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Abstract

The purpose of the paper is to investigate approximation methods
for finding an element that is not only a solution of a equilibrium prob-
lem but also a common solution for a finite family of inverse strongly-
monotone problems in Hilbert spaces.
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1. Introduction

Let H be a real Hilbert space with the scalar product and the norm
denoted by the symbols (., .) and ||.||, respectively, let C' be a nonempty closed
(in the norm) and convex subset of H, and let Fj be a bifunction from C' x C
to R. The equilibrium problem for Fj is to find u* € C such that

Fo(u*,v) >0 YveC. (1.1)

The set of solutions of (1.1) is denoted by EP(Fp). Assume that the bifunction
Iy satisfies the following set of standard properties.
Condition 1.1 The bifunction F' is such that:
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(A1) F(u,u) =0 YueC.
(A2) F(u,v) + F(v,u) <0 Y(u,v)eC xC.
(A3) For every u € C, F(u,.) : C' — R is lower semicontinuous and convex.
(A4) limy_, o F((1 —tyu+tz,v) < F(u,v) V(u,z,v)€CxCxC.
Let T;,2 =1, ..., N be a finite family of k;-strictly pseudo-contractions from
C into C with the nonempty set of fixed points F(T;) (i.e., F(T;) = {x € C':
x = Tix}). Assume that

F
F

S :=nY F(T;) N EP(Fy) # 0.
The problem of finding an element
u e S (1.2)

is studied intensively in [1]-[6], [9]-[11], and [13]-[25].
Recall that a mapping 7" in H is said to be a k-strictly pseudo-contraction

in the terminology of Browder and Petryshyn [7] if there exists a constant
0 < k < 1 such that

1Tz = Tyl|* < |z — ylI* + k(I = T)z — (I = T)y|*

for all z,y € D(T), the domain of definition of T, where I is the identity
operator in H. Clearly, when k = 0, T" is nonexpansive, i.e.,

17 () = T ()l < llz =yl

It means that the class of k-strict pseudo-contractions strictly includes the
class of nonexpansive mappings.

In the case T; = I, (1.2) is the equilibrium problem (1.1) and shown in [5],
[21] to cover monotone inclusion problems, saddle point problems, variational
inequality problems, minimization problems, Nash equilibria in noncooperative
games, vector equilibrium problems; as well as certain fixed point problems
(see also [12]). For finding approximative solutions of (1.1) there exist several
aproaches: the regularization approach in [9], [11], [13], [22], the gap-function
approach in [13], [14], [16], and iterative procedure approach in [1]-[4], [6], [10],
[17]-[20].

In the case Fy =0 and N =1, (1.2) is a problem of finding a fixed point
for a k-strictly pseudo-contraction in C' and studied in [15] where it is proved

Theorem 1.1. Let C' be a nonempty closed convex subset of H. LetT : C' — C
be a k-strict pseudo-contraction for some 0 < k < 1 and assume that the fized
point set F(T) of T is nonempty. Let {x,} be the sequence generated by the
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following (CQ) algorithm.:

(xo € C'chosen arbitrarily,
Yn = Ty + (1 — an) Ty,
Co={2€C:|lyn — 21> < llzn — 2[* + (1 — ) (k — )| — T, |7},
Qn={z€C:(x,—zx0—1,) >0},

( Tnt1 = ananflfo-

Assume that the control sequence {a,} is chosen so that oy, < 1 for all n.
Then {xn} converges strongly to Prryxo, the projection of xy onto F(T).

In the case Fy = 0 and N > 1, (1.2) is a problem of finding a common fixed
point for a finite family of k;-strictly pseudo-contraction 7; in C' and studied
in [25] where the following algorithm is constructed:

Let zg € C and {a,},{Bn}, {7n} be three sequences in [0, 1] satisfying
an + By + 9, = 1 for all n > 1, and {u,} be a sequence in C. Then the
sequence {x,} generated by

(21 = awwo + BiTiwy + Y,
Ty = oy + BoTox9 + Yoo,
(1.3)
TN = anytn-1 + BNTNTN + YNun,

TNyl = AN TN + B DT N41 + YN UNS1,

\

is called the implicit iteration process with mean errors for a family of strictly
pseudo-contractions {T;}¥ ;.
The scheme (1.3) can be expessed in the compact form as

Tp = QpTp_1 + ﬁnTnxn + Ynln,

where T,, =T}, moa n- It is proved the following

Theorem 1.2. Let C be a nonempty closed conver subset of H. Let {T;}Y,
be N strictly pseudo-contractive selfmaps of C such that F = NY, F(T;) # 0.
Let xy € C and {u,} be a bounded sequence in C, let {a,}, {Bn}, {7n} be three
sequences in [0, 1] satisfying the following conditions:

(1) {on} + {Bu} +{m} =1, Vn =2 1,

(1) there exist constants 01,09 such that 0 < o1 < 3, < 09 < 1,Yn > 1,

(i) 3 ey Yo < 00.
Then the implicit iterative sequence {x,} defined by (1.3) converges weakly to
a common fized point of the maps {T;}X.,. Moreover, in addition if there exists
io € {1,2,..., N} such that T;, is demicompact then {x,} converges strongly.
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In the case Fy # 0 and N = 1, (1.2) is a problem of finding a fixed point
for a k-strictly pseudo-contraction in C' which is an equilibrium point for F
and studied in [24] where it is proved the following theorem.

Theorem 1.3. Let C be a nonempty closed convex subset of H. Let F' be a
bifunction from C' x C to R satisfying (A1)-(A4) and let S be a nonexpansive
mapping of C' into H such that F(S)N EP(F) # (. Let f be a contraction of
H into itself and let {x,} and {u,} be sequences generated by xy € H and

Tn

F(tn,y) + 2y — Un,up — ) >0, VyeC,
Tpr1 = anf(zn) + (1 — ) Suy,

for alln € N, where {a,,} C [0, 1] and {r,} C (0,00) satisfy

o0 o0
lim o, =0, g ay, = 00, g |1 — an| < 00,
n—oo

n=1 n=1

o

lim inf r, >0, E |Tna1 — ra] < 00.
n—oo 1
n=

Then, {x,} and {u,} converge strongly to z € F(S) N EP(F), where z =

Prs)nepr) f(2).
Set A; = I — T;. Obviously, A; are ); inverse strongly-monotone, i.e.,

11—k

(Ai(z) — Aily), & —y) > Nl Ai(2) = Ai()IIP Y,y € D(A), N\ = 5

From now on, let {A;}¥, be a finite family of ); inverse strongly-monotone
operators in H with C C N¥,D(A;) and \; > 0,i=1,..., N.

Set S =NN,S;, where S; = {z € C : A;(z) = 0} is called the solution set
of A; in C.

Assume that EP(Fy) NS # 0.

Our problem of investigation is to find an element
u* € EP(Fy) N S. (1.4)

Because every nonexpansive mapping is 1/2 inverse strongly-monotone, the
problem of finding an element u* € C' that is not only a solution of an inverse
strongly-monotone problem but also a fixed point of a nonexpansive mapping
is a particular case of (1.4) when Fy = 0, N = 2 and studied in [23] where it is
proved the following theorem.

Theorem 1.4. Let C be a nonempty closed convexr subset of H. Let A > 0.
Let A be X inverse strongly-monotone mapping of C into H, and let S be a
nonezxpansive mapping of C into itself such that F(S)NVI(C,A) # 0 where
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VI(C,A) denotes the solution set of the following variational inequality: find
z,. € C such that
(A(zy),x — x4y >0, Vzel.

Let {x,} be a sequence generated by

Xg € C,
Tpt1 = Ay + (1 — ) SPo(x, — A\ A(xy)),

for every n = 0,1, ..., where {\,} C la,b] for some a,b € (0,2)\) and {a,} C
(¢,d) for some c¢,d € (0,1). Then, {x,} converges weakly to z € F(S) N
VI(C,A), where

z = nh_)rgo Prs)nvi(c,a)Tn-

In this paper, on the base of idea in [8] we present two methods of regularization
which are the Tikhonov regularization and the regularization inertial proximal
point algorithm for solving (1.4) where Fy # 0 and {A;}Y, are \;(\; > 0)
inverse strongly-monotone with that condition (A3) is replaced by

(A3’) For every u € C, Fy(u,.) : C — R is weakly lower semicontinuous
and convex.

The strong and weak convergences of any sequence are denoted by — and
—, respectively.

2. Main results.

We formulate the following facts in [5], [21] which are necessary in the proof
of our results.
Proposition 2.1 (i) If F(.,v) is hemicontinuous for each v € C and F is
monotone, i.e., satisfies (A2) in condition 1.1, then U* = V*  where

U* is the solution set of F(u*,v) >0 Vv e C,

V* is the solution set of F(u,v*) <0 YueC,
and it is convex and closed.
(i1) If F(.,v) is hemicontinuous for each v € C and F is strongly monotone,
1.e., there exists a positive constant T such that

F(u,v) + F(U,U) < _THU - UHQ,

then U* contains a unique element.
Lemma 2.1 Let {a,}, {b,}, {c.} be the sequences of positive numbers satisfying
the conditions:

(i) any1 < (1 =by)a, + ¢y, by < 1,

(i1) > by = +o0, im0 2 =0

Then, lim,,_. . a, = 0.

Let S4 be a solution set of an inverse strongly-monotone operator A.
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Lemma 2.2 Let Cy be a closed convex subset of C with the property S4NCy #
(). Then, the solution set of the following variational inequality

<A(g),3)'—g> >0 VxECl,geCl, (21)

1s coincided with S, N C}.

Proof. Obviously, every element in S4 N Cy is a solution of (2.1). Let g be
an arbitrary solution of (2.1). We have to prove that A(g) = 0. Let & be an
element in S, N C;. Since 7 is a zero element of the monotone operator A and
7 is a solution of (2.1), then

0=(A(@),7 —9) = (Ay),T - g) = 0.

Hence, (A(y), 2—9) = 0 = (A(79), y—z). Consequently, (A(y)—A(
From the inverse strongly-monotone property of A it follows A(g
It means that § € Sy N C;. Lemma is proved.
We construct the Tikhonov regularization solution u, by solving the single
equilibrium problem
Fo(ug,v) >0 YveCu, €C,
N
F,(u,v) := Za”iFi(u, v) + alu,v — u),a > 0, (2.2)
i=0

Fi(u,v) = (Aj(u),v —u),i=1,..., N,
po=0<p; <pipr <lyji=2,...,N—1,

)

y—
A(7)

0.
0.

),
) =

and « is the regularization parameter.
We have the following results.

Theorem 2.1. (i) For each a > 0, problem (2.2) has a unique solution u,.
(11) im,— o uq = u*,u* € EP(Fy) NS, ||u*]| < |yl Yy € EP(Fy)NS.
(iii)

o — sl < (ol + a2 550,

where d is a positive constant.
Proof. 1t is not difficult to verify that F;,7 = 1,..., N, all are the bifunctions.
Therefore, F,(u,v) also is a bifunction, i.e. F,(u,v) satisfies condition 1.1, and
strongly monotone with constant o > 0. Hence, (2.2) has a unique solution
u,, for each o > 0.

Now we shall prove that

Juall < [yl Vy € EP(Fp) N S. (2.3)

Since y € EP(Fy) NS, then Fy(y,us) > 0 and A;(y) = 0,7 = 1, ..., N. Conse-
quently, Fi(y,u,) =0,i=1,..., N, and

Za”l (y,uqa) >0 Yy e EP(Fy)NS.
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This fact, u, is the solution of (2.2) and the properties of F; give
(U, Yy —Uuq) >0 Vye EP(Fy) NS,

that implies (2.3). It means that {u,} is bounded. Let u,, — u* € H, as
k — 4o00. Since C'is closed in the norm and convex, then C' is weak closed.
Hence, u* € C. We prove that u* € EP(F,). From (A2) and (2.2) it follows

U y Uy, +Zakz v uak < ak<v’v —uak> Yov € C.

Using the property (A3’) we obtain Fy(v,u*) < 0 for any v € C. By virtue
of the proposition 2.1, we have u* € EP(F,). Now we show that u* € S;,i =
1,...,N. From (2.2), Fy(y,uqa,) > 0 for any y € EP(F}), and the monotone

property of Fy, i.e. Fy(ua,,y) + Fo(y, ta,) < 0, it implies that

Zakl (Uay Y) + Uy, Y — Ua,) >0 Yy € EP(F).

Therefore,
N
Fi(y,ua,) + > ol M Fi(y,ta,) < o M (y,y — ua,) Yy € EP(F).
=2

By tending £ — oo, we have got
Fi(y,u") <0 Vye EP(Fp)
that has the form
(Ai(y),y —u") >0 Vy € EP(Fy).
The last inequality is equivalent to
(A1 (u*),y —u*) >0 Yye EP(F).

Since EP(Fy)NF(T1) # 0 and A; is an inverse strongly-monotone, from lemma
2.2 it follows u* € S;.
Set S; = EP(Fy) N (Ni_,S;). Then, S; is also closed convex, and S; # 0.
Now, suppose that we have proved that u* € S;, and need to show that u*
belongs to S;; 1. Again, by virtue of (2.2 ) for y € S; we can write

N

Fra(y,ua,) + > ab ™" By, ua,) < ap "y y —ua,) Yy €S
l=i+2
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After passing k — 0o, we obtain
Fin(y,u) <0 Vye S,

By virtue of S; N Siv1 # 0, u* also is an element of S; 1, i.e., Fii1(y,u*) <
0 Vy € S;. Inequality (2.3) and the weak convergence of {u,,} to u* €
EP(Fy)NS, which is a closed convex subset in H, give the strong convergence
of {ua, } tou: ||u*]| <|ly|| Yy e EP(Fy)NS.

From (2.2) and the properties of F;(u,v), for each «, 5 > 0 it follows

N
S (@ — B Fifta, us) + 0, ug — ta) + Blug, e — ug) > 0
1=0
or N
o -3 ! g
i —wusll < =gl + 2 > _la” = 8[| Fi(tta; us)]
=1

because g = 0. All F;,7 = 1,..., N, are bounded, because the operators A;
all are Lipschitzian with Lipschitz constants L; = 1/);. Using (2.3), the
boundedness of F; and the Lagrange’s mean-value theorem for the function
alt) =t 0<pu<1,te[l,+0),on [a,f] if @« < for [5,a] if § < a we have
conclusion (iii). Theorem is proved now.
Remark. Obviously, if w,, — u, where u,, is the solution of (2.2) with
a=aq; — 0, as k — +oo, then EP(Fy) NS # 0.

Further, we consider the regularization inertial proximal point algorithm
where 2,1 is defined by

N
Cn (Z C“lriiFi(ZnJrla U) + O‘n<zn+1a v — Zn+1>> +<Zn+1 — Zn, U — Zn+1>
1=0

(2.4)
- 7n<zn — Zpn—-1,V — Zn+1> Z 0 Yve O, 20,21 € Oa

and {¢,} and {~,} are the sequences of positive numbers. Note that in the
case N = 0 algorithm (2.4) is considered in [18] without the regularized term
pn{Zns1,V — Zny1), and the obtained result only is the weak convergence of the
sequence {z,} under some condition. By virtue of this term we shall obtain a
stronger result.

It is not difficult to verify that the bifunction

N
Cn (Z abiFy(u,v) + o (u, v — u>)+<u — Zp, U — U) — Y (Yn, v — u),
i=0

where y, = 2z, — 2,_1, is strongly monotone with constant ¢,c,. Therefore,
(2.4) possesses a unique solution z,.; for each n.
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Theorem 2.2 Assume that the parameters ¢,, v, and oy, are chosen such that:

(1) 0<cop<é<Cp,0<y, <,

(i) S by = 400, by = Gutrn /(1 + Enct),
(iii) Dot Vb Hllzn — za-a ] < 400,
(iv) lim,, o v, = 0,  lim,, oo lon=ann] _

Then, the sequence {z,} deﬁned by (2.4) co?werges strongly to the element u*
as n — +00.

Proof. Denote by u,, and u,; the solutions of (2.2) with & = «,, and 8 = a1,
respectively. Then, we have the following inequality

% Ay —
1 = ]| < (JJu*| + dN)——,
Qap
4 *||2
J— e A1

1<i<N

}.

)

On the other hand, (2.4) and (2.2) can be rewritten in the equivalent forms

Tn Z OéziF’i(ZHJrl: U) + <Zn+17 v — ZTL+1> > Bn(zm v —= Zn+1>

+ ﬂn7n<zn — Z2p—-1,0 — Zn+1> Vv S Ca

N
Tnzagiﬂ(unyv) + <Un,U _un> Z ﬁn<unyv_un>v Vo € C)
i=0
respectively, where 7,, = ¢,06,, 5, = 1/(1 + ¢,a,). Replacing v = u, and
v = 2,41 in the last two inequalities, respectively, and then summarizing the
results, we obtain the inequality

<ZTL+1 — Up,Un — Zn+1> > Bn<zn — Up, Un — Zn+1>
+ ﬁn7n<zn — Zp—1,Upn — Zn+1>‘

Consequently,

|2nt1 = tnll < Ballzn — tnll + Buynllzn — 201l
Hence,

2nt1 = tng1 |l < |2ng1 — tnll + [ Ung1 — wa|
S 671“271 - un“ + 571771“271 - Zn—l“

oy — O,
+ (lu*][ + dN) =

< (L =bn)llzn — uall + cn,
* Qp — Oy,
Cn = Ballzn = 2ol + (u"[| + dN) =

n
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Since the serie in (iii) is convergent, then B,7.llzn — zn_1l|bnt < Vallzn —
Zn_1]|b;t — 0, as n — oo. This fact and (iv) follow lim,, ., ¢,b;' = 0. By

using the above lemma with a,, = ||z, — u,|| we have
lim ||z, — u,| = 0.
n—oo

Since u,, — u*, then z, — u*, as n — oo. Theorem is proved.
Remark The sequences {a,} and {v,} which are defined by

a, = (1+n)"0<p<1/2,
|20 — 2n1]|
1+ |20 — 201’

Tn = (1 + n)_T

with 7 > 1 + p satisfy all conditions in theorem 2.2.
This work was supported by the Vietnamese Fundamental Research Pro-
gram in Natural Sciences N. 100506.
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