Fig.9. The errors for the Abel’s integral equation (20) in Example 3, 1=r . 
 
 

 
Fig.10 The exact and the approximate solutions of the Abel’s integral equation  
(20) in Example 3 are represented by )(ty (solid line) and )(1 ty (dotted line)     
 respectively, 5.1=r . 
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Fig.11. The error for the Abel’s integral equation (20) in Example 3, 5.1=r . 
 
 

 
Fig.12. The errors for the Abel’s integral equation (20) in Example 3, 5.1=r . 
 
 

 
Fig.13 The exact and the approximate solutions of the Abel’s integral equation   
(20) in Example 3 are represented by )(ty (solid line) and )(1 ty (dotted line)     
 respectively, 5=r . 
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 Fig.14. The error for the Abel’s integral equation (20) in Example 3, 5=r . 
 
 

 
Fig.15. The errors for the Abel’s integral equation (20) in Example 3, 5=r . 
 
 
 
 
7. Conclusions 
 
We have introduced a modified Bernstein operational matrix of integration to 
propose a new and stable algorithm for numerical solution of Abel’s and singular 
Volterra integral equations. It is found that the method is accurate, easy to use 
and stable as shown by the given numerical examples.  
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