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Abstract 

The aim of this paper is to derive the solution of the non-truncated queue: Mx/M/1 
with reneging, balking, state-dependent and an additional server for longer 
queues. In this case the units arrive in batches of size X which is a random 
variable. At the end of this paper some special cases are deduced. 
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1 Introduction 

 
Many researchers studied the problem of bulk arrival queues but without any 
concept. Some researchers studied the queue: Mx/M/1 in the homogeneous case 
with blocking and delays. Other discussed the queues: Mx/M/C and Mx/G/∞. 
Abou-El-Ata et al [1] discussed the bulk arrival queue: Mx/M/1 with both 
concepts of balking and reneging. El-Paoumy [4] discussed the truncated queue 
Mx/M/1/N with the same concepts. In this paper it is aimed to treat the non-
truncated bulk arrival queue: Mx/M/1 with balking, reneging, state-dependent and 
an additional server for longer queues. The discipline considered is the usual one 
first in first out (FIFO). In this work the researcher investigates the probability 
generating function of the number of units in the system. Then some special cases 
are deduced. 
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2 The equilibrium distribution 
 
Consider the interarrival rates of the units be an exponential distribution with rate 
λ. The service time rate is also exponentially distributed with rate μ. The units are 
served according to the discipline FIFO. 
Assume the group size is a random variable with distribution: 
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And the balk concept with probability (1-β), i.e.: 
β = prob.{a unit joins the queue}, 0 ≤ β < 1 , n > 0 and β = 1 for    n = 0 
Also, consider the reneging concept, which means that a unit may renege with 
function r(n) after joining the queue for service for a certain time t, which is a 
random variable with a probability density function: 
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Let: r(n) = (n-1)α  if n units are in the system, and r(1) = r(0) = 0 
The service time rate in case of state-dependent and an additional server for 
longer queues is as follows: 
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Now, let pn(t) be the probability that there are n units in the system at time t by: 
Therefore, the differential-difference equations are: 
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As ∞⎯→⎯t  ,  the steady-state difference equations are 
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Let us also define the following two probabilities generating functions: 
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Multiplying relations (2), (4) and (6) by
nz  ,summing over n = 1 → ∞  and 

adding relations (1), (3) and (5) we get: 
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Relation (8) is a first order differential equation in P(z) . As z → 1, it is clear that:, 
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The solution of relation (8) is:  
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But as 0⎯→⎯z   , P(0) = p0, υ (0) = 0 ⇒  C = 0 
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Some special cases 
 
1- Case: let k1 = k2 , then we obtain this queue with an additional server for 

longer queues only, such that: 
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2- Case: Let k1 = k2 → ∞ we get this queue with balking and reneging  
only, such that: 
 

0F(z) →  and 1ss ⎯→⎯   
 
Which are the same results as in Abou-El-Ata et al [1]. 
 
3- Case: Let α = 0 k1 = k2 → ∞  we obtain the single-channel queue: 
Mx/M/1 with balking only. And thus from relations (8) and (10) we get: 
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These results are as in [4] when ∞⎯→⎯N  
 
4- Case: Let α = 0 , β = 1 ,  ∞⎯→⎯= k2  k1 , we obtain the single-channel bulk 
queue: Mx/M/1 only. And thus relation (14) becomes: 
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Which are the same results as in Harris [2] 
 
5- Case: Let k1 = k2          ∞ and the units are arrived according to the geometric 
distribution: 
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As in Dwight [3] relation (8) becomes 

∑

∫

−

=

−−−

−

−

−
−−

−−−−−

−−−
−

−
+

−
=

−
−

+
−

=Ρ

2

0
11

1

1
1

1

0
1

0

21
0

1
0

1
1

1

1

)!1()!2(!

)1()1()!2(
)(

)()1()1(

)1()()1()1()(

s

k

k
g

rs
k

s

g
r

s

k
g

rsksk

zgs
g

zpsp

dzzgzzpspz

β
υ

ββ
β

υ
ββ

β

β

β

    (16) 

Except for the case: 
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