On Fekete-Szegö Problems for Certain Subclass of Analytic Functions

K. Al-Shaqsi and ${ }^{*}$ M. Darus ${ }^{1}$
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia
ommath@hotmail.com
*maslina@pkrisc.cc.ukm.my

Abstract

In this present investigation, the authors obtain Fekete-Szegö inequality for certain normalized analytic function $f(z)$ defined on the open unit disc for which $\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)},\left(n \in \mathbb{N}_{0}, \lambda \geq 0\right)$ lines in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications of the main result for a class of functions defined by Hadamard product (convolution) are given. As a special case of this result, Fekete-Szegö inequality for a class of functions defined through fractional derivatives is obtained. The motivation of this paper is to give a generalization of the Fekete- Szegö inequalities obtained by Srivastava and Mishra by making use of D_{λ}^{n} the generalized Ruscheweyh derivatives operator introduced by authors [6].

Mathematics Subject Classification: 30C45

Keywords: Analytic functions, Subordination, Starlike function, FeketeSzegö inequality, Derivative operator.

1 Introduction

Let \mathcal{A} denote the class of all analytic functions f defined on $\mathbf{U}=\{z: z \in$ \mathbb{C} and $|z|<1\}$ and \mathcal{A}_{0} be the family of functions $f \in \mathcal{A}$ normalized by the

[^0]conditions $f(0)=0, f^{\prime}(0)=1$. Such functions $f \in \mathcal{A}_{0}$ have the Taylor series expansion given by
\[

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad(z \in \mathbf{U}) \tag{1.1}
\end{equation*}
$$

\]

Let \mathcal{S} be the family of functions $f \in A_{0}$ which are univalent. Let $\phi(z)$ be an analytic function with positive real part on \mathcal{A} with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps the unit disk \mathbf{U} onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Let $S^{*}(\phi)$ be the class of functions in $f \in \mathcal{S}$ for which

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z) \quad(z \in \mathbf{U})
$$

and $C(\phi)$ be the class of functions in $f \in \mathcal{S}$ for which

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z) \quad(z \in \mathbf{U})
$$

where \prec denotes the subordination between analytic functions. These classes were introduced and studied by Ma and Minda [9]. They have obtained the Fekete-Szegö inequality for the functions in the class $C(\phi)$. Since $f \in C(\phi)$ if and only if $z f^{\prime}(z) \in S^{*}(\phi)$, we get the Fekete-Szegö inequality for functions in the class $S^{*}(\phi)$. For a brief history of the Fekete- Szegö problem for class of starlike, convex, and close-to convex functions, see the recent paper by Srivastava et al. [4].

In the present paper, we obtain the Fekete-Szegö inequality for functions in a more general class $M_{\lambda}^{n}(\phi)$ of functions which we define below. Also we give applications of our results to certain functions defined through Hadamard product (or convolution) and in particular we consider a class $M_{\lambda}^{n, \gamma}(\phi)$ of functions defined by fractional derivatives. The motivation of this paper is to give a generalization of the Fekete-Szegö inequalities of Srivastava and Mishra [3].

Definition 1.1 Let $\phi(z)$ be a univalent starlike function with respect to 1 which maps the unit disc \boldsymbol{U} onto a region in the right half plane which is symmetric with respect to the real axis, phi $(0)=1$ and $\phi^{\prime}(0)>0$. A function $f \in \mathcal{A}$ is in the class $M_{\lambda}^{n}(\phi)$ if

$$
\begin{equation*}
\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)} \prec \phi(z) \tag{1.2}
\end{equation*}
$$

where $n \in \mathbb{N}_{0}$ and D_{λ}^{n} denote the operator introduced by authors [6] and is given by

$$
\begin{aligned}
& D_{\lambda}^{0} f(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z)=D_{\lambda} f(z), \\
& D_{\lambda}^{1} f(z)=(1-\lambda) z f^{\prime}(z)+\lambda z\left(z f^{\prime}(z)\right)^{\prime}, \quad \lambda \geq 0
\end{aligned}
$$

Note that if f is given by (1.1), then we see that

$$
\begin{equation*}
D_{\lambda}^{n} f(z)=z+\sum_{k=m+1}^{\infty}[1+\lambda(k-1)] C(n, k) a_{k} z^{k} \tag{1.3}
\end{equation*}
$$

where

$$
C(n, k)=\binom{k+n-1}{n} \quad k=2,3,4 \ldots
$$

To prove our main result, we need the following:
Lemma 1.2 If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is an analytic function with positive real part in \boldsymbol{U}, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq \begin{cases}-4 v+2 & \text { if } v \leq 0 \\ 2 & \text { if } 0 \leq v \leq 1 \\ 4 v-2 & \text { if } v \geq 1\end{cases}
$$

When $v<0$ or $v>1$, the equality holds if and only if $p_{1}(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<v<1$, then equality holds if and only if $p_{1}(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $v=0$, the equality holds if and only if

$$
p_{1}(z)=\left(\frac{1}{2}+\frac{1}{2} \gamma\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \gamma\right) \frac{1-z}{1+z} \quad(0 \leq \gamma \leq 1)
$$

or one of its rotations. If $v=1$, the equality holds if and only if $p_{1}(z)$ is the reciprocal of one of the functions such that the equality holds in the case of $v=0$. Also the above upper bound is sharp, it can be improved as follows when $0<v<1$:

$$
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leq 2 \quad(0<v \leq 1 / 2)
$$

and

$$
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leq 2 \quad(1 / 2<v \leq 1)
$$

2 Fekete-Szegö problem

Our main result is the following:
Theorem 2.1 Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$. If $f(z)$ given by (1.1) belongs to $M_{\lambda}^{n}(\phi)$, then

$$
\begin{cases}\frac{B_{2}}{(n+2)(n+1)(1+2 \lambda)}-\frac{\mu B_{1}^{2}}{(n+1)^{2}(1+\lambda)^{2}}+\frac{B_{1}^{2}}{(n+2)(n+1)(1+2 \lambda)} & \text { if } \mu \leq \sigma_{1} \tag{2.4}\\ \frac{B_{1}}{(n+2)(n+1)(1+2 \lambda)} & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} \\ -\frac{B_{2}}{(n+2)(n+1)(1+2 \lambda)}+\frac{\mu B_{1}^{2}}{(n+1)^{2}(1+\lambda)^{2}}-\frac{B_{1}^{2}}{(n+2)(n+1)(1+2 \lambda)} & \text { if } \mu \geq \sigma_{2}\end{cases}
$$

where

$$
\begin{aligned}
\sigma_{1} & :=\frac{(n+1)^{2}(1+\lambda)^{2}\left\{\left(B_{2}-B_{1}\right)+B_{1}^{2}\right\}}{(n+2)(n+1)(1+2 \lambda) B_{1}^{2}} \\
\sigma_{2} & :=\frac{(n+1)^{2}(1+\lambda)^{2}\left\{\left(B_{2}+B_{1}\right)+B_{1}^{2}\right\}}{(n+2)(n+1)(1+2 \lambda) B_{1}^{2}}
\end{aligned}
$$

The result is sharp.
Proof. For $f(z) \in M_{\lambda}^{n}(\phi)$, let

$$
\begin{equation*}
p(z)=\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)}=1+b_{1} z+b_{2} z^{2}+\ldots . \tag{2.5}
\end{equation*}
$$

From (2.2), we obtain
$(n+1)(1+\lambda) a_{2}=b_{1}$ and $(n+2)(n+1)(1+2 \lambda) a_{3}=(n+1)^{2}(1+\lambda)^{2} a_{2}^{2}+b_{2}$
Since $\phi(z)$ is univalent and $p \prec \phi$, the function

$$
p_{1}(z)=\frac{1+\phi^{-1}(p(z))}{1-\phi^{-1}(p(z))}=1+c_{1} z+c_{2} z^{2}+\ldots
$$

is analytic and has a positive real part in \mathbf{U}. Also we have

$$
p(z)=\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right)
$$

and from this equation (2.2),

$$
\begin{aligned}
1+b_{1} z+b_{2} z^{2}+\ldots & =\phi\left(\frac{c_{1} z+c_{2} z^{2}+\ldots}{2+c_{1} z+c_{2} z^{2}+\ldots}\right) \\
& =\phi\left[\frac{1}{2} c_{1} z+\frac{1}{2}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right) z^{2}+\ldots\right] \\
& =1+B_{1} \frac{1}{2} c_{1} z+B_{1} \frac{1}{2}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right) z^{2}+\ldots+B_{2} \frac{1}{4} c_{1}^{2} z^{2}+\ldots
\end{aligned}
$$

we obtain

$$
b_{1}=\frac{1}{2} B_{1} c_{1} \text { and } b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} .
$$

Therefore we have

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2}= & \frac{B_{1}}{2(n+2)(n+1)(1+2 \lambda)}\left\{c_{2}-c_{1}^{2}\left[\frac { 1 } { 2 } \left(1-\frac{B_{2}}{B_{1}}\right.\right.\right. \\
& \left.\left.\left.\quad+\frac{(n+2)(n+1)(1+2 \lambda) \mu-(n+1)^{2}(1+\lambda)^{2}}{(n+1)^{2}(1+\lambda)^{2}} B_{1}\right)\right]\right\} \\
= & \frac{B_{1}}{2(n+2)(n+1)(1+2 \lambda)}\left[c_{2}-v c_{1}^{2}\right]
\end{aligned}
$$

where

$$
v=\frac{1}{2}\left(1-\frac{B_{2}}{B_{1}}+\frac{(n+2)(n+1)(1+2 \lambda) \mu-(n+1)^{2}(1+\lambda)^{2}}{(n+1)^{2}(1+\lambda)^{2}} B_{1}\right) .
$$

If $\mu \leq \sigma_{1}$, then by applying Lemma 1.2 , we get

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{2}}{(n+2)(n+1)(1+2 \lambda)}-\frac{\mu B_{1}^{2}}{(n+1)^{2}(1+\lambda)^{2}}+\frac{B_{1}^{2}}{(n+2)(n+1)(1+2 \lambda)},
$$

which is the first part of assertion (2.1).
Similarly, if $\mu \geq \sigma_{2}$, we get

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq-\frac{B_{2}}{(n+2)(n+1)(1+2 \lambda)}+\frac{\mu B_{1}^{2}}{(n+1)^{2}(1+\lambda)^{2}}-\frac{B_{1}^{2}}{(n+2)(n+1)(1+2 \lambda)},
$$

If $\mu=\sigma_{1}$, then equality holds if and only if

$$
p_{1}(z)=\left(\frac{1+\gamma}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-\gamma}{2}\right) \frac{1-z}{1+z} \quad(0 \leq \gamma \leq 1 ; z \in \mathbf{U})
$$

or one of its rotations.
Also, if $\mu=\sigma_{2}$, then

$$
\frac{1}{2}\left(1-\frac{B_{2}}{B_{1}}+\frac{(n+2)(n+1)(1+2 \lambda) \mu-(n+1)^{2}(1+\lambda)^{2}}{(n+1)^{2}(1+\lambda)^{2}} B_{1}\right)=0
$$

Therefore,

$$
\frac{1}{p_{1}(z)}=\left(\frac{1+\gamma}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-\gamma}{2}\right) \frac{1-z}{1+z} \quad(0<\gamma<1 ; z \in \mathbf{U})
$$

Finally, we see that

$$
\begin{aligned}
& \left.\left|a_{3}-\mu a_{2}^{2}\right|=\frac{B_{1}}{2(n+2)(n+1)(1+2 \lambda)} \right\rvert\, c_{2}-c_{1}^{2}\left[\frac { 1 } { 2 } \left(1-\frac{B_{2}}{B_{1}}\right.\right. \\
&\left.\left.\quad+\frac{(n+2)(n+1)(1+2 \lambda) \mu-(n+1)^{2}(1+\lambda)^{2}}{(n+1)^{2}(1+\lambda)^{2}} B_{1}\right)\right] \mid
\end{aligned}
$$

and
$\max \left|\frac{1}{2}\left(1-\frac{B_{2}}{B_{1}}+\frac{(n+2)(n+1)(1+2 \lambda) \mu-(n+1)^{2}(1+\lambda)^{2}}{(n+1)^{2}(1+\lambda)^{2}} B_{1}\right)\right| \quad\left(\sigma_{1} \leq \mu \leq \sigma_{2}\right)$.
Therefore using Lemma 1.2, we get

$$
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{B_{1}\left|c_{1}\right|}{2(n+2)(n+1)(1+2 \lambda)} \leq \frac{B_{1}}{(n+2)(n+1)(1+2 \lambda)}, \quad\left(\sigma_{1} \leq \mu \leq \sigma_{2}\right)
$$

If $\sigma_{1}<\mu<\sigma_{2}$, then we have

$$
p_{1}(z)=\frac{1+\lambda z^{2}}{1-\lambda z^{2}}, \quad(0 \leq \lambda \leq 1)
$$

Our result now follows by an application of Lemma 1.2. To show that these bounds are sharp, we define the functions $K_{\delta}^{\phi}(\delta=2,3, \ldots)$ by

$$
\frac{z\left(D_{\lambda}^{n} K_{\delta}^{\phi}(z)\right)^{\prime}}{D_{\lambda}^{n} K_{\delta}^{\phi}(z)}=\phi\left(z^{\delta-1}\right), \quad K_{\delta}^{\phi}(0)=0=\left(K_{\delta}^{\phi}(0)\right)^{\prime}-1
$$

and the function F_{γ} and $G_{\gamma}(0 \leq \gamma \leq 1)$ by

$$
\frac{z\left(D_{\lambda}^{n} F_{\gamma}(z)\right)^{\prime}}{D_{\lambda}^{n} F_{\gamma}(z)}=\phi\left(\frac{z(z+\gamma)}{1+\gamma z}\right), \quad F_{\gamma}(0)=0=\left(F_{\gamma}(0)\right)^{\prime}-1
$$

and

$$
\frac{z\left(D_{\lambda}^{n} G_{\gamma}(z)\right)^{\prime}}{D_{\lambda}^{n} G_{\gamma}(z)}=\phi\left(-\frac{z(z+\gamma)}{1+\gamma z}\right), \quad G_{\gamma}(0)=0=\left(G_{\gamma}(0)\right)^{\prime}-1
$$

Clearly the functions $K_{\delta}^{\phi}, F_{\gamma}, G_{\gamma} \in M_{\lambda}^{n}(\phi)$. Also we write $K^{\phi}:=K_{2}^{\phi}$. If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then the equality holds if and only if f is K^{ϕ} or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, the equality holds if and only if f is K_{3}^{ϕ} or one of its rotations. If $\mu=\sigma_{1}$ then the equality holds if and only if f is F_{γ} or one of its rotations. If $\mu=\sigma_{2}$ then the equality holds if and only if f is G_{γ} or one of its rotations.

Remark 2.2 If $\sigma_{1} \leq \mu \leq \sigma_{2}$, then in view of Lemma 1.2, Theorem 2.1 can be improved. Let σ_{3} be given by

$$
\sigma_{3}:=\frac{(n+1)^{2}(1+\lambda)^{2}\left\{B_{1}^{2}+B_{2}\right\}}{(n+2)(n+1)(1+2 \lambda) B_{1}^{2}}
$$

If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\frac{(n+1)^{2}(1+\lambda)^{2}}{(n+2)(n+1)(1+2 \lambda) B_{1}^{2}}\left[B_{1}-B_{2}\right. \\
& \left.+\frac{(n+2)(n+1)(1+2 \lambda) \mu-(n+1)^{2}(1+\lambda)^{2}}{(n+1)^{2}(1+\lambda)^{2}} B_{1}^{2}\right]\left|a_{2}\right|^{2} \leq \frac{B_{1}}{(n+2)(n+1)(1+2 \lambda)}
\end{aligned}
$$

If $\sigma_{3} \leq \mu \leq \sigma_{2}$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\frac{(n+1)^{2}(1+\lambda)^{2}}{(n+2)(n+1)(1+2 \lambda) B_{1}^{2}}\left[B_{1}+B_{2}\right. \\
& \left.-\frac{(n+2)(n+1)(1+2 \lambda) \mu-(n+1)^{2}(1+\lambda)^{2}}{(n+1)^{2}(1+\lambda)^{2}} B_{1}^{2}\right]\left|a_{2}\right|^{2} \leq \frac{B_{1}}{(n+2)(n+1)(1+2 \lambda)}
\end{aligned}
$$

Proof. For the values of $\sigma_{1} \leq \mu \leq \sigma_{3}$, we have

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\sigma_{1}\right)\left|a_{2}\right|^{2} \\
= & \frac{B_{1}}{2(n+2)(n+2)(1+2 \lambda)}\left|c_{2}-v c_{1}^{2}\right|+\left(\mu-\sigma_{1}\right) \frac{B_{1}^{2}}{4(n+1)^{2}(1+\lambda)^{2}}\left|c_{1}\right|^{2} \\
= & \frac{B_{1}}{2(n+2)(n+2)(1+2 \lambda)}\left|c_{2}-v c_{1}^{2}\right| \\
& +\left(\mu-\frac{(n+1)^{2}(1+\lambda)^{2}\left\{\left(B_{2}-B_{1}\right)+B_{1}^{2}\right\}}{(n+2)(n+1)(1+2 \lambda) B_{1}^{2}}\right) \frac{B_{1}^{2}}{4(n+1)^{2}(1+\lambda)^{2}}\left|c_{1}\right|^{2} \\
= & \frac{B_{1}}{(n+2)(n+2)(1+2 \lambda)}\left\{\frac{1}{2}\left[\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2}\right]\right\} \\
\leq & \frac{B_{1}}{(n+2)(n+2)(1+2 \lambda)} .
\end{aligned}
$$

Similarly, for the values of $\sigma_{3} \leq \mu \leq \sigma_{2}$, we write

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\left(\sigma_{2}-\mu\right)\left|a_{2}\right|^{2} \\
= & \frac{B_{1}}{2(n+2)(n+2)(1+2 \lambda)}\left|c_{2}-v c_{1}^{2}\right|+\left(\sigma_{2}-\mu\right) \frac{B_{1}^{2}}{4(n+1)^{2}(1+\lambda)^{2}}\left|c_{1}\right|^{2} \\
= & \frac{B_{1}}{2(n+2)(n+2)(1+2 \lambda)}\left|c_{2}-v c_{1}^{2}\right| \\
& +\left(\frac{(n+1)^{2}(1+\lambda)^{2}\left\{\left(B_{2}+B_{1}\right)+B_{1}^{2}\right\}}{(n+2)(n+1)(1+2 \lambda) B_{1}^{2}}-\mu\right) \frac{B_{1}^{2}}{4(n+1)^{2}(1+\lambda)^{2}}\left|c_{1}\right|^{2} \\
= & \frac{B_{1}}{(n+2)(n+2)(1+2 \lambda)}\left\{\frac{1}{2}\left[\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2}\right]\right\} \\
\leq & \frac{B_{1}}{(n+2)(n+2)(1+2 \lambda)} .
\end{aligned}
$$

Thus, the proof of Remark 2.2 is evidently completed.

3 Applications to functions defined by fractional derivatives

For two analytic functions $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$, their convolution (or Hadamard product) is defined to be the function $(f * g)(z)$ given by $(f * g)(z)=f(z) * g(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}$. For fixed $g \in \mathcal{A}_{0}$, let $M_{\lambda}^{n, g}(\phi)$ be the class of functions $f \in \mathcal{A}_{0}$ for which $(f * g) \in M_{\lambda}^{n}(\phi)$.
Definition 3.1 (see [5], [8]). Let $f(z)$ be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order γ is defined by

$$
D_{z}^{\gamma} f(z)=\frac{1}{\Gamma(1-\gamma)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\gamma}} d \zeta \quad(0 \leq \gamma<1)
$$

where the multiplicity of $(z-\zeta)^{\gamma}$ is removed by requiring that $\log (z-\zeta)$ is real for $z-\zeta>0$. Using the above Definition 3.1 and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava [7] introduced the operator $\Omega^{\gamma}: \mathcal{A}_{0} \rightarrow \mathcal{A}_{0}$ defined by

$$
\Omega^{\gamma} f(z)=\Gamma(2-\gamma) z^{\gamma} D_{z}^{\gamma} f(z) \quad(\gamma \neq 2,3,4, \ldots)
$$

The class $M_{\delta}^{n, \gamma}(\phi)$ consists of functions $f \in \mathcal{A}_{0}$ for which $\Omega^{\gamma} f \in M_{\delta}^{n}(\phi)$. Note that $M_{\delta}^{n, \gamma}(\phi)$ is the special case of the class $M_{\lambda}^{n, g}(\phi)$ when

$$
g(z)=z+\sum_{k=2}^{\infty} \frac{\Gamma(k+1) \Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} z^{k} .
$$

Let

$$
g(z)=z+\sum_{k=2}^{\infty} g_{k} z^{k} \quad\left(g_{k}>0\right)
$$

Since $D_{\lambda}^{n} f(z) \in M_{\lambda}^{n, g}(\phi)$ if and only if $D_{\lambda}^{n} f(z) * g(z) \in M_{\lambda}^{n}(\phi)$, we obtain the coefficient estimate for functions in the class $M_{\lambda}^{n, g}(\phi)$, from the corresponding estimate for functions in the class $M_{\lambda}^{n}(\phi)$.
Applying Theorem 2.1 for the function $D_{\lambda}^{n} f(z) * g(z)=z+(1+\lambda)(n+1) a_{2} g_{2} z^{2}+$... we get the following Theorem 3.2 after an obvious change of the parameter μ :
Theorem 3.2 Let $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n},\left(g_{n}>0\right)$ and let the function $\phi(z)$ be given by $\phi(z)=1+\sum_{k=1}^{\infty} B_{k} z^{k}$. If $D_{\lambda}^{n} f(z)$ given by (1.3) belongs to $M_{\lambda}^{n, g}(\phi)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq \begin{cases}\frac{1}{g_{3}}\left[\frac{B_{2}}{(n+2)(n+1)(1+2 \lambda)}-\frac{\mu g_{3} B_{1}^{2}}{(n+1)^{2}(1+\lambda)^{2} g_{2}^{2}}+\frac{B_{1}^{2}}{(n+2)(n+1)(1+2 \lambda)}\right] & \text { if } \mu \leq \sigma_{1} ; \\
\frac{1}{g_{3}}\left[\frac{B_{1}}{(n+2)(n+1)(1+2 \lambda)}\right] & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} ; \\
\frac{1}{g_{3}}\left[-\frac{B_{2}}{(n+2)(n+1)(1+2 \lambda)}+\frac{\mu g_{3} B_{1}^{2}}{(n+1)^{2}(1+\lambda)^{2} g_{2}^{2}}-\frac{B_{1}^{2}}{(n+2)(n+1)(1+2 \lambda)}\right] & \text { if } \mu \geq \sigma_{2},\end{cases}
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma_{1} & :=\frac{g_{2}^{2}(n+1)^{2}(1+\lambda)^{2}\left\{\left(B_{2}-B_{1}\right)+B_{1}^{2}\right\}}{g_{3}(n+2)(n+1)(1+2 \lambda) B_{1}^{2}} \\
\sigma_{2} & :=\frac{g_{2}^{2}(n+1)^{2}(1+\lambda)^{2}\left\{\left(B_{2}+B_{1}\right)+B_{1}^{2}\right\}}{g_{3}(n+2)(n+1)(1+2 \lambda) B_{1}^{2}}
\end{aligned}
$$

The result is sharp.
Since

$$
\left(\Omega^{\gamma} D_{\lambda}^{n} f\right)(z)=z+\sum_{k=2}^{\infty} \frac{\Gamma(k+1) \Gamma(2-\gamma)}{\Gamma(k+1-\gamma)}[1+\lambda(k-1)] C(n, k) z^{k}
$$

we have

$$
g_{2}:=\frac{\Gamma(3) \Gamma(2-\gamma)}{\Gamma(3-\gamma)}=\frac{2}{2-\gamma}
$$

and

$$
g_{3}:=\frac{\Gamma(4) \Gamma(3-\gamma)}{\Gamma(4-\gamma)}=\frac{6}{(2-\gamma)(3-\gamma)}
$$

For g_{2} and g_{3} given by above inequalites, Theorem 3.2 reduces to the following:

Theorem 3.3 Let $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n},\left(g_{n}>0\right)$ and let the function $\phi(z)$ be given by $\phi(z)=1+\sum_{k=1}^{\infty} B_{k} z^{k}$. If $D_{\lambda}^{n} f(z)$ given by (1.3) belongs to $M_{\lambda}^{n, \gamma}(\phi)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq \begin{cases}\frac{(2-\gamma)(3-\gamma)}{6}\left[\frac{B_{2}}{(n+2)(n+1)(1+2 \lambda)}-\frac{3(2-\gamma) \mu B_{1}^{2}}{2(3-\gamma)(n+1)^{2}(1+\lambda)^{2}}+\frac{B_{1}^{2}}{(n+2)(n+1)(1+2 \lambda)}\right] & \text { if } \mu \leq \sigma_{1} ; \\
\frac{(2-\gamma)(3-\gamma)}{6}\left[\frac{B_{1}}{[(n+2)(n+1)(1+2 \lambda)}\right] & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} ; \\
\frac{(2-\gamma)(3-\gamma)}{6}\left[-\frac{B_{2}}{(n+2)(n+1)(1+2 \lambda)}+\frac{3(2-\gamma) \mu B_{1}^{2}}{2(3-\gamma)(n+1)^{2}(1+\lambda)^{2}}-\frac{B_{1}^{2}}{(n+2)(n+1)(1+2 \lambda)}\right] & \text { if } \mu \geq \sigma_{2},\end{cases}
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma_{1} & :=\frac{2(3-\gamma)(n+1)^{2}(1+\lambda)^{2}\left\{\left(B_{2}-B_{1}\right)+B_{1}^{2}\right\}}{3(2-\gamma)(n+2)(n+1)(1+2 \lambda) B_{1}^{2}}, \\
\sigma_{2} & :=\frac{2(3-\gamma)(n+1)^{2}(1+\lambda)^{2}\left\{\left(B_{2}+B_{1}\right)+B_{1}^{2}\right\}}{3(2-\gamma)(n+2)(n+1)(1+2 \lambda) B_{1}^{2}} .
\end{aligned}
$$

The result is sharp.
Remark 3.4 When $\lambda=0, n=0, B_{1}=8 / \pi^{2}$ and $B_{2}=16 / 3 \pi^{2}$ the above Theorem 3.3 reduces to a recent result of Srivastava and Mishra ([3], Theorem 8, p.64) for a class of functions for which $\Omega^{\gamma} f(z)$ is a parabolic starlike functions [1], [2].

Acknowledgement: The work presented here was supported by Fundamental Research Grant Scheme: UKM-ST-01-FRGS0055-2006.

References

[1] A. W. Goodman, Uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
[2] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196.
[3] H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Computer Math. Appl. 39 (2000), 57-69.
[4] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex variables, Theory Appl. 44 (2001), 145-163.
[5] H. M. Srivastava and S. Owa, An application of the fractional derivative, Math. Japon. 29(3) (1984) 383-389.
[6] K. Al Shaqsi and M. Darus, On univalent functions with respect to k symmetric points defined by a generalized Ruscheweyh derivatives operator.(Submitted)
[7] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39(5) (1987), 1057-1077.
[8] S. Owa and O. P. Ahuja, An application of the fractional calculus, Math. Japon. 30 (1985), 947-955.
[9] W. Ma and D. Minda,A unified treatment of some special classes of univalent functions,in: Proceedings of the conference on complex analysis, Z. Li, F. Ren, L. Yang, and S. Zhang(Eds.), Int. Press (1994), 157-169.

Received: July 22, 2007

[^0]: ${ }^{1}$ Corresponding author

