On Fekete-Szegö Problems for Certain Subclass of Analytic Functions

K. Al-Shaqsi and *M. Darus¹

School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia
ommath@hotmail.com
*maslina@pkrisc.cc.ukm.my

Abstract

In this present investigation, the authors obtain Fekete-Szegö inequality for certain normalized analytic function f(z) defined on the open unit disc for which $\frac{z(D_{\lambda}^n f(z))'}{D_{\lambda}^n f(z)}$, $(n \in \mathbb{N}_0, \lambda \geq 0)$ lines in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications of the main result for a class of functions defined by Hadamard product (convolution) are given. As a special case of this result, Fekete-Szegö inequality for a class of functions defined through fractional derivatives is obtained. The motivation of this paper is to give a generalization of the Fekete-Szegö inequalities obtained by Srivastava and Mishra by making use of D_{λ}^n the generalized Ruscheweyh derivatives operator introduced by authors [6].

Mathematics Subject Classification: 30C45

Keywords: Analytic functions, Subordination, Starlike function, Fekete-Szegö inequality, Derivative operator.

1 Introduction

Let \mathcal{A} denote the class of all analytic functions f defined on $\mathbf{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$ and \mathcal{A}_0 be the family of functions $f \in \mathcal{A}$ normalized by the

¹Corresponding author

conditions f(0) = 0, f'(0) = 1. Such functions $f \in \mathcal{A}_0$ have the Taylor series expansion given by

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \qquad (z \in \mathbf{U})$$
(1.1)

Let S be the family of functions $f \in A_0$ which are univalent. Let $\phi(z)$ be an analytic function with positive real part on A with $\phi(0) = 1$, $\phi'(0) > 0$ which maps the unit disk U onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Let $S^*(\phi)$ be the class of functions in $f \in S$ for which

$$\frac{zf'(z)}{f(z)} \prec \phi(z) \qquad (z \in \mathbf{U}),$$

and $C(\phi)$ be the class of functions in $f \in \mathcal{S}$ for which

$$1 + \frac{zf''(z)}{f'(z)} \prec \phi(z) \qquad (z \in \mathbf{U}),$$

where \prec denotes the subordination between analytic functions. These classes were introduced and studied by Ma and Minda [9]. They have obtained the Fekete-Szegö inequality for the functions in the class $C(\phi)$. Since $f \in C(\phi)$ if and only if $zf'(z) \in S^*(\phi)$, we get the Fekete-Szegö inequality for functions in the class $S^*(\phi)$. For a brief history of the Fekete-Szegö problem for class of starlike, convex, and close-to convex functions, see the recent paper by Srivastava et al. [4].

In the present paper, we obtain the Fekete-Szegö inequality for functions in a more general class $M_{\lambda}^{n}(\phi)$ of functions which we define below. Also we give applications of our results to certain functions defined through Hadamard product (or convolution) and in particular we consider a class $M_{\lambda}^{n,\gamma}(\phi)$ of functions defined by fractional derivatives. The motivation of this paper is to give a generalization of the Fekete-Szegö inequalities of Srivastava and Mishra [3].

Definition 1.1 Let $\phi(z)$ be a univalent starlike function with respect to 1 which maps the unit disc U onto a region in the right half plane which is symmetric with respect to the real axis, phi(0) = 1 and $\phi'(0) > 0$. A function $f \in \mathcal{A}$ is in the class $M_{\lambda}^{n}(\phi)$ if

$$\frac{z(D_{\lambda}^{n}f(z))'}{D_{\lambda}^{n}f(z)} \prec \phi(z) \tag{1.2}$$

where $n \in \mathbb{N}_0$ and D_{λ}^n denote the operator introduced by authors [6] and is given by

$$D_{\lambda}^{0}f(z) = (1 - \lambda)f(z) + \lambda z f'(z) = D_{\lambda}f(z),$$

$$D_{\lambda}^{1}f(z) = (1 - \lambda)z f'(z) + \lambda z (z f'(z))', \qquad \lambda \ge 0.$$

Note that if f is given by (1.1), then we see that

$$D_{\lambda}^{n} f(z) = z + \sum_{k=m+1}^{\infty} \left[1 + \lambda(k-1) \right] C(n,k) a_{k} z^{k}, \tag{1.3}$$

where

$$C(n,k) = {k+n-1 \choose n}$$
 $k = 2, 3, 4....$

To prove our main result, we need the following:

Lemma 1.2 If $p_1(z) = 1 + c_1 z + c_2 z^2 + ...$ is an analytic function with positive real part in U, then

$$|c_2 - vc_1^2| \le \begin{cases} -4v + 2 & if \ v \le 0, \\ 2 & if \ 0 \le v \le 1, \\ 4v - 2 & if \ v \ge 1. \end{cases}$$

When v < 0 or v > 1, the equality holds if and only if $p_1(z)$ is (1+z)/(1-z) or one of its rotations. If 0 < v < 1, then equality holds if and only if $p_1(z)$ is $(1+z^2)/(1-z^2)$ or one of its rotations. If v = 0, the equality holds if and only if

$$p_1(z) = \left(\frac{1}{2} + \frac{1}{2}\gamma\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{1}{2}\gamma\right)\frac{1-z}{1+z} \quad (0 \le \gamma \le 1)$$

or one of its rotations. If v = 1, the equality holds if and only if $p_1(z)$ is the reciprocal of one of the functions such that the equality holds in the case of v = 0. Also the above upper bound is sharp, it can be improved as follows when 0 < v < 1:

$$|c_2 - vc_1^2| + v|c_1|^2 \le 2$$
 $(0 < v \le 1/2)$

and

$$|c_2 - vc_1^2| + (1 - v)|c_1|^2 \le 2$$
 $(1/2 < v \le 1)$.

2 Fekete-Szegö problem

Our main result is the following:

Theorem 2.1 Let $\phi(z) = 1 + B_1 z + B_2 z^2 + \dots$ If f(z) given by (1.1) belongs to $M_{\lambda}^n(\phi)$, then

$$|a_3 - \mu a_2^2| \le$$

$$\begin{cases}
\frac{B_2}{(n+2)(n+1)(1+2\lambda)} - \frac{\mu B_1^2}{(n+1)^2(1+\lambda)^2} + \frac{B_1^2}{(n+2)(n+1)(1+2\lambda)} & if \quad \mu \leq \sigma_1; \\
\frac{B_1}{(n+2)(n+1)(1+2\lambda)} & if \quad \sigma_1 \leq \mu \leq \sigma_2; \\
-\frac{B_2}{(n+2)(n+1)(1+2\lambda)} + \frac{\mu B_1^2}{(n+1)^2(1+\lambda)^2} - \frac{B_1^2}{(n+2)(n+1)(1+2\lambda)} & if \quad \mu \geq \sigma_2,
\end{cases} (2.4)$$

where

$$\sigma_1 := \frac{(n+1)^2(1+\lambda)^2\{(B_2-B_1)+B_1^2\}}{(n+2)(n+1)(1+2\lambda)B_1^2},$$

$$\sigma_2 := \frac{(n+1)^2(1+\lambda)^2\{(B_2+B_1)+B_1^2\}}{(n+2)(n+1)(1+2\lambda)B_1^2}.$$

The result is sharp.

Proof. For $f(z) \in M_{\lambda}^n(\phi)$, let

$$p(z) = \frac{z(D_{\lambda}^{n} f(z))'}{D_{\lambda}^{n} f(z)} = 1 + b_1 z + b_2 z^2 + \dots$$
 (2.5)

From (2.2), we obtain

$$(n+1)(1+\lambda)a_2 = b_1$$
 and $(n+2)(n+1)(1+2\lambda)a_3 = (n+1)^2(1+\lambda)^2a_2^2 + b_2$

Since $\phi(z)$ is univalent and $p \prec \phi$, the function

$$p_1(z) = \frac{1 + \phi^{-1}(p(z))}{1 - \phi^{-1}(p(z))} = 1 + c_1 z + c_2 z^2 + \dots,$$

is analytic and has a positive real part in U. Also we have

$$p(z) = \phi \left(\frac{p_1(z) - 1}{p_1(z) + 1} \right),$$

and from this equation (2.2),

$$1 + b_1 z + b_2 z^2 + \dots = \phi \left(\frac{c_1 z + c_2 z^2 + \dots}{2 + c_1 z + c_2 z^2 + \dots} \right)$$

$$= \phi \left[\frac{1}{2} c_1 z + \frac{1}{2} (c_2 - \frac{1}{2} c_1^2) z^2 + \dots \right]$$

$$= 1 + B_1 \frac{1}{2} c_1 z + B_1 \frac{1}{2} (c_2 - \frac{1}{2} c_1^2) z^2 + \dots + B_2 \frac{1}{4} c_1^2 z^2 + \dots$$

we obtain

$$b_1 = \frac{1}{2}B_1c_1$$
 and $b_2 = \frac{1}{2}B_1(c_2 - \frac{1}{2}c_1^2) + \frac{1}{4}B_2c_1^2$.

Therefore we have

$$a_{3} - \mu a_{2}^{2} = \frac{B_{1}}{2(n+2)(n+1)(1+2\lambda)} \left\{ c_{2} - c_{1}^{2} \left[\frac{1}{2} \left(1 - \frac{B_{2}}{B_{1}} + \frac{(n+2)(n+1)(1+2\lambda)\mu - (n+1)^{2}(1+\lambda)^{2}}{(n+1)^{2}(1+\lambda)^{2}} B_{1} \right) \right] \right\}$$

$$= \frac{B_{1}}{2(n+2)(n+1)(1+2\lambda)} [c_{2} - \upsilon c_{1}^{2}]$$

where

$$v = \frac{1}{2} \left(1 - \frac{B_2}{B_1} + \frac{(n+2)(n+1)(1+2\lambda)\mu - (n+1)^2(1+\lambda)^2}{(n+1)^2(1+\lambda)^2} B_1 \right).$$

If $\mu \leq \sigma_1$, then by applying Lemma 1.2, we get

$$|a_3 - \mu a_2^2| \le \frac{B_2}{(n+2)(n+1)(1+2\lambda)} - \frac{\mu B_1^2}{(n+1)^2(1+\lambda)^2} + \frac{B_1^2}{(n+2)(n+1)(1+2\lambda)},$$

which is the first part of assertion (2.1).

Similarly, if $\mu \geq \sigma_2$, we get

$$|a_3 - \mu a_2^2| \le -\frac{B_2}{(n+2)(n+1)(1+2\lambda)} + \frac{\mu B_1^2}{(n+1)^2(1+\lambda)^2} - \frac{B_1^2}{(n+2)(n+1)(1+2\lambda)},$$

If $\mu = \sigma_1$, then equality holds if and only if

$$p_1(z) = \left(\frac{1+\gamma}{2}\right)\frac{1+z}{1-z} + \left(\frac{1-\gamma}{2}\right)\frac{1-z}{1+z} \quad (0 \le \gamma \le 1; z \in \mathbf{U})$$

or one of its rotations.

Also, if $\mu = \sigma_2$, then

$$\frac{1}{2}\left(1 - \frac{B_2}{B_1} + \frac{(n+2)(n+1)(1+2\lambda)\mu - (n+1)^2(1+\lambda)^2}{(n+1)^2(1+\lambda)^2}B_1\right) = 0.$$

Therefore,

$$\frac{1}{p_1(z)} = \left(\frac{1+\gamma}{2}\right) \frac{1+z}{1-z} + \left(\frac{1-\gamma}{2}\right) \frac{1-z}{1+z} \quad (0 < \gamma < 1; z \in \mathbf{U})$$

Finally, we see that

$$|a_3 - \mu a_2^2| = \frac{B_1}{2(n+2)(n+1)(1+2\lambda)} \left| c_2 - c_1^2 \left[\frac{1}{2} \left(1 - \frac{B_2}{B_1} + \frac{(n+2)(n+1)(1+2\lambda)\mu - (n+1)^2(1+\lambda)^2}{(n+1)^2(1+\lambda)^2} B_1 \right) \right] \right|$$

and

$$\max \left| \frac{1}{2} \left(1 - \frac{B_2}{B_1} + \frac{(n+2)(n+1)(1+2\lambda)\mu - (n+1)^2(1+\lambda)^2}{(n+1)^2(1+\lambda)^2} B_1 \right) \right| \quad (\sigma_1 \le \mu \le \sigma_2).$$

Therefore using Lemma 1.2, we get

$$|a_3 - \mu a_2^2| = \frac{B_1|c_1|}{2(n+2)(n+1)(1+2\lambda)} \le \frac{B_1}{(n+2)(n+1)(1+2\lambda)}, \quad (\sigma_1 \le \mu \le \sigma_2).$$

If $\sigma_1 < \mu < \sigma_2$, then we have

$$p_1(z) = \frac{1 + \lambda z^2}{1 - \lambda z^2}, \qquad (0 \le \lambda \le 1).$$

Our result now follows by an application of Lemma 1.2. To show that these bounds are sharp, we define the functions $K_{\delta}^{\phi}(\delta=2,3,...)$ by

$$\frac{z(D_{\lambda}^n K_{\delta}^{\phi}(z))'}{D_{\lambda}^n K_{\delta}^{\phi}(z)} = \phi(z^{\delta-1}), \quad K_{\delta}^{\phi}(0) = 0 = (K_{\delta}^{\phi}(0))' - 1$$

and the function F_{γ} and G_{γ} $(0 \le \gamma \le 1)$ by

$$\frac{z(D_{\lambda}^{n}F_{\gamma}(z))'}{D_{\lambda}^{n}F_{\gamma}(z)} = \phi\left(\frac{z(z+\gamma)}{1+\gamma z}\right), \quad F_{\gamma}(0) = 0 = (F_{\gamma}(0))' - 1$$

and

$$\frac{z(D_{\lambda}^{n}G_{\gamma}(z))'}{D_{\lambda}^{n}G_{\gamma}(z)} = \phi\left(-\frac{z(z+\gamma)}{1+\gamma z}\right), \quad G_{\gamma}(0) = 0 = (G_{\gamma}(0))' - 1$$

Clearly the functions K_{δ}^{ϕ} , F_{γ} , $G_{\gamma} \in M_{\lambda}^{n}(\phi)$. Also we write $K^{\phi} := K_{2}^{\phi}$. If $\mu < \sigma_{1}$ or $\mu > \sigma_{2}$, then the equality holds if and only if f is K^{ϕ} or one of its rotations. When $\sigma_{1} < \mu < \sigma_{2}$, the equality holds if and only if f is K_{3}^{ϕ} or one of its rotations. If $\mu = \sigma_{1}$ then the equality holds if and only if f is F_{γ} or one of its rotations. If $\mu = \sigma_{2}$ then the equality holds if and only if f is G_{γ} or one of its rotations.

Remark 2.2 If $\sigma_1 \leq \mu \leq \sigma_2$, then in view of Lemma 1.2, Theorem 2.1 can be improved. Let σ_3 be given by

$$\sigma_3 := \frac{(n+1)^2 (1+\lambda)^2 \{B_1^2 + B_2\}}{(n+2)(n+1)(1+2\lambda)B_1^2}$$

If $\sigma_1 \leq \mu \leq \sigma_3$, then

$$|a_3 - \mu a_2^2| + \frac{(n+1)^2(1+\lambda)^2}{(n+2)(n+1)(1+2\lambda)B_1^2} \left[B_1 - B_2 + \frac{(n+2)(n+1)(1+2\lambda)\mu - (n+1)^2(1+\lambda)^2}{(n+1)^2(1+\lambda)^2} B_1^2 \right] |a_2|^2 \le \frac{B_1}{(n+2)(n+1)(1+2\lambda)}.$$

If $\sigma_3 < \mu < \sigma_2$, then

$$|a_3 - \mu a_2^2| + \frac{(n+1)^2(1+\lambda)^2}{(n+2)(n+1)(1+2\lambda)B_1^2} \left[B_1 + B_2 - \frac{(n+2)(n+1)(1+2\lambda)\mu - (n+1)^2(1+\lambda)^2}{(n+1)^2(1+\lambda)^2} B_1^2 \right] |a_2|^2 \le \frac{B_1}{(n+2)(n+1)(1+2\lambda)}.$$

Proof. For the values of $\sigma_1 \leq \mu \leq \sigma_3$, we have

$$|a_{3} - \mu a_{2}^{2}| + (\mu - \sigma_{1})|a_{2}|^{2}$$

$$= \frac{B_{1}}{2(n+2)(n+2)(1+2\lambda)}|c_{2} - \upsilon c_{1}^{2}| + (\mu - \sigma_{1})\frac{B_{1}^{2}}{4(n+1)^{2}(1+\lambda)^{2}}|c_{1}|^{2}$$

$$= \frac{B_{1}}{2(n+2)(n+2)(1+2\lambda)}|c_{2} - \upsilon c_{1}^{2}|$$

$$+ \left(\mu - \frac{(n+1)^{2}(1+\lambda)^{2}\{(B_{2} - B_{1}) + B_{1}^{2}\}}{(n+2)(n+1)(1+2\lambda)B_{1}^{2}}\right)\frac{B_{1}^{2}}{4(n+1)^{2}(1+\lambda)^{2}}|c_{1}|^{2}$$

$$= \frac{B_{1}}{(n+2)(n+2)(1+2\lambda)}\left\{\frac{1}{2}\left[|c_{2} - \upsilon c_{1}^{2}| + \upsilon|c_{1}|^{2}\right]\right\}$$

$$\leq \frac{B_{1}}{(n+2)(n+2)(1+2\lambda)}.$$

Similarly, for the values of $\sigma_3 \leq \mu \leq \sigma_2$, we write

$$|a_{3} - \mu a_{2}^{2}| + (\sigma_{2} - \mu)|a_{2}|^{2}$$

$$= \frac{B_{1}}{2(n+2)(n+2)(1+2\lambda)}|c_{2} - \nu c_{1}^{2}| + (\sigma_{2} - \mu)\frac{B_{1}^{2}}{4(n+1)^{2}(1+\lambda)^{2}}|c_{1}|^{2}$$

$$= \frac{B_{1}}{2(n+2)(n+2)(1+2\lambda)}|c_{2} - \nu c_{1}^{2}|$$

$$+ \left(\frac{(n+1)^{2}(1+\lambda)^{2}\{(B_{2} + B_{1}) + B_{1}^{2}\}}{(n+2)(n+1)(1+2\lambda)B_{1}^{2}} - \mu\right)\frac{B_{1}^{2}}{4(n+1)^{2}(1+\lambda)^{2}}|c_{1}|^{2}$$

$$= \frac{B_{1}}{(n+2)(n+2)(1+2\lambda)}\left\{\frac{1}{2}\left[|c_{2} - \nu c_{1}^{2}| + (1-\nu)|c_{1}|^{2}\right]\right\}$$

$$\leq \frac{B_{1}}{(n+2)(n+2)(1+2\lambda)}.$$

Thus, the proof of Remark 2.2 is evidently completed.

3 Applications to functions defined by fractional derivatives

For two analytic functions $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$, their convolution (or Hadamard product) is defined to be the function (f * g)(z) given by $(f * g)(z) = f(z) * g(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k$. For fixed $g \in \mathcal{A}_0$, let $M_{\lambda}^{n,g}(\phi)$ be the class of functions $f \in \mathcal{A}_0$ for which $(f * g) \in M_{\lambda}^{n}(\phi)$.

Definition 3.1 (see [5], [8]). Let f(z) be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order γ is defined by

$$D_z^{\gamma} f(z) = \frac{1}{\Gamma(1-\gamma)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\gamma}} d\zeta \qquad (0 \le \gamma < 1).$$

where the multiplicity of $(z-\zeta)^{\gamma}$ is removed by requiring that $\log(z-\zeta)$ is real for $z-\zeta>0$. Using the above Definition 3.1 and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava [7] introduced the operator $\Omega^{\gamma}: \mathcal{A}_0 \to \mathcal{A}_0$ defined by

$$\Omega^{\gamma} f(z) = \Gamma(2 - \gamma) z^{\gamma} D_z^{\gamma} f(z) \qquad (\gamma \neq 2, 3, 4, \ldots)$$

The class $M_{\delta}^{n,\gamma}(\phi)$ consists of functions $f \in \mathcal{A}_0$ for which $\Omega^{\gamma} f \in M_{\delta}^n(\phi)$. Note that $M_{\delta}^{n,\gamma}(\phi)$ is the special case of the class $M_{\lambda}^{n,g}(\phi)$ when

$$g(z) = z + \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} z^{k}.$$

Let

$$g(z) = z + \sum_{k=2}^{\infty} g_k z^k$$
 $(g_k > 0).$

Since $D_{\lambda}^{n}f(z) \in M_{\lambda}^{n,g}(\phi)$ if and only if $D_{\lambda}^{n}f(z) * g(z) \in M_{\lambda}^{n}(\phi)$, we obtain the coefficient estimate for functions in the class $M_{\lambda}^{n,g}(\phi)$, from the corresponding estimate for functions in the class $M_{\lambda}^{n}(\phi)$.

Applying Theorem 2.1 for the function $D_{\lambda}^n f(z) * g(z) = z + (1+\lambda)(n+1)a_2g_2z^2 + \dots$ we get the following Theorem 3.2 after an obvious change of the parameter μ :

Theorem 3.2 Let $g(z) = z + \sum_{n=2}^{\infty} g_n z^n$, $(g_n > 0)$ and let the function $\phi(z)$ be given by $\phi(z) = 1 + \sum_{k=1}^{\infty} B_k z^k$. If $D_{\lambda}^n f(z)$ given by (1.3) belongs to $M_{\lambda}^{n,g}(\phi)$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{1}{g_{3}} \left[\frac{B_{2}}{(n+2)(n+1)(1+2\lambda)} - \frac{\mu g_{3}B_{1}^{2}}{(n+1)^{2}(1+\lambda)^{2}g_{2}^{2}} + \frac{B_{1}^{2}}{(n+2)(n+1)(1+2\lambda)} \right] & if \quad \mu \leq \sigma_{1} ; \\ \frac{1}{g_{3}} \left[\frac{B_{1}}{(n+2)(n+1)(1+2\lambda)} \right] & if \quad \sigma_{1} \leq \mu \leq \sigma_{2} ; \\ \frac{1}{g_{3}} \left[-\frac{B_{2}}{(n+2)(n+1)(1+2\lambda)} + \frac{\mu g_{3}B_{1}^{2}}{(n+1)^{2}(1+\lambda)^{2}g_{2}^{2}} - \frac{B_{1}^{2}}{(n+2)(n+1)(1+2\lambda)} \right] & if \quad \mu \geq \sigma_{2}, \end{cases}$$

where

$$\sigma_1 := \frac{g_2^2(n+1)^2(1+\lambda)^2\{(B_2-B_1)+B_1^2\}}{g_3(n+2)(n+1)(1+2\lambda)B_1^2},$$

$$\sigma_2 := \frac{g_2^2(n+1)^2(1+\lambda)^2\{(B_2+B_1)+B_1^2\}}{g_3(n+2)(n+1)(1+2\lambda)B_1^2}.$$

The result is sharp.

Since

$$(\Omega^{\gamma} D_{\lambda}^{n} f)(z) = z + \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} [1 + \lambda(k-1)]C(n,k)z^{k},$$

we have

$$g_2 := \frac{\Gamma(3)\Gamma(2-\gamma)}{\Gamma(3-\gamma)} = \frac{2}{2-\gamma}$$

and

$$g_3 := \frac{\Gamma(4)\Gamma(3-\gamma)}{\Gamma(4-\gamma)} = \frac{6}{(2-\gamma)(3-\gamma)}.$$

For g_2 and g_3 given by above inequalities, Theorem 3.2 reduces to the following:

Theorem 3.3 Let $g(z) = z + \sum_{n=2}^{\infty} g_n z^n$, $(g_n > 0)$ and let the function $\phi(z)$ be given by $\phi(z) = 1 + \sum_{k=1}^{\infty} B_k z^k$. If $D_{\lambda}^n f(z)$ given by (1.3) belongs to $M_{\lambda}^{n,\gamma}(\phi)$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{(2-\gamma)(3-\gamma)}{6} \left[\frac{B_{2}}{(n+2)(n+1)(1+2\lambda)} - \frac{3(2-\gamma)\mu B_{1}^{2}}{2(3-\gamma)(n+1)^{2}(1+\lambda)^{2}} + \frac{B_{1}^{2}}{(n+2)(n+1)(1+2\lambda)} \right] & if \ \mu \leq \sigma_{1} ; \\ \frac{(2-\gamma)(3-\gamma)}{6} \left[\frac{B_{1}}{(n+2)(n+1)(1+2\lambda)} \right] & if \ \sigma_{1} \leq \mu \leq \sigma_{2} ; \\ \frac{(2-\gamma)(3-\gamma)}{6} \left[-\frac{B_{2}}{(n+2)(n+1)(1+2\lambda)} + \frac{3(2-\gamma)\mu B_{1}^{2}}{2(3-\gamma)(n+1)^{2}(1+\lambda)^{2}} - \frac{B_{1}^{2}}{(n+2)(n+1)(1+2\lambda)} \right] & if \ \mu \geq \sigma_{2}, \end{cases}$$

where

$$\sigma_1 := \frac{2(3-\gamma)(n+1)^2(1+\lambda)^2\{(B_2-B_1)+B_1^2\}}{3(2-\gamma)(n+2)(n+1)(1+2\lambda)B_1^2},$$

$$\sigma_2 := \frac{2(3-\gamma)(n+1)^2(1+\lambda)^2\{(B_2+B_1)+B_1^2\}}{3(2-\gamma)(n+2)(n+1)(1+2\lambda)B_1^2}.$$

The result is sharp.

Remark 3.4 When $\lambda = 0$, n = 0, $B_1 = 8/\pi^2$ and $B_2 = 16/3\pi^2$ the above Theorem 3.3 reduces to a recent result of Srivastava and Mishra ([3], Theorem 8, p.64) for a class of functions for which $\Omega^{\gamma} f(z)$ is a parabolic starlike functions [1], [2].

Acknowledgement: The work presented here was supported by Fundamental Research Grant Scheme: UKM-ST-01-FRGS0055-2006.

References

- [1] A. W. Goodman, Uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
- [2] F. Rønning, Uniformly convex functions and a corresponding class of star-like functions, *Proc. Amer. Math. Soc.* **118** (1993), 189-196.
- [3] H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, *Computer Math. Appl.* **39** (2000), 57-69.
- [4] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, *Complex variables, Theory Appl.* 44 (2001), 145-163.

- [5] H. M. Srivastava and S. Owa, An application of the fractional derivative, Math. Japon. 29(3) (1984) 383-389.
- [6] K. Al Shaqsi and M. Darus, On univalent functions with respect to k-symmetric points defined by a generalized Ruscheweyh derivatives operator. (Submitted)
- [7] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, *Canad. J. Math.* **39**(5) (1987), 1057-1077.
- [8] S. Owa and O. P. Ahuja, An application of the fractional calculus, *Math. Japon.* **30** (1985), 947-955.
- [9] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: *Proceedings of the conference on complex analysis*, Z. Li, F. Ren, L. Yang, and S. Zhang(Eds.), Int. Press (1994), 157-169.

Received: July 22, 2007