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Application of fast multi-pole boundary element
method to 2D acoustic scattering problem
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Abstract: The fast multi-pole method (FMM) is a very effective approach to accelerating
numerical solutions of the boundary element method (BEM) for the problems requiring large
scale computation. An application of the FMM to two-dimensional boundary integral equation
method for the acoustic scattering problem was discussed. We seek the solution of Helmholtz
equation Autk*u=0 in the form of a combined single- and double-layer potential. The boundary
integral equation is discretized with Nystrém method. It is obvious that the kernel of integral
operator is unsymmetrical. If the resulting linear system is solved by the conjugate gradient
method of unsymmetrical linear system, both the products of matrix A with vector x and AT with
x should be repeatedly evaluated. The hierarchical cell structures of FMM with two different
methods was constructed, and the multi-pole expansion, local expansion and translations of the
coefficients were given for the second integral operator A and its conjugate operator A". The
boundary integral equation was solved by FMM. The numerical results show that FMM is more
efficient than the direct computation approach.
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0 Introduction

The fast multi-pole method (FMM) pioneered
by Refs. [1, 2] can be used to accelerate the
solutions of particle interaction problems and
boundary integral equations. By means of the
FMM,

requirement are reduced to O (N). In the last

both computing amount and memory
decade, the fast multi-pole accelerated BEM
(FMM BEM) has been developed to solve a variety
of the problems with large-scale computation.
Some of the works on the FMM BEM can be found
in Refs. [4 ~107], which show great promises of
the FMM BEM for solving large-scale computing
problems.

It is obvious that the conventional BEM in
general produce dense and non-symmetric
matrices. It requires O(N?) operations to compute
the coefficients and another O (N?®) operations to
solve the system by direct solvers. Then, the
efficiency of solving the boundary integral
equations has become a serious problem for large-
scale problems. While the finite element method
(FEM) had been routinely used to solve the
problems with near million of degrees of freedom
(DOF’s), the BEM was limited to solve the
problems with thousands DOF’s for many years
due to its lower efficiency in computation. FMM
overcomes this issue, and makes it possible for
BEM to

dramatically reduced computing amount and lower

solve large-scale problems due to

memory requirement.

The basic structure used by FMM, in
operation and storage, is a quad-tree for 2D
problems or an octal-tree for 3D problems. During
the procedure of iterative solutions for BEM, the
matrix-vector multiplication in each iterative step is
operated based on the tree structure with O(N)
storage and O (N) operations, that is, the tree

stores information of matrix-vector multiplication,

not that of matrix and vector separately.
Therefore, it is more efficient and faster than the
traditional BEM for large-scale computing
problem,

In this paper, a 2D acoustic scattering
problem will be computed by FMM BEM. The
solution of Helmholtz equation Au -+ k*u=0 was
denoted by the form of a combined single- and
double-layer potential. The conventional BEM
scheme can be found in Ref. [3]. The boundary
integral equation is discretized with Nystréom
method. It is obvious that the kernel of integral
operator is unsymmetrical. The resulting linear
system is solved by the conjugate gradient method
of unsymmetrical linear system, then it is
necessary to calculate the products of matrix A
with vector x and AT with x. In this paper, from
the Graf’s

expansion, local expansion and translations of the

addition theorem, the multi-pole
coefficients are given for the second integral
operator A and its conjugate operator AT.

This paper is organized as follows. In Section
1, the conventional BEM formulation for 2D
acoustic scattering problems is reviewed. In
Section 2, the FMM to solve the boundary integral
equation is presented, the fast multi-pole
expansions, local expansions and the translation of
coefficients and also the algorithm of the FMM are
constructed. In Section 3, a numerical example by
using FMM BEM algorithm developed in this paper
is shown, the comparison of CPU times and
memory requirement of FMM (O (N)) and the
conventional BEM (O(N?)) is given. The result
shows the FMM is more efficient for large-scale

computing problems.
1 Boundary integral equation to 2D
acoustic scattering problem

Consider an acoustic wave propagating in a

homogeneous and isotropic medium and impinging
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on an infinitely long cylinder having uniform cross
section D C R,

cylinder is parallel to the z-axis and the incident

Suppose that the axis of the

wave is the plane wave u' (x) =¢** ¢, where r&R?,
k>0 is the wave number, « is a fixed unit vector.
Clearly, the cylinder will scatter the incident plane
wave u'. We describe u' as the scattered wave and
u” as the far field pattern of «’. Suppose that D is
of class C*, u= u' + u' is the total field. The
acoustic scattering problem is to find a solution
u€ C*(R*\D) N C(R?’\D) satisfies
Au-+ku=0 in R2\D,
and the exterior Dirichlet boundary condition
u=20 on aD.

The scattered wave u' satisfies the Sommerfeld

radiation condition
}Lr%J;(%—zku‘): 0, r=|a|.

It is easy to show that «' has the asymptotic

behavior™!

tkr _ 3
w (r,0) = %F(@;k,awow 2,
r

where (,0) is the polar representation of a point x
in the plane and F is known as the far field pattern
for the scattered wave u'. From Green’s formula
and the asymptotic of the first Hankel function
M
0

, we can easily conclude that

du’
ap dy

in/4
F(fshaa) = -S| 2L (¢ 004y,

v 8k

!y y=pe?, v is the unit outward

where x = re’
normal to dD.
We seek the scattering solution u' of the

previous Helmholtz equation in the form of a

combined acoustic ~ double-  and single-
layer potential
w () = J()D{%fiq@(x,y)}go(y)ds(y)al
x € R*\aD,
@b
with some positive coupling parameter . Here @ is
the fundamental solution of the Helmholtz

equation in 2D expressed as

O(x,y) :in)“(k lz—vyDsx#y,

where HSP is the 1st-kind Hankel function of order
zero. From the jump-relation of double-layer

[3]

potential®!, we see that solution (1) solves the

exterior Dirichlet problem, provided that the
density ¢(y) is a solution of the boundary
integral equation

¢+ Ko —ipSp =2f, x € dD, (2)
where f=—u'(x), K, S:C(dD)—C(9D) denote

the integral operators defined by

e = of 2

(Sp) (x) = ZJM)QD(I,y)go(y)ds(y) , x € JD.

o(y)ds(y), x € ID,

These integral operators are compact since they can
be shown to have weakly singular kernels.
Therefore, the existence of solution to (2) can be
established by the Riesz theory for equations of the
second kind with a compact operator.

It is obvious that ®(x,y) and d®(x,y)/Iu(y)
have logarithmic singularities at x = y. Hence,

their proper numerical treatment can be found in

Ref. [ 3].
2 Fast multi-pole method

The main idea of the FMM is to translate the

point-to-point interactions to cell-to-cell
interactions by using multi-pole expansions and
translations, where cells can have a hierarchical
tree structure. The conjugate gradient method will
be used in the FMM to solve the resulting linear
system, where matrix-vector multiplications are
calculated using fast multi-pole expansions. Using
the FMM, the solution time of a problem can be
reduced to order O(N). The memory requirement
can also be reduced to O(N) since iterative solvers
do not need to store the entire matrix in the
memory.

In this section, a fast multi-pole method for
the boundary integral equation (2) will be
presented. The fast multi-pole expansions, local
expansions and the translations of coefficients will
be provided.

2.1 Expansions and the translations of coefficients

Consider the boundary integral equation



1148

Application of fast multi-pole boundary element method to 2D acoustic scattering problem 1335

o(2) IP(x,y) ‘ o
2 _'_LD v(y) () dsy)

ir;J D@(x,y)go(y)ds(y) =—c¢te, € 9D,

P

3
where x and y denote the source and field points on
the boundary dD. The multi-pole expansions, local
expansions and the translations of coefficients of
the following two integral operators should be

formulated.
(Sp) () = | S ye(nds(y),
(7@(193))

(Kg) () = | B (s
Firstly, introduce the Graf’'s Addition
Theorem'® ;

Theorem 2.1

function have the following properties:

Bessel function and Hankel
1,2 __ 1,2 1,2 . 1,2
2n T —2n 9 2ntl T —2m—1 .

For each integer n, the expansion of Bessel

function J, and Hankel function H{" are given by:

J”(/Q ‘ x—y |)eim0” v o—

D Tl [ DT, B |y e

m=—co

EA A
HY (k[ x—y e ™ =

LiCm ), o0
2 HY, k|2 De™™™ %], (k| y[he™,

m=—co

|z [>]y].
And from H” =H®, the expansion of H can be
easily concluded.
According to the previous theorem, the kernel
&d(x,y) of integral operator S have the following

expansion;

D(x,y) = iHé“(k le—y )=

é 2 H’(”l) (/3 ‘ X |)Jm(k ‘ y |)eil/'1(01_70>y) ,

I A
where x is source points and y is field points on the
boundary JD.
Suppose that y, is a point of 9D and | y— y, |
< |xz—uyo|s then the following multi-pole

expansion can be derived:

LD@(JC'»}/)gD(y)ds(y) -
£ ST H G D MG,
4)
where
Moo = | 1tk |y =30 DE™ 0 g dsy.
5

are called moments about y,, which are
independent of the source point x, and only need to
be computed once.

When point y, is moved to a new local point

y1» the moments of y, can be written as
M, = [ LGk |y =31 D™ g(nds(.

According to Theorem 2.1 we can evaluate the
following translation from M, (y,) to M, (y;),
M2M translation for short,

M, (y1) =

2 Mm(y())Jn m(k | Yo — M ‘)e o '“Wyo 1

m=—oco

(6)
Suppose that x, is a point close to the source point
x, thatis |2—x0 |<|yo—x0|. Then we can derive

the local expansion as

| otwedsy =

NP G | 2= g0 D™ M, (o) =

m=-—oo

i Z L[(Io)_][(k ‘ X — Xy ‘ )eil()f 0,
J=—oc0
where the coefficients are given by the following
moment-to-local translation (M2L translation)

L[ (Io) - 2 M,, (yo)H,(”D/ (k ‘ o — Mo ‘)eiﬁn De”(ﬁr“o .

D)
If the point for local expansion is moved from x, to
x1s then have the following local expansion

about 7 :

| oteyedsy =

i 2 Lm(II )Jm(k | X — ‘)eb”ox*’l»l .

m=—oco
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According to Theorem 2.1 and |xy— a1 | > |2—21 | »
the local-to-local translation (L2L translation) can

be obtained

14,”(1’]) - 2 Ln(To )]n*m (k ‘ Tl 71‘0 |> i m)H

®
Consider the multi-pole expansion of d® (x, y)/
dy(y), from the formulation

a@(l 9y)
dv(y)

we can derive that

IH (k| x— \)
du(y)

y

Z Hf,}></e|x—yo b

m=—

m
‘9)*)

1/710 (’)Jm(k | y ,’)/o |)e
v(y)
dy
la [>] vl

And further more, we have the following multi-

pole expansion

J' IP(x,y)
D

ENED () ds(y) =

- E HD (& | 2 — o )€™ % M, (y0) s

m=—ox

where the multl—pole moment M,,(y,) is given by
M, (yy) =

[ p Hultly=n De T (s,
It is obvious that d@(x,y)/dv(y) and @(x,y) have
the same Egs. (5) ~ (8). Although their multi-

pole moments are different, they have the same

multipole  expansion, local expansion and

translations of coefficients.
The derivatives of Bessel and Hankel function
are given by the following theorem"* ;

Theorem 2.2 Suppose f,=J, or H»? is the

Bessel function or Hankel function. From
the relationship
Fir @+ fr ) = 21,0,
o = Y o)
ntl dt Jn )
P (1) = i{t”f“(z‘)}, ne 7.

we can conclude that

fu) = %(f,, () — Foa (D),

for each integer n.

Assume that the boundary curve 9D is
analytic, with a regular parametric representation
of the form

2(1) = (D)2, (1))
() = (21 (D) a2 () tor € [0,27],

the outward normal v(x)= (a5, —x1). Then

| ot yedsy =

2n
| " )y (s drs
s(y() = V23 (o) + 25 (o).

The integrals are discretized with Nystrom
method, 1. e., straight forward approximate the

integrals by quadrature formulas. That is

27
| "ot 3 (0)ely )5y de =

2n

%Z)qxx(m N ey () s ()

=1
t; = in/n, r; = jn/n.
It is obvious that the resulting linear system
Ag=DB to Eq. (3) is unsymmetrical. If it is solved
by the conjugate gradient method of unsymmetrical
linear system, the results of A'¢ should also be
evaluated. Then the fast multi-pole expansion,
local expansion and translations of coefficients for

the following operators should also be formulated.
(8" @) = 5| T ds(y),

(7‘1/(1»3))
oo (x)

where W(x, ) =0(x,y), s(x) =+ 27 (D) +x2350.

Theorem 2.3 The integral operators S* and

(K" ) () = 5] () ds(y).

K* have the following multi-pole expansion:

s(x)J,yD\I/‘(x,y)gp(y)ds(y) =— %5(1) .

2 H? (b | 2 — Yo De 0y M,,(yo) ,

m=—oco

‘S(I)an REWeS p(yds(y) = s(x)
oo R a H’(l;z ) k o 1/;10
m;ﬁv(-r) ( ‘ = (,)Iyo ‘ ) Mm (y() ) ’
where the multi-pole moments and M2M

translation is given by
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Mn(y()) - J)DJ”I(k | y _y())eimg)ky() gD(y)d«\(y) .

M,(y) = D) M, ()]l | yo — ye™ "o,

m=—00

The operators S* and K* have the following local

expansion;

@[ W p(ds(y) =

—i.s(x) Z L]k | 2 —x0 [De P,

J=—c0

[ 2%y () —
s LD s =

A, (k| x—x [De o
dx

b

— ) 2 L)

|=—co

where the M2L and L.2L translations are given by
Lz (To) -

= im0,
DM, (v HZ k| 29— 3o e P,

m=—co

— ( ).
L,(x) = D) L))k | 2y — 2y [De ",

n=—oco

It is obvious that we can derive the same
formulae as the above operators S and K.
2.2 The fast multi-pole algorithms

The algorithm of the fast multi-pole method
goes as follows:

Step 1 Discretization.

For a given domain D, discretize the boundary
dD in the same way the conventional BEM. If the
boundary curve d D is analytic, we can discretize
the parametric representation x(¢) = (x, (£) x5 (£))
of aD with t;=2x=i/n, i=1,2,+,n.

Step 2

structures.

Determine the hierarchical cell

Consider a square that covers the domain D
and call this square the cell of level 0. Take this
cell (parent cell) and divide it into four equal cells
(child cells) of level 1. Continue dividing in this
way, that is, take a parent cell of level / and divide
it into four child cells of level /+1. Stop dividing a
cell if it only includes one point. A cell having no
child cells is called a leaf cell. Another method to
determine the hierarchical cell structures can be
used, that is, divide the square to [ level

straightly, where / is determined by the number of

the discretized points.

Step 3 Upward pass.

Firstly, compute the multi-pole moments (p
terms) at all leaves with Eq. (5) for every field
point y, where the point vy, is the centroid of the
leaf containing the field point y. Secondly, we
calculate the moments (p terms) of the parent cell
with the M2M translation, that is, Eq. (6), in
which y; is the centroid of the parent cell and y,
the centroid of a child cell. Continue calculating
the multi-pole moments of the cells up to level 2.

Step 4 Downward pass.

We first introduce some definitions. Two cells
at the same level sharing at least one common
vertex are said to be adjacent cells, When cell C is
a leaf cell, its adjacent cells also include the cells at
different level sharing at least one common vertex
with C, and the children of C’s adjacent cells are
also C’s adjacent cells. Two cells are said to be
well separated at level / if they are not adjacent at
level [ but their parent cells are adjacent at level
[—1. A cell C’s well separated cells also include
the cells which are leaves and adjacent to C’s
parent. The list of all the well separated cells of
cell C is called the interaction list of C. Cells are
called far cells of C if their parent cells are not
adjacent to the parent cell of C.

Now compute the local expansion coefficients
on all cells starting from level 2 and tracing the
tree structure downward to all the leaves. The
local expansion coefficients associated with a cell C
is the sum of the contributions from the cells in the
interaction list of cell C and from all the far cells.
The former is calculated by using the M2L
translation, with multi-pole moments associated
with cells in the interaction list, and the latter is
calculated by using the L2L translation, for the
parent cell of C with the expansion point being
shifted from the centroid of C’s parent cell to that
of C. For a cell C at level 2, M2L translation can
be used to compute the coefficients of the local
parent has no well

expansion, because his

separated cell.



1338 FEAFHARFFIR

% 38 %

Step 5 Evaluation of the integrals in Eq. (3).

Suppose that the values of ¢(y;) are given.
For a leaf cell C, we compute the contributions
from its adjacent cells directly as in the
conventional BEM. Contributions from all other
cells (cells in the interaction list of C and far cells)
are computed by using the local expansion, where
the local expansion coefficients for cell C have been
computed in Step 4.

Step 6

Update the iterative vector ¢ (y;) in the

Iterations of the solution.

resulting system Agp=0, and continue at Step 3 for
the matrix and unknown vector multiplication until
the solution converges within a given tolerance
using the conjugate gradient solver.

In these steps, all the infinite expansions are

truncated with p terms.

3 Numerical example

In this section, a two-dimensional acoustic
scattering problem is computed, based on the
FMM-BEM method described above. Consider the
scattering of a plane wave u' by a cylinder with a
non-convex kite-shaped

boundary dD illustrated in Fig. 1 and described by

cross section with

the parametric representation

dD:p(0) = (cos @+ 0. 65cos 20— 0. 65,1. 5sin ) ,
O < (9 < 27(9

where the direction of the incident wave u' is a =

(1,0).

i

<

A hN

/‘ u' N

Fig. 1 Kite-shaped domain and its scattering problem

Here we construct the hierarchical cell
structures with two different methods described in

Step 2 of the algorithms. The boundary integral

equation was discretized with Nystrém method.
The boundary
discretized to 2N points, where the parameter ;=
/N, i=1,2,

wave number k#=1 and the parameter = 1. The

parametric  representation  is

- 2N. In this example, let the

numbers of terms for both moments and local
expansions were set to 13 and the tolerance for
of the 107, Al
computations were run on a Windows PC computer
equipped with 3. 02 GHz Pentium 4 CPU unit and
1 GB of core memory.
Method 1 The
discretized to 2N points. Then construct L=log, N

convergence solution to

scattering boundary is

levels hierarchical tree structures, i. e. , the square
covering the domain is divided into 21 X 2F sub
squares. The cells containing the point at each
level are in the tree structure. It is obvious that a
cell and its well separated cells are at the same
level, and so are all leaves at the same level. So it
is very easy to find the interaction list of each cell
and the neighbors of leaves. But this hierarchical
tree structure has more branches, so the M2M,
M2L and L2L translations should be computed
more times. According to the fast multi-pole
algorithms we can solve the boundary integral
equation.

The average iterations of this method are 15.
The CPU time used for both matrix-vector method
and FMM in these calculations are plotted in
Fig. 2.

: ’
10000) iy ,
- 8OO0 FMM //
£ 5000/
Z 40001
o [
2000
300 1000 15300 2000
1\"
Fig. 2 The comparison of CPU time
for matrix-vector method and FMM
Method 2  Firstly, divide the square that

covers all the points into 4 equal child cells of level

1 . If these cells of level 1 include more than one
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Tab.1 Computed far field pattern at direction d=(1.0)
matrix-vector FMM(Method 1) FMM(Method 2)

N Re ue. (d) Im w () Re ue. (d) Im w () Re ue (d) Im u- (d)

8 —1.626 423 961 8  0.602 926 152 2 —1.6254528690 0.611054 226 8  —1.627 614 308 2 0.603 697 024 1
200 —1.627 457 479 4 0.602 225 888 8  —1.627 543 664 4 0. 602 965 500 6 —1.627 924 353 3  0.602 070 081 1
400 —1.627 457 482 2 0.602 225 909 0 —1.627 513 9834  0.602 596 043 9 —1.627 377 561 3 0.602 213 336 7
600 —1.627 457 483 6 0.602 225 916 8 —1.627 487 894 0 0.602 502 075 5 —1.627 329 896 6  0.602 227 148 7
800 —1.627 457 4838  0.602 225 919 0 —1.627 502 564 9  0.602 419 850 4 —1.626 975447 2 0.602 348 750 7
1000 —1.627 457 484 1  0.602 225 920 1 —1.627 497 724 1 0. 602 346 729 9 —1.627 048 984 9  0.602 417 041 8
1200 —1.627 457 484 5  0.602 225 922 9 —1.627 488 026 0 0. 602 368 205 1 —1.627 6953315 0.602 147 946 9
1400 —1.627 457 484 7  0.602 225 922 5 —1.627 500 223 9  0.602 349 178 8 —1.627 2955920  0.602 245 759 8
1600 —1.627 457 484 6  0.602 225 923 2 —1.627 492 7825  0.602 328 452 6 —1.627 421 860 9  0.602 279 060 9

2 000 —1.627 486 604 8  0.602 293 616 2 —1.627 215049 7  0.602 303 966 2

point, then divide it into 4 child cells of level 2.
Continue dividing in this way, that is, if a cell of
level L includes more than one point, it should be
divided into four child cells of level L + 1. Stop
dividing a cell if it only includes one point. The
cells containing the point at each level are in the
tree structure.

that this hierarchical

structure is compact, so the M2M, M2L and L2L

It is obvious tree

translations are less than Method 1. But it is
difficult to find the interaction list of each cell and
the neighbors of leaves, since they are may be at
different levels. According to the fast multi-pole
algorithms the boundary integral equation can also
be solved.

The average iterations of this method are 20.
The CPU time used for both matrix-vector method
and FMM in these calculations are plotted in
Fig. 3.

10400
S000
6000

4000

CPU time /s

2000

500 1000
N

1500 2000

Fig.3 The comparison of CPU time
for matrix-vector method and FMM

From this example, we can see that the FMM
of Method 1 consume less times than Method 2.

The results of u.. (d) at direction d=(1,0)
for this problem using both the FMM of these two
hierarchical tree structures and matrix-vector
method as the total number of points increase from
16 to 4 000 are shown in Tab. 1. Here Re u..(d)
and Im u..(d) denote the real and imaginary part
of u.. (d) respectively. The memory requirement of

FMM

calculations is plotted in Fig. 4. The memory

and matrix-vectors method in these

dispersion between Method 1 and Method 2 is less
than 1 MB,

300
— - — M-V ,/

400 —— I'MM /
2 P
L
E 300 /
5 /
a 200 /1
g ~

100 7

-
',/‘r . =
500 1000 1500 2000
N

Fig. 4 The comparison of memory requirement

for matrix-vector method and FMM

This example shows the computing time and
memory requirement of FMM is O(N), and it is
more efficient than the matrix-vector method for
large-scale problem. The results should be more
accurate if we increase the terms of moments and

local expansions.

4 Conclusion

The the FMM to

dimensional boundary integral equation method for

application of two-
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acoustic scattering problem was discussed in this
paper. The relatively expansions and translations
with the algorithm of FMM are constructed. Two
different hierarchical tree structures of FMM are
shown. The efficiency of these two tree structures
was shown in the figures. It can conclude that
Structure 1 consume less times than Structure 2. A
numerical example by using FMM BEM algorithm
developed in this paper is shown, the comparison
of CPU time and memory requirement of FMM
(O(N)) and the conventional BEM (O(N?)) is
given. It shows that FMM is more efficient than
direct computation approach for large-scale
computing problems.

Fast multi-pole method have been widely
used, it can also be applied to solve the multiple
and multilayered obstacles scattering problem for
acoustic or electromagnetic wave. In future work,
of FMM for

multilayered obstacles scattering problem will be

the application multiple and

considered.
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