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Abstract

In this present investigation, the authors obtain Fekete-Szego in-

equality for certain normalized analytic function f(z) defined on the

2(DY f(2))
DY f(2)

starlike with respect to 1 and is symmetric with respect to the real axis.

Also certain applications of the main result for a class of functions de-
fined by Hadamard product (convolution) are given. As a special case
of this result, Fekete-Szegé inequality for a class of functions defined
through fractional derivatives is obtained. The motivation of this paper
is to give a generalization of the Fekete- Szegb inequalities obtained by
Srivastava and Mishra by making use of DY the generalized Ruscheweyh
derivatives operator introduced by authors [6].

open unit disc for which , (n € Ng, A > 0) lines in a region
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1 Introduction

Let A denote the class of all analytic functions f defined on U = {z : z €
C and |z] < 1} and Ag be the family of functions f € A normalized by the
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conditions f(0) = 0, f/(0) = 1. Such functions f € Ay have the Taylor series
expansion given by

fER)=z2+) a*  (2€U) (1.1)

Let S be the family of functions f € Ay which are univalent. Let ¢(z) be
an analytic function with positive real part on A with ¢(0) = 1, ¢'(0) > 0
which maps the unit disk U onto a region starlike with respect to 1 which is

symmetric with respect to the real axis. Let S*(¢) be the class of functions in
f € S for which

2f'(2)
1 <o) (zeD),
and C(¢) be the class of functions in f € S for which
2f"(2)
1+ 702 < ¢(2) (z € U),

where < denotes the subordination between analytic functions. These classes
were introduced and studied by Ma and Minda [9]. They have obtained the
Fekete-Szegd inequality for the functions in the class C(¢). Since f € C(¢)
if and only if zf'(2) € S*(¢), we get the Fekete-Szegd inequality for functions
in the class S*(¢). For a brief history of the Fekete- Szegd problem for class
of starlike, convex, and close-to convex functions, see the recent paper by
Srivastava et al. [4].

In the present paper, we obtain the Fekete-Szego inequality for functions
in a more general class M{(¢) of functions which we define below. Also we
give applications of our results to certain functions defined through Hadamard
product (or convolution ) and in particular we consider a class M7 (¢) of
functions defined by fractional derivatives. The motivation of this paper is to
give a generalization of the Fekete-Szego inequalities of Srivastava and Mishra

3]-

Definition 1.1 Let ¢(z) be a univalent starlike function with respect to 1
which maps the unit disc U onto a region in the right half plane which is
symmetric with respect to the real azis, phi(0) = 1 and ¢'(0) > 0. A function
f € Aisin the class M} () if

(D3 f(2)

DU I(2) < ¢(2) (1.2)
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where n € Ny and DY denote the operator introduced by authors [6] and is
given by

D3 f(z) = (1= A)f(2) + Azf'(2) = Daf(2),
Dif(z) = (1= Nzf'(2) + Xz(2f'(2)), A =>0.

Note that if f is given by (1.1), then we see that

DYf(z) =2+ Z [1+ Ak —1)]C(n, k)", (1.3)

k=m+1

where

n

C(n, k) = (“"‘ 1) k=234

To prove our main result, we need the following:

Lemma 1.2 Ifpi(z) = 1412+ 2% + ... is an analytic function with positive
real part in U, then

442 if <0,
lco —vcd| < 2 if 0<ov <1,
dv—-2  ifv>1.

When v < 0 or v > 1, the equality holds if and only if py(2) is (1 +2)/(1 — 2)
or one of its rotations. If 0 < v < 1, then equality holds if and only if p;(2)
s (14 2%)/(1 — 2%) or one of its rotations. If v = 0, the equality holds if and
only if

1 1 N\1+2 1 1 \1-2
ne =G+ + G5

2 2
or one of its rotations. If v = 1, the equality holds if and only if p;(z) is the
reciprocal of one of the functions such that the equality holds in the case of
v = 0. Also the above upper bound is sharp, it can be improved as follows
when 0 < v < 1:

0<~<1
1+ =2 ( =7= )

lco —vel| +vla)P <2 (0<v<1/2)
and

ey —vc|+ (1 —v)|e|* <2 (1/2<wv<1).
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2 Fekete-Szego problem

Our main result is the following:

Theorem 2.1 Let ¢(z) = 1+ Byz+ By2?+ ... . If f(z) given by (1.1) belongs
to MY (), then
|az — paj| <

B uB? B2 . .
(n+2)(n—§21)(1+2)\) ~ G T )TN Z'f p<oy;
EESEESyTEy if oy <p<oy; (2.4)

B uB? B2 .
ey T e — mmrnary W 1= 02,

where

_ (n+ 1’0+ N*{(B.— B)) + BY}
= (n+2)(n+(1+2NB
(n+1)2(1 4+ X\)*{(B2 + B:) + B}}

(n+2)(n+1)(142)\)B;

09 =

The result is sharp.
Proof. For f(z) € M} (¢), let

_ 2(D3f(2))

p(z) = Dy (=) =1+biz+b2” + ... (2.5)

From (2.2), we obtain
(n+1)(1+ Nag = by and (n +2)(n+ 1)(1 +2\)az = (n+ 1)*(1 + X)?a3 + by

Since ¢(z) is univalent and p < ¢, the function
_ 1+67'(p(2))

1—¢7'(p(z))
is analytic and has a positive real part in U. Also we have

o) = (221,

p(z) +1

=1+cz+c®+..,

p1(2)

and from this equation (2.2),

1z +co2® + ...
1+b12+b222+ = ¢<2—}-101—2i’_—|—2022_;_—}—,,,)
1 1 1,
= ¢[§C1Z + 5(02 - 501)2 + }
= 1+Bllclz+811(c2—10?)22+...+Bglcfz'2+...
2 2 2 4
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we obtain
1 1 1 1
bl = 53161 and b2 = 531(62 — 50?) + ZBQC%.
Therefore we have
az — pazy = By 0—02[1<1—%
37 H G+ 2)n+ D1+2n ]2 “l2 B,

m+2)(n+ 1)1+ 22 )u— (n+1)*(1+ )2
* (T 12(1 £ 0) Blﬂ}

. Bl 2
= it DAy v
where
1 By (n+2)(n+1)(1+2\)p— (n+1)2(1+A)?
“‘5(1_§1+ (n+1)2(1+ \)? Bl)'

If u < oy, then by applying Lemma 1.2, we get

las — pa3| < B, _ pBY i B}
T2+ DA +F2N) n+12(1+N)2 T (n+2)(n+1)(142))’

which is the first part of assertion (2.1).

Similarly, if © > oy, we get

By MB% B%
A+ )0 +2Y) 1PN )t D +2N)

|ag — paj| < —

If 4 = oy, then equality holds if and only if

1+y\1+42 1—7)1—2
— 0< <1: |
Pi(2) ( 2 )1—,2 < 2 142 O<ysLzeU)

or one of its rotations.
Also, if pu = o9, then

1 =2
B (n+ 1)2(1+ M)

2

PO SRS TUES (B S A VET RSV (e P

Therefore,

1 1 1 1-— 1-—
:< +7> s ( 7) - (0<y<1;z€U)

p1(2) 2 J1—=2 2 J1+z2
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Finally, we see that

g — ] = = e-dl5(1- 5
3T A 2n+2)(n+ DA +2n| 2 2\ T B
m+2)(n+1)(1+2N)u— (n+1)*(1+ )2
+ Bl)]
(n+1)2(1 +A)?
and

1 By (n+2)(n+1)(1+2 )p— (n+1)*(1+\)?

(1= == B ) <u< .
max 2( B, + (n+ 12(1+ A2 1 (01 < p <o)
Therefore using Lemma 1.2, we get

B B
|ag — pas| = tlea < 1 (01 < p < 09).

2 +2)(n+1)(1+2)) — (n+2)(n+1)(1+2\)’

If 091 < p < 09, then we have

1422

p1(2)

Our result now follows by an application of Lemma 1.2. To show that these
bounds are sharp, we define the functions Kf(é =2,3,...) by

ADSKSE) o any oo — 0 — (KOO
D T KO =0 = () -1

and the function F, and G, (0 <~ <1) by

ADIE,(2)) ez 4) |
DYF,(2) N ¢< 1+7vz )’ F(0) =0 = (F(0) =1

and

ADIG,() o Aztn) 0= (G.(0)
D O T ) GO =0 (GO -

Clearly the functions Kg’, F,,G, € M(¢). Also we write K? := K. Ifp <oy
or f1 > 03, then the equality holds if and only if f is K¢ or one of its rotations.
When o1 < p < 09, the equality holds if and only if f is Kg’ or one of its
rotations. If u = oy then the equality holds if and only if f is F, or one of its
rotations. If y = oy then the equality holds if and only if f is G, or one of its
rotations.
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Remark 2.2 Ifo, < u < 0y, then in view of Lemma 1.2, Theorem 2.1 can be
improved. Let o3 be given by

(n+1)2(1 + A\)2{B? + By}
(n+2)(n+1)(1+4 2)\)B;}

03 . —

If oy < p < o3, then

+

(n+1)%(1 4+ \)?

’ag_uagH(n+2)(n+1)(1—|—2)\)3f B =B
(n—|—2)(n+1)(1+2/\),u—(n+1)2(1—|—/\)232 as? < By
(n+1)2(1+ A)? L= (4 2)(n+ 1) (1 +2))
If o3 < < 09, then
2 (n+1)%(1+A)?
a5 = naal + e ya o E P P
(n+2)(n+1)(1+2/\),u—(n+1)2(1+/\)232 af? < By
(n+1)2(1+ A)? L= i+ 2)(n+1)(142))

Proof. For the values of o7 < u < o3, we have

IN

laz — paj| + (1 — o1)|as|?

B B?

e ey Ty L I G b Teww e Vel
B )
2(n+2)(n + 2)(1+ 2\ ez = verl
(n+1)*(1 +\)?*{(B: — Bi) + B} } B? ,
B R PO T O DV 22 4(n+1)2(1+)\)2’cl‘
By 1 2 2
(n+2)(n+2)(1+ 23 {5 [lex = vet] + vleaf] }
By

(n+2)(n+2)(1+2X\)
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Similarly, for the values of o3 < i < g9, we write

|as — pas| + (o2 = p)azl”

= By 2 B? )
= St mraaray @t e W gl
By ,
B 2(n+2)(n+2)(1+2/\)|62_Ucl‘
(n+1)°(1+ N*{(B2+ B) + B} B2 o
(n+2)(n+1)(1 +2)) B2 I D2(1 1 V)2 ¢1]
By 1 ) )
= (n+2)(n+2)(142)\) {5 [‘02 —wvcf| + (1 —v)|q] }}
By

(n+2)(n+2)(1+2X\)
Thus, the proof of Remark 2.2 is evidently completed.

3  Applications to functions defined by frac-
tional derivatives

For two analytic functions f(z) = z 4+ > axz® and g(2) = z + > bx2", their
k=2 k=2
convolution (or Hadamard product) is defined to be the function (f * g)(2)

given by (f * g)(2) = f(2) x g(2) = 2 + > apbpz®. For fixed g € Ay, let
k=2
M (¢) be the class of functions f € Ay for which (f % g) € M{(¢).

Definition 3.1 (see [5], [8]). Let f(z) be analytic in a simply connected region
of the z-plane containing the origin. The fractional derivative of f of order ~

1s defined by

7 TR N / * QO

where the multiplicity of (z — )7 is removed by requiring that log(z — () is
real for z — ( > 0. Using the above Definition 3.1 and its known extensions
mwvolving fractional derivatives and fractional integrals, Owa and Srivastava

[7] introduced the operator Q7 : Ay — Ay defined by

O f(z) =T2 - )2 DIf(z)  (7#2.3.4,.)

The class M;""(¢) consists of functions f € A, for which Q7 f € Mj(¢4). Note
that M;""(¢) is the special case of the class M,"?(¢) when

T(k+ 12 —7)
+Z I'k+1—7) .

9(2) =
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Let
g(z) =z2+> g* (g >0).
k=2

Since DY f(z) € My"?(¢) if and only if DY f(z) * g(z) € M} (¢), we obtain the
coefficient estimate for functions in the class M,“(¢), from the corresponding
estimate for functions in the class M (o).

Applying Theorem 2.1 for the function D} f(2)*g(z) = 2+ (14+\)(n+1)azge2z*+
... we get the following Theorem 3.2 after an obvious change of the parameter

L

Theorem 3.2 Let g(z) = z+ > gn2", (gn > 0) and let the function ¢(z) be
n=2

given by ¢(z) = 1+ Y. BpzF. If DYf(2) given by (1.3) belongs to M"?(¢),

k=1
then
|az — Ma§|
gis {(n%)(n%l)(l%k) - (n+1l)i2g(31tfx)2g§ + (n+2)(ni%1)(1+2)\)i| if w<or;
<3 o lermne if v <p<on;
5|~ G (n+1l)f(31ii)295 B (n+2)(nﬁ)(1+2k)} iz o,
where
b o B AP A{(B = By + B
g3(n+2)(n+1)(1+ 2)\)B? :
- g3(n+1)%(1+ N)*{(B. + By) + B?}

g3(n+2)(n+1)(1+2)\)B?
The result is sharp.

Since

QDY) (z) =2+ Lk + DI - ) [14+ Mk —1)]C(n, k)z",

— Lk+1—7)
we have
_IEere--) 2
2TTIE-) T2
and
(4@ —7) 6

BTTTE—y) T 2=B-)

For go and g3 given by above inequalites, Theorem 3.2 reduces to the following:



440 K. Al-Shagsi and M. Darus

Theorem 3.3 Let g(2) = z+ > gnz", (9o > 0) and let the function ¢(z) be
n=2

given by ¢(2) = 1+ > Bpz®. If DY f(2) given by (1.8) belongs to My (¢),

k=1
then
laz — MG§|
— — — L 2 2 y
e 7)6(3 = |:(n+2)(n§21)(1+2)\) - 2(37%?#)1})%%)2 T (n+2)(ni11)(1+2A)} ifnson
2— 3— .
< ( 7)6( = [(n+2)(ni11)(1+2/\)} ) 2 RIRER
_ 33— 3(2— B B .
e 7)6(3 1| - (n+2)(n§21)(1+2k) + 2(3—7§(n11§2(i+x)2 N (n+2)(n+11)(1+2>\)} if wz o,
where
2(3 — ) (n+ 121+ \)?{(Bs — B) + B?}
o
! 32—)(n+2)(n+1)(1+20)B7
23 =) (n+1)2(1 + X)?{(Bs + B:) + B} }
)

32=7)(n+2)(n+1)(1+42)\)B?
The result is sharp.

Remark 3.4 When A\ = 0,n = 0, By = 8/72 and By = 16/37? the above
Theorem 3.3 reduces to a recent result of Srivastava and Mishra ( [3], Theo-
rem 8, p.64) for a class of functions for which Q7 f(z) is a parabolic starlike
functions [1], [2].
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