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                                                           Abstract 
 
In this article we propose a procedure for testing the null hypothesis of no 
cointegration against the alternative of seasonal fractional cointegration. It is a two-
step procedure based on the univariate tests of Robinson (1994). Finite-sample 
critical values are computed, and the power properties of the tests are examined. 
The tests are also extended to allow seasonally fractionally cointegrated 
alternatives at each of the seasonal frequencies separately. An empirical 
application, illustrating the use of the tests, is also carried out at the end of the 
article. 
 
Mathematics Subject Classification:   62P20; 91B70 
 
Keywords:   Seasonal fractional cointegration; Long memory; Seasonality. 
 
 
1. Introduction 
 
Modelling the seasonal component of macroeconomic time series is a matter that 
still remains controversial. Seasonal dummy variables were initially employed, 
but they were shown to be inappropriate in many cases, especially if the seasonal 
component changes or evolves over time. Following the unit root approach (initia
 lly developed by Box & Jenkins, 1970, and widely used after the seminal 
paper by Nelson & Plosser, 1982), seasonal unit root models became popular and 
many test statistics of this type were developed by Dickey, Hasza & Fuller (DHF, 
1984);  Hylleberg, Engle, Granger & Yoo (HEGY, 1990); Canova & Hansen 
(1995) and others. Seasonal unit root models were later extended to allow for 
other types of long memory behaviour, in particular, allowing for a fractional 
degree of integration (see, e.g. Porter-Hudak, 1990; Ray, 1993; Sutcliffe, 1994 
and more recently, Gil-Alana & Robinson, 2001). The idea behind the concept of 
seasonal fractional integration is that the number of seasonal differences required  
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to obtain stationarity might not necessarily be an integer but a real value. Thus, 
assuming that s is the number of time periods within a year, the seasonal 
polynomial (1 - Ls)d can be expressed in terms of its Binomial expansion, such 
that, for all real d, 
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and higher the d is, the higher is the level of association between the observations 
far apart in time. 

The concept of seasonal fractional cointegration has hardly been 
investigated. For the purpose of the present paper, we say that a given vector Yt is 
seasonally fractionally cointegrated if: a) all its components (yit) are seasonally 
fractionally integrated of the same order, say d, i.e.,  (1 – Ls)d yit = uit for all i, 
where uit is an I(0) process defined as in Section 2, and b) there is at least one 
linear combination of these components, which is seasonally fractionally 
integrated of order b, with b < d. Other more complex definitions of seasonal 
fractional cointegration allow us to consider different orders of integration for 
each of the individual series. However, Robinson & Marinucci (2001) show that, 
in a bivariate context, a necessary condition for cointegration is that both 
individual series share the same order of integration. In the context of fractional 
processes, this assumption may appear unrealistic because of the continuity on the 
real line for the orders of integration. However, in empirical work, there might be 
cases when, even though the orders of integration of both series are fractional and 
different, the tests are unable to reject the unit root null (d = 1). In such cases, we 
can proceed further with cointegration analysis.  

In this article we propose a two-step procedure for testing the null 
hypothesis of no cointegration against the alternative of seasonal fractional 
cointegration, which is based on the univariate tests of Robinson (1994). The 
outline of the paper is as follows: Section 2 firstly describes the tests of Robinson 
(1994). Then, the two-step procedure against seasonally fractionally cointegrated 
alternatives is presented. Section 3 gives finite-sample critical values of the new 
tests, and the testing procedure is extended to the case of fractionally cointegrated 
alternatives for each of the frequencies separately. The power properties of the 
tests against different fractional alternatives are examined in Section 4. Section 5 
contains an empirical application, and, finally, Section 6 offers some concluding 
remarks. 

 
2. The tests of Robinson (1994) and seasonal fractional 

cointegration 
 
We firstly describe a version of the univariate tests of Robinson (1994) for testing 
seasonally fractionally integrated hypotheses. Assume that yt is the observed time 
series, t = 1, 2, …, T, and consider the following model,  

...,,2,1t,uy)L1( tt
ds ==−            (1) 
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where LS is the seasonal lag operator (LS yt = yt-s); d is a real number and ut is an 
I(0) process, defined as a covariance stationary process with spectral density 
function that is positive and finite at any frequency on the interval [0, π]. Clearly, 
if d = 0 in (1), yt = ut, and a ‘weakly autocorrelated’ yt is allowed for. However, if 
d > 0, yt is defined as a ‘long memory’ process, also called ‘strongly dependent’ 
and so-named because of the strong association (in the seasonal structure) 
between observations far apart in time. If d ∈ (0, 0.5), yt is covariance stationary, 
having autocovariances which decay much more slowly than those of a seasonal 
ARMA process, in fact, so slowly as to be non-summable; if d ≥ 0.5 yt is 
nonstationary and, as d increases beyond 0.5, can be viewed as becoming ‘more 
nonstationary’ in the sense, for example, that the variance of the partial sums 
increases in magnitude. Note that the variance of the partial sums is O(T2d+1), so 
that stationarity implies d > 0.5. (See Hosking, 1981). 

Few empirical applications can be found based on seasonal fractional 
models. The notion of fractional Gaussian noise with seasonality was initially 
suggested by Abrahams & Dempster (1979) and Jonas (1981), and extended in a 
Bayesian framework by Carlin, Dempster & Jonas (1985) and Carlin & Dempster 
(1989). Porter-Hudak (1990) applied a seasonally fractionally integrated model to 
quarterly U.S. monetary aggregates with the conclusion that a fractional model 
could be more appropriate than standard ARIMAs. The advantages of seasonally 
fractionally integrated models for forecasting are illustrated in Ray (1993) and 
Sutcliffe (1994), and another recent empirical application can be found in Gil-
Alana & Robinson (2001). 

In general, we want to test the null hypothesis: 
,dd:H oo =             (2) 

for a given real number do, and the test statistic proposed by Robinson (1994), 
which is based on the Lagrange Multiplier (LM) principle, is given by: 
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I(λj) is the periodogram of tû , where ,y)L1(û tods
t −=  and the function g 

above is a known function coming from the spectral density of ut, 

)2/();(f 2 πσ=τλ ),;(g τλ  evaluated at ),(minargˆ 2
* τσ=τ

Τ∈τ
where T* is a 

compact subset of the Rq Euclidean space.  Finally, the summation on * in the  
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above expressions is over λ ∈ M where M = {λ: -π < λ < π, λ ∉ (ρl - λ1, ρl + λ1), l 
= 1, 2, …, s} such that ρl  = 0, π/2, -π/2 and π are the distinct poles of ψ(λ) on (-π, 
π]. Note that these tests are purely parametric and, therefore, they require specific 
modelling assumptions about the short memory specification of ut. Thus, if ut is 
white noise, g ≡ 1, (and thus, 0)(ˆ j =λε ), and if ut is an AR process of form φ(L)ut 

= εt, g = |φ(eiλ)|-2, with σ2 = V(εt), so that the AR coefficients are a function of τ. 
 Under the null hypothesis (2), Robinson (1994) showed that, under certain 
regularity conditions, 
      .)1,0(ˆ ∞→→ TasNr d             (4) 
These conditions are very mild, regarding technical assumptions on ψ(λ), which 
are satisfied by model (1). Thus, an approximate one-sided test of (2) against Ha: d 
> do will be given by the rule: “Reject Ho (2) if r̂ > zα”, where the probability that 
a normal variate exceeds zα is α, and conversely, a test of (2) against Ha: d < do 
will be given by the rule: “Reject Ho (2) if r̂ < -zα”.  As these rules indicate, we 
are in a classical large sample testing situation, for the reasons spelt out in 
Robinson (1994), who also showed that the tests are efficient in the Pitman sense, 
i.e., that against local alternatives of form: Ha: d = do + δ T-1/2 for δ ≠ 0, r̂  has an 
asymptotic distribution given by a normal distribution with variance 1 and mean 
that cannot (when ut is Gaussian) be exceeded in absolute value by any rival 
regular statistic. 
 The test statistic presented just above was used in Gil-Alana & Robinson 
(2001) to study the seasonal (quarterly) structure of the UK and Japanese 
consumption and income. Other versions of Robinson’s (1994) tests, based on 
annual, seasonal (monthly) and cyclical models, were studied in Gil-Alana & 
Robinson (1997) and Gil-Alana (1999, 2001) respectively. Ooms (1997) also 
proposed tests based on seasonal fractional models. They are Wald tests, and thus 
require efficient estimates of the fractional differencing parameters. He used a 
modified periodogram regression estimation procedure due to Hassler (1994). 
Also, Hosoya (1997) established the limit theory for long memory processes with 
the singularities not restricted at the zero frequency, and proposed a set of quasi 
log-likelihood statistics to be applied in raw time series. Unlike these methods, the 
tests of Robinson (1994) do not require estimation of the long memory 
parameters, since the differenced series have short memory under the null. 
 Next, we introduce a testing procedure, based on r̂  in (3), for testing the 
null hypothesis of no cointegration against the alternative of seasonal fractional 
cointegration. For simplicity, we consider a bivariate system of two time series 
(y1t and y2t) that might be seasonally fractionally cointegrated. In this bivariate 
context, a necessary condition for cointegration is that both series must have the 
same degree of integration (say do). Thus, in the first step, we can use Robinson’s 
(1994) univariate tests described above, to test the order of integration of each of 
the individual series and, if both are (seasonally) integrated of the same order (say 
do = 1), we can go further and test the degree of integration of the residuals from 
the cointegrating regression. There also exist multivariate versions of the tests of 
Robinson (1994) for simultaneously testing the degree of integration of the 
individual series (e.g., Gil-Alana, 2003a). This procedure, however, has only been  
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developed for non-seasonal cases, and the extension to the seasonal case is still in 
progress. It might be argued that the use of Robinson's (1994) tests on the 
individual series is not adequate since the two series may be dependent. In 
general, this is a problem that is faced by all univariate procedures. Note, 
however, that this is the same approach as the one used by Engle & Granger 
(1987) in their classical paper on cointegration, and also by Cheung & Lai (1993) 
and Dueker & Startz (1998) when testing for cointegration at the long run 
frequency. A problem occurs here, as the residuals are not actually observed but 
obtained from minimizing the residual variance of the cointegrating regression, 
and thus a bias might appear in favour of stationary residuals. Note that this 
problem is similar to the one noticed by Engle & Granger (1987) when testing 
cointegration at the long run or zero frequency with the tests of Fuller (1976) and 
Dickey & Fuller (1979). (See, also Phillips & Ouliaris, 1991, and Kremers, 
Ericsson & Dolado, 1992). In order to solve this problem, finite-sample critical 
values of the tests will be computed in the next section. We can consider the 
model: 

      ...,2,1t,ve)L1( tt
ds ==− , 

where et are the OLS residuals from the cointegration regression of y1t on y2t (or 
viceversa) and vt is I(0), and test Ho (2) against the alternative: 

          .dd:H oa <              (5) 
Note that if we cannot reject Ho (2) on the estimated residuals above, we will find 
evidence of no cointegration, since the residuals will be integrated of the same 
order as the individual series. On the other hand, rejections of Ho (2) against (5) (d 
< do) will support fractional cointegration, since the estimated residuals will be 
integrated of a smaller order than that of the individual series. 
 
3. Finite-sample critical values and extensions of the tests 
 
Table 1 reports finite-sample critical values of the tests of Robinson (1994) for 
testing the null hypothesis of no cointegration against seasonal fractional 
cointegration. We use Monte Carlo simulations based on 50,000 replications, for 
sample sizes T = 48, 96, 144 and 192, assuming that the true system consists of 
two quarterly I(d) seasonal processes of the form: 

    ,2,1i...,,2,1t,y)L1( ititod4 ==ε=−           (6) 
with Gaussian independent white noise disturbances that are not cointegrated, and 
take values of do ranging from 0.6 through 1.5 with 0.1 increments. We have 
concentrated on values of d > 0.5 since most macroeconomic time series are 
nonstationary, though the results based on d < 0.5 are not substantially different 
from those reported in the tables. 
 We can see that the finite-sample critical values are smaller than those 
from the normal distribution, which is consistent with the earlier argument that, 
when testing Ho (2) against (5), the use of the standard critical values will result in 
the cointegrating tests rejecting the null hypothesis of no cointegration too often. 
We can also note that these critical values are similar around do and, as we  
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increase the number of observations, they approximate the values from the normal 
distribution. 
 The seasonal structure described in the preceding section may be too 
restrictive, in the sense that it imposes the same degree of integration at each of 
the frequencies of the process. Note, for example, that the polynomial (1 – L4) can 
be factored as (1 - L) (1 + L) (1 + L2), containing four roots of modulus unity: one 
at the long run or zero frequency, one at two cycles per year, corresponding to the 
frequency π, and two complex pairs at one cycle per year, corresponding to 
frequencies π/2 and -π/2. Thus, the seasonal process (6) imposes the same degree 
of integration, do, at each of these frequencies. 
 Next, we consider the possibility of two time series being cointegrated at a 
single frequency, i.e. following the same structure at a given frequency, for a 
given value do. We examine the possibility of their being cointegrated, either at 
the zero frequency or, alternatively, at the seasonal frequencies π or π/2 (-π/2). 
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TABLE 1 

Finite-sample critical values of the tests of Robinson (1994) for testing the null hypothesis of 
no cointegration against seasonal fractional cointegration 

 T  =  48 
P. / do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 
0.1 % -3.16 -3.16 -3.20 -2.21 -3.21 -3.17 -3.19 -3.20 -3.20 -3.20 -3.19 
0.5 % -2.94 -2.93 -2.93 -2.94 -2.95 -2.95 -2.95 -2.95 -2.95 -2.95 -2.95 
1 % -2.81 -2.81 -2.82 -2.82 -2.84 -2.84 -2.84 -2.83 -2.84 -2.83 -2.84 
2 % -2.68 -2.69 -2.70 -2.71 -2.71 -2.71 -2.71 -2.70 -2.70 -2.70 -2.70 

2.5 % -2.64 -2.65 -2.66 -2.66 -2.66 -2.66 -2.66 -2.66 -2.66 -2.66 -2.66 
5 % -2.49 -2.50 -2.50 -2.51 -2.51 -2.51 -2.51 -2.51 -2.51 -2.51 -2.51 

10 % -2.30 -2.31 -2.33 -2.32 -2.32 -2.32 -2.32 -2.32 -2.32 -2.32 -2.32 
 T  =  96 

P. / do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 
0.1 % -2.94 -2.94 -2.93 -2.93 -2.93 -2.93 -2.93 -2.93 -2.93 -2.93 -2.93 
0.5 % -2.66 -2.68 -2.68 -2.67 -2.67 -2.67 -2.66 -2.66 -2.66 -2.66 -2.66 
1 % -2.55 -2.56 -2.56 -2.56 -2.56 -2.55 -2.56 -2.56 -2.55 -2.55 -2.55 
2 % -2.40 -2.40 -2.40 -2.40 -2.40 -2.40 -2.40 -2.40 -2.40 -2.39 -2.39 

2.5 % -2.35 -2.34 -2.35 -2.35 -2.35 -2.35 -2.35 -2.35 -2.34 -2.34 -2.34 
5 % -2.19 -2.19 -2.19 -2.18 -2.18 -2.18 -2.18 -2.18 -2.17 -2.17 -2.17 

10 % -1.98 -1.99 -1.99 -1.98 -1.98 -1.98 -1.97 -1.97 -1.97 -1.97 -1.97 
 T  =  144 

P. / do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 
0.1 % -2.80 -2.82 -2.84 -2.84 -2.82 -2.83 -2.83 -2.81 -2.80 -2.78 -2.78 
0.5 % -2.53 -2.53 -2.52 -2.52 -2.51 -2.51 -2.52 -2.51 -2.51 -2.51 -2.51 
1 % -2.39 -2.39 -2.41 -2.41 -2.41 -2.40 -2.41 -2.40 -2.41 -2.41 -2.40 
2 % -2.24 -2.25 -2.25 -2.25 -2.25 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 

2.5 % -2.20 -2.20 -2.20 -2.20 -2.19 -2.18 -2.19 -2.19 -2.19 -2.19 -2.19 
5 % -2.02 -2.03 -2.03 -2.03 -2.03 -2.03 -2.02 -2.03 -2.02 -2.02 -2.02 

10 % -1.82 -1.82 -1.82 -1.83 -1.82 -1.82 -1.81 -1.81 -1.81 -1.81 -1.81 
 T  =  192 

P. / do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 
0.1 % -2.77 -2.77 -2.76 -2.75 -2.72 -2.72 -2.73 -2.73 -2.74 -2.74 -2.74 
0.5 % -2.52 -2.51 -2.53 -2.51 -2.49 -2.48 -2.49 -2.49 -2.49 -2.50 -2.51 
1 % -2.34 -2.35 -2.35 -2.34 -2.35 -2.36 -2.36 -2.35 -2.35 -2.34 -2.34 
2 % -2.17 -2.17 -2.18 -2.18 -2.18 -2.17 -2.18 -2.18 -2.18 -2.18 -2.18 

2.5 % -2.12 -2.12 -2.13 -2.13 -2.13 -2.13 -2.13 -2.13 -2.12 -2.13 -2.12 
5 % -1.94 -1.95 -1.95 -1.95 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.93 

10 % -1.71 -1.71 -1.71 -1.71 -1.71 -1.71 -1.71 -1.70 -1.70 -1.70 -1.70 

50,000 replications were used in each case. 
 The procedure is exactly the same as before. Once we have shown that 
both series are integrated of the same order (do) at a given frequency, we test Ho 
(2) against (5) with the one-sided tests of Robinson (1994), in the model, 
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       ...,2,1t,ve)L1( tt

d ==− ,            (7) 
if we focus on the long run or zero frequency, or alternatively, in the models, 

       ...,2,1t,ve)L1( tt
d ==+              (8) 

or 
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d2 ==+ ,            (9) 
if we concentrate on the seasonal frequencies π, or π/2 (-π/2) respectively. Based 
on (7), (8) and (9), the test statistics will be given by ir̂ , i = 1, 2 and 3 
respectively, where 
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i g,ˆ,ˆ εσ  and Ii as below (3) but for the new residuals obtained from (7), (8) 

and (9). Finite-sample critical values of the new versions of the tests were also 
computed and the results are given in Table 2. 
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TABLE 2 
Finite-sample critical values of the tests of Robinson (1994) for testing the null hypothesis of no 

cointegration against seasonal fractional cointegration at a given frequency 
  T  =  48 
ρ(L) P./ do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 

1 %  -2.56 -2.57 -2.56 -2.55 -2.55 -2.53 -2.52 -2.53 -2.53 -2.51 -2.50(1  -  L)d 

5 % -2.10 -2.11 -2.11 -2.11 -2.11 -2.10 -2.09 -2.08 -2.08 -2.08 -2.06
1 %  -2.49 -2.51 -2.52 -2.52 -2.51 -2.51 -2.51 -2.51 -2.50 -2.48 -2.47(1  +  L)d 

5 % -2.03 -2.05 -2.05 -2.05 -2.04 -2.04 -2.04 -2.03 -2.03 -2.03 -2.02

(1 + L2)d 1 %  -2.96 -2.97 -2.97 -2.97 -2.97 -2.98 -2.97 -2.98 -2.90 -2.96 -2.96

 5 % -2.52 -2.53 -2.54 -2.54 -2.53 -2.52 -2.53 -2.53 -2.53 -2.53 -2.53
  T  =  96 
ρ(L) P./ do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 

1 %  -2.50 -2.50 -2.49 -2.48 -2.48 -2.48 -2.47 -2.46 -2.45 -2.43 -2.44(1  -  L)d 

5 % -2.03 -2.04 -2.03 -2.04 -2.02 -2.01 -2.00 -1.99 -1.99 -1.99 -1.98
1 %  -2.44 -2.45 -2.47 -2.47 -2.47 -2.47 -2.48 -2.46 -2.46 -2.45 -2.46(1  +  L)d 

5 % -1.98 -1.98 -1.99 -1.99 -1.99 -1.98 -1.97 -1.97 -1.97 -1.96 -1.96

(1 + L2)d 1 %  -2.83 -2.84 -2.85 -2.86 -2.85 -2.83 -2.82 -2.82 -2.83 -2.83 -2.83

 5 % -2.31 -2.32 -2.33 -2.32 -2.32 -2.32 -2.32 -2.32 -2.32 -2.32 -2.33
  T  =  144 
ρ(L) P./ do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 

1 %  -2.46 -2.46 -2.47 -2.47 -2.45 -2.42 -2.41 -2.41 -2.42 -2.41 -2.41(1  -  L)d 

5 % -1.95 -1.96 -1.95 -1.94 -1.94 -1.94 -1.94 -1.93 -1.93 -1.92 -1.92
1 %  -2.46 -2.47 -2.45 -2.44 -2.42 -2.40 -2.39 -2.39 -2.38 -2.38 -2.37(1  +  L)d 

5 % -1.94 -1.95 -1.96 -1.94 -1.92 -1.92 -1.91 -1.90 -1.89 -1.89 -1.89

(1 + L2)d 1 %  -2.76 -2.77 -2.77 -2.77 -2.76 -2.76 -2.76 -2.78 -2.78 -2.76 -2.77

 5 % -2.23 -2.23 -2.23 -2.23 -2.23 -2.22 -2.22 -2.22 -2.21 -2.21 -2.21
  T  =  192 
ρ(L) P./ do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 

1 %  -2.43 -2.43 -2.44 -2.44 -2.43 -2.41 -2.40 -2.41 -2.41 -2.40 -2.39(1  -  L)d 

5 % -1.93 -1.94 -1.94 1.93 -1.93 -1.92 -1.90 -1.89 -1.88 -1.88 -1.88
1 %  -2.45 -2.46 -2.46 -2.45 -2.43 -2.41 -2.39 -2.41 -2.40 -2.37 -2.47(1  +  L)d 

5 % -1.93 -1.93 -1.94 -1.94 -1.94 -1.91 -1.91 -1.89 -1.88 -1.89 -1.95

(1 + L2)d 1 %  -2.71 -2.72 -2.71 -2.71 -2.70 -2.70 -2.70 -2.71 -2.71 -2.71 -2.71

 5 % -2.16 -2.17 -2.17 -2.17 -2.16 -2.15 -2.15 -2.15 -2.14 -2.15 -2.15
50,000 replications were used in each case. 
 
 Similarly to Table 1, we see that all the critical values are smaller than 
those from the normal distribution, with slight differences in some cases across do. 
When increasing the sample sizes, they become higher but, even with T = 192, 
they are still below those corresponding to the normal distribution. These results 
reinforce the argument that the use of the standard critical values when testing 
cointegration with the tests of Robinson (1994) will lead to reject the null  
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hypothesis of no cointegration more often than expected, suggesting that finite-
sample critical values should be employed. 
 
4. The power of the tests against fractional alternatives 
 
In this section we examine the power properties of Robinson’s (1994) tests against 
fractionally cointegrated alternatives, and consider a bivariate system, where y1t 
and y2t are given by: 

        ...,2,1t,uyy t1t2t1 ==+  
        ...,2,1t,uy2y t2t2t1 ==+ ,                    (11) 

where, initially,  
                ...,2,1t,u)L1( t1t1

4 =ε=−          (12) 
and  

   ...,2,1t,u)L1( t2t2
d4 =ε=− ,         (13) 

with the innovations ε1t and ε2t, generated as independent standard normal 
variates. Thus, if d = 1 in (13), the two series are quarterly I(1) and non-
cointegrated, while d < 1 will imply that y1t and y2t are seasonally fractionally 
cointegrated, and (11) will be the cointegrating relationship. We also consider 
cases where the root occurs at a single frequency, that is, u1t and u2t, are generated 
as 

                    ...,2,1t,u)L1( t1t1 =ε=−  

              ...,2,1t,u)L1( t2t2
d =ε=− ,          (14) 

or alternatively, 
          ...,2,1t,u)L1( t1t1 =ε=+  

          ...,2,1t,u)L1( t2t2
d =ε=+ ,          (15) 

or 
          ...,2,1t,u)L1( t1t1

2 =ε=+  

          ...,2,1t,u)L1( t2t2
d2 =ε=+  .         (16) 

Again, in all these cases, if d = 1 in (14) – (16), y1t and y2t will be non-
cointegrated and if 0 < d < 1, both series will be fractionally cointegrated with the 
roots occurring at zero, at π, and at π/2 (-π/2) respectively. Table 3 reports the 
rejection frequencies of r̂  in (3) and (10) with d = 0, (0.10), 0.90; T = 48, 96, 144 
and 192 and nominal sizes of 5% and 1%, based on 50,000 replications. 
 We see that the rejection frequencies considerably improve as d becomes 
smaller and also as we increase the number of observations. These values are 
relatively high in all cases if d ≤ 0.60 and T = 144 or 192. Starting with the case of 
four seasonal roots, we observe that if T ≥ 96, the rejection probabilities are 
higher than 0.50 for all cases with d ≤ 0.60 even at the 1% significance level. 
Looking at the results for the individual frequencies, the rejection probabilities are 
also relatively high, especially if the sample size is 144 or 192. Thus, for example, 
if T = 192 and do = 0.70, the rejection frequencies associated to the frequencies 0,  
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π and π/2 (-π/2) are respectively 0.959, 0.954 and 0.964 at the 5% level. Similar 
experiments were also carried out based on autocorrelated disturbances. Finite-
sample critical values were computed and the power properties examined. If the 
roots of the AR (MA) polynomials are close to the unit root circle, the results are 
poor. However, if they are far away from 1, they are similar to those reported 
here, the rejection probabilities being relatively high for d ≤ 0.6 and T ≥ 144. 
 
 

TABLE 3 

Rejection frequencies of the tests of Robinson (1994) against fractional cointegration 

ρ(L) T Sz/ d 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

48 
1% 0.021 0.049 0.106 0.197 0.329 0.471 0.619 0.735 0.825 0.886 

 
5% 0.088 0.159 0.287 0.437 0.600 0.733 0.844 0.913 0.952 0.974 

1% 0.037 0.138 0.352 0.650 0.870 0.961 0.992 0.998 0.999 1.000 
96 

5% 0.136 0.349 0.635 0.866 0.968 0.994 0.999 1.000 1.000 1.000 
1% 0.057 0.267 0.659 0.918 0.991 0.999 0.999 1.000 1.000 1.000 

144 
5% 0.186 0.523 0.859 0.981 0.999 1.000 1.000 1.000 1.000 1.000 
1% 0.068 0.381 0.822 0.985 0.999 1.000 1.000 1.000 1.000 1.000 

 
 
 
 

(1 – L4)d 

192 
5% 0.226 0.670 0.947 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

ρ(L) T Sz/ d 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

48 
1% 0.025 0.072 0.176 0.351 0.549 0.741 0.867 0.940 0.970 0.988 

 5% 0.108 0.231 0.420 0.630 0.815 0.924 0.975 0.991 0.997 0.999 
1% 0.045 0.199 0.506 0.821 0.962 0.994 0.999 1.000 1.000 1.000 

96 
5% 0.151 0.423 0.761 0.939 0.992 0.999 1.000 1.000 1.000 1.000 
1% 0.084 0.377 0.794 0.968 0.999 1.000 1.000 1.000 1.000 1.000 

144 
5% 0.233 0.620 0.917 0.989 0.999 1.000 1.000 1.000 1.000 1.000 
1% 0.112 0.535 0.908 0.992 0.999 1.000 1.000 1.000 1.000 1.000 

 
 
 

(1 – L)d 

192 
5% 0.279 0.741 0.959 0.997 0.999 1.000 1.000 1.000 1.000 1.000 

ρ(L) T Sz/ d 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 
1% 0.021 0.064 0.153 0.317 0.524 0.717 0.848 0.924 0.964 0.981 

48 
5% 0.103 0.215 0.394 0.629 0.807 0.924 0.969 0.990 0.996 0.998 
1% 0.045 0.177 0.492 0.804 0.952 0.993 0.999 1.000 1.000 1.000 

96 
5% 0.159 0.423 0.753 0.938 0.992 0.999 1.000 1.000 1.000 1.000 
1% 0.079 0.374 0.771 0.965 0.997 0.999 1.000 1.000 1.000 1.000 

144 
5% 0.221 0.612 0.902 0.989 0.999 1.000 1.000 1.000 1.000 1.000 
1% 0.104 0.508 0.893 0.990 0.999 1.000 1.000 1.000 1.000 1.000 

 
 
 

(1 + L)d 

192 
5% 0.268 0.719 0.954 0.996 0.999 1.000 1.000 1.000 1.000 1.000 

ρ(L) T Sz/ d 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 
1% 0.026 0.058 0.140 0.272 0.455 0.625 0.782 0.875 0.938 0.964 

48 
5% 0.097 0.200 0.359 0.551 0.735 0.862 0.940 0.973 0.991 0.995 
1% 0.039 0.163 0.446 0.753 0.929 0.989 0.998 0.999 0.999 1.000 

96 
5% 0.145 0.395 0.713 0.927 0.987 0.999 1.000 1.000 1.000 1.000 
1% 0.064 0.315 0.726 0.950 0.996 0.999 1.000 1.000 1.000 1.000 

144 
5% 0.200 0.594 0.901 0.988 0.999 1.000 1.000 1.000 1.000 1.000 
1% 0.092 0.484 0.890 0.991 1.000 1.000 1.000 1.000 1.000 1.000 

 
 
 

(1 + L2)d 

192 
5% 0.269 0.736 0.964 0.997 1.000 1.000 1.000 1.000 1.000 1.000 
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5. An empirical illustration 
 
We analyse the quarterly UK and Japanese consumption and income series that 
were used by Hylleberg et al. (1990) and Hylleberg, Engle, Granger & Lee 
(1993). For the UK, the data are the log consumption expenditure on non-durables 
and the log personal disposable income, from 1955.1 to 1984.4, and, for Japan, 
the log of total real consumption and the log of real disposable income from 
1961.1 to 1987.4 in 1980 prices. These data were also used by Gil-Alana & 
Robinson (2001) to test the presence of unit and fractional roots in univariate 
contexts. The results from that paper for the case of testing unit roots with white 
noise disturbances are summarized in Table 4. We see that, in both countries, the 
unit root null hypothesis cannot be rejected for any series. This is found when we 
impose four unit roots simultaneously (i.e., model (6) with do = 1) but also when 
each of the roots is considered separately. 
 
 
 

TABLE 4 

Testing the null hypothesis of a unit root (Ho: d = 1) with the tests of Robinson (1994) 
on the individual series 

 Country 
UNITED KINGDOM JAPAN Model 

Consumption Income Consumption Income 

(1  -  L4)d xt = ut -1.00’ -1.00’ -1.02’ -1.05’ 

(1  -  L)d xt = ut -0.30’ -0.31’ -0.37’ -1.07’ 

(1  +  L)d xt = ut -0.92’ -1.09’ -0.98’ -1.06’ 

(1  +  L2)d xt = ut -1.19’ -1.51’ -1.12’ -1.42’ 
‘ and in bold: Non-rejection value of a unit rot at the 95% significance level. The results in 
this table have been taken from Gil-Alana and Robinson (2001). 

 
  

 Next we look at the possibility of both series (consumption and income) 
being cointegrated. The resulting OLS regressions were 

)011.0()114.0(
872.0212.1 tt yc +=

   and      )011.0()145.0(
124.1171.1 tt cy +−=

 

for the UK, and 

)017.0()100.0(
901.0389.0 tt yc +=

    and      )017.0()115.0(
065.1193.0 tt cy +−=

 

for Japan. 
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TABLE 5 

Testing the null hypothesis of no cointegration (d = 1) against seasonal fractional 
cointegration (d < 1) with the tests of Robinson 

 Country 
UNITED KINGDOM JAPAN Model 

Cons. / Inc. Inc. / Cons. Cons. / Inc. Inc. / Cons. 

(1  -  L4)d xt = ut -2.58’ -2.55’ -2.11 -1.92 

(1  -  L)d xt = ut -4.69’ -4.67’ -5.37’ -5.38’ 

(1  +  L)d xt = ut -4.56’ -4.72’ -4.87’ -4.41’ 

(1  +  L2)d xt = ut -6.71’ -6.77’ -6.93’ -6.95’ 
‘ and in bold: Rejection values of the null hypothesis of no cointegration  against 
fractional cointegration at the 95% significance level. 
 

  
 Table 5 reports values of the tests of Robinson (1994), testing the null 
hypothesis of no cointegration against seasonal fractional cointegration, first 
imposing the same order of integration at all frequencies, and then testing each 
frequency separately. That is, we calculate r̂  given by (3) and (10), testing Ho (2) 
against (5) with do = 1, firstly in 

   ...,2,1,)1( 4 ==− tveL tt
d           (17) 

and then, in (7) – (9). 
 Starting with the case of four seasonal roots, (i.e., (17)), we see that the 
null hypothesis of no cointegration is clearly rejected for the UK. However, this 
hypothesis cannot be rejected for Japan, even at the 10% significance level. If we 
look at the results for each of the frequencies separately, (i.e., (7) – (9)), we 
observe that in both countries, all cases lead to rejections of the null in favour of 
cointegration. The results for Japan might seem surprising, since we find evidence 
of cointegration at 0, π and π/2 (3π/2) when testing these frequencies separately, 
but we cannot reject the null hypothesis of no cointegration when these 
frequencies are tested together. This may be explained by the fact that all the test 
statistics outlined in this section have been evaluated using white noise 
disturbances, and thus the lack of rejection in the case of Japan when testing all 
roots simultaneously might reflect the potentially autocorrelated structure 
underlying the I(0) disturbances in the estimated residuals of the cointegrating 
regressions. 
 
6. Conclusions 
 
In this paper we have presented a procedure for testing the null hypothesis of no 
cointegration against seasonal fractional cointegration. It is a two-step procedure 
based on the univariate tests of Robinson (1994). Initially, we test the order of 
integration of the individual series and, if all of them have the same degree of 
integration, we proceed to testing the order of integration of the estimated  
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residuals from the cointegrating regressions. A similar procedure was proposed by 
Gil-Alana (2003b) in non-seasonal contexts. 
 
 We first examined the case of processes with the same degree of 
integration at all frequencies (i.e., at zero and the seasonal ones). Then, the 
procedure was extended to the case of seasonal fractional cointegration at each of 
the frequencies separately. Finite-sample critical values of the tests were 
computed and several Monte Carlo experiments were conducted in order to 
examine the power properties of the new tests. The results indicate that the tests 
behave relatively well against fractional alternatives, especially if the sample size 
is large. 
 
 The tests were applied to the UK and Japanese consumption and income 
series, and it was found that both series may be fractionally cointegrated at each 
of the frequencies separately. However, when testing against seasonal 
cointegration at all frequencies simultaneously, the null hypothesis of no 
cointegration was rejected for the UK but not for Japan. 
 
 The present study can be extended in several ways. First, the same 
methodology can be employed allowing for more than two variables, and also for 
weakly autocorrelated disturbances when testing both the individual series and the 
estimated residuals from the cointegrating regressions. However, in both cases, 
finite-sample critical values should be computed. ARMA structures for the I(0) 
disturbances have been widely used by applied researchers; however, their 
implementation in the context of long memory processes is still in its infancy, and 
the processes described here can be viewed as competing with the ARMA models 
in modelling the degree of association between the observations. Also, the tests of 
Robinson (1994) allow us to consider deterministic regressors, like an intercept, a 
linear trend, and/or seasonal dummies. However, once again, the inclusion of 
these deterministic components changes the empirical distribution of the tests. 
Other methods of estimating and testing the fractional differencing parameters, 
based on parametric or semi-parametric procedures (e.g. Robinson, 1995a,b; 
Ooms, 1997; Hosoya, 1997; Silvapulle, 2001; etc.) may also be applied in the 
second step of this procedure. An example is the approach due to Cheung & Lai 
(1993) for the case of the long run or zero frequency, which uses the log-
periodogram estimation procedure of Geweke and Porter-Hudak (1983). In non-
seasonal contexts, other more elaborate techniques on fractional cointegration 
(estimating and testing the fractional differencing parameters along with the 
coefficients of the cointegrating regression) are being developed by Robinson and 
his coauthors (Robinson and Marinucci, 2001, Robinson and Yajima, 2002, 
Robinson and Hualde, 2003). Finally, a more general procedure for 
simultaneously testing seasonal fractional cointegration under the null hypothesis 
(in a similar way to Johansen’s (1988) procedure for non-seasonal contexts) 
would also be desirable. Work in all these directions is now in progress. 
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