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Feature reduction based on boundary conditional
entropy and its application in qualitative simulation
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Abstract: Some new definitions of knowledge rough entropy and boundary conditional entropy
were given from the aspect of Pawlak topology. These definitions accurately reflect an idea that
set uncertainty can be described by boundary region, which will measure knowledge and rough set
uncertainty more accurately. Meanwhile, an important conclusion was that boundary conditional
entropy of knowledge monotonously reduced with the diminishing of information granularity.
Through an example of spring qualitative simulation reasoning technology combined with
knowledge information entropy based on rough sets theory, a heuristic algorithm for feature
reduction was proposed that could be used to eliminate the redundancy in the qualitative
description and the qualitative differential equations were obtained from the spring physical
system. Experimental results show that the rough sets theory is of good reliability and prospect
in qualitative reasoning and simulation and that our algorithm is an effective method.
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0 Introduction

(RST), as a new

mathematical tool to deal with inexact, uncertain

Rough sets theory
knowledge, has been successfully employed in
machine learning, data mining and other fields
since it was put forward by Pawlak'. Tt is
established on the basis of classification
mechanism, which takes classification according to
equivalence relation'”). On the other hand, RST
holds that knowledge has granularity. The smaller
the granularity, the more concepts are precisely
expressed. That is, the finer the classification, the
smaller the granularity, and the more precise the
knowledge will be. Therefore, knowledge and

granulation are associated with equivalence
relation.

Meanwhile, uncertainty and its measure have
always been important issues in the study of
RSTH 3,

granularity
[5]

Wierman* introduces the definition of

measure, connecting  Shannon

entropy-” with uncertainty measure. Besides,
MIAO" discusses the relation between knowledge
roughness and information entropy, proving the
rough

monotony  of  knowledge

WANGY# defines the equivalence of feature

entropy;

reduction from the aspect of informational view and
algebraic view of RST and provides a reduction
algorithm of decision table based on conditional

). Liang ' defines a new

information entropy
information entropy that can be better used for
measuring rough sets and rough classification.

In the above study, knowledge rough entropy
failed to show accurately the reason for conceptual
boundary

uncertainty—the existence of

0~3] " The present paper defines a new

region
knowledge rough entropy and conditional entropy
based on boundary region, which can express set
uncertainty more accurately, and is an attempt at
solving measure uncertainty from the angle of set
topology ( Pawlak topology®* ). It provides a
feature reduction algorithm of decision table based

on boundary conditional entropy that will be used

in qualitative reasoning and simulation,
Qualitative reasoning technology began in
1980s. The publication of de ¢ Kleer’s vision based

[10]
s

on qualitative behavior Forbus’s qualitative

process theory (QPT)M and Kuipers’ qualitative
( QSIM P2 in  Artificial
Intelligence in 1984 symbolize the maturity of

simulation process

qualitative reasoning®. This technology holds
that as long as the system’s behavior is in
accordance with physical rules, it is applicable to
describe all possible states of behavior by using
non-numerical values. Qualitative reasoning is to
ignore the details and collect specific values of the
system’s variables at different times to simulate the
system’s behavior. But this method has a relatively
bigger knowledge redundancy. Thus, it is
advisable to delete the problem of knowledge
redundancy by using feature reduction method in
RST. The qualitative simulation of the spring
physical system uses attribute significance as a
heuristic algorithm for feature reduction together
with the technology of qualitative reasoning and
simulation. The result is in accordance with that of
the qualitative differential equation with qualitative

131, which further explains

reasoning technology
the important practical value of RST in qualitative

reasoning and qualitative simulation technology.

1  General meaning of conditional
entropy of knowledge

An information system is usually denoted by a
triplet S=(U,CUD, f), called a decision table,
where U is the universe which consists of a finite
set of objects, C is the set of condition attributes
and D is the set of decision attributes. With every
attribute « € C J D, a set of its values V, is
Each
information function f:U-—>V, such that for any
acCUD, and x€U, f(x)€&V,. Each non-empty
subset BCC determines an indiscernible relation
Ry = {(x»y>: Vae B, f,(x) = f.(y), 2,y E U}

Rp is called an equivalence relation and

associated. attribute a determines an

partitions U into a family of a disjoint subsets
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U/Rj called a quotient set of U

U/Ry = {[«T]B:I e U}
[ x ]B
determined by x with respect to B, i.e., [x]3=
{yeU:(x,y) ERy}.

The sets B, (X)={x€U|[x];Zx}, B* (X)=
{z €U |[x]lg N XF# @} are called B-lower
B-upper

where denotes the equivalence class

approximation  and approximation
respectively, where X U. The boundary region
of knowledge B is defined as BNz (X)=B"* (X)—
B. (X). Given a decision system S=(U,CU D,
f), B < C, partition of condition attributes
U/Re={X, X5, X, }» URp=1{Y,Y,,,Y,}
and partition of decision attributes U/Rp, = { D, ,
D,,++,D,}. The set B, (D) UB. (D,) U U
B.(D,) is -called the
classification induced by D and is denoted by
POSp(D). The set BNy (D) =U — POSp (D) is
called the B-boundary of classification induced
by D.

Definition 1, 110~

of knowledge B is defined as

B-positive region of

The information entropy

k
H(B) =— >, p(Y)log, p(Y.) (D
i=1

Definition 1. 2/ Conditional information
entropy of knowledge C with respect to D is
defined as

H(D | O =

— D p(X) D) p(D; | XDlog, p(D; | X))
i=1 J

=1
(2

where

| X, | | XN D |

U | X

From formula (2), we get H(D | C) =

P(X,) - ’ P(D] | X,) -

— D> p(X; N D) llog, p(D; N X)) —log, p(X) ],

i=1 j=1
thus when X; € POS: (D), we have log, p(D; (1 X;)—
log, p(X;) = 0. Therefore, the positive region of
the decision system has no effect on H(D|CO).

2 Conditional information entropy

based on boundary region

According to the definition of set topology'*,

set uncertainty is mainly caused by the existence of
boundary region. If it is empty, then the set is
Therefore,

it is quite reasonable to describe knowledge

accurate; otherwise, it is rough "%,

uncertainty by boundary region.
2.1 Boundary rough entropy and conditional
entropy of knowledge

Decision system S=(U,CUD, f), P,QZC,
defines partial order relation <:P=<Q&U/R,&
U/Rq. then P is more refined than Q (or: Q is
rougher than P). If P=<Q, and P#Q, then P is
strictly more refined than Q (or: Q is strictly
rougher than P), shown as P<<Q.

Definition 2.1 Decision system S= (U,CU
D, /), P, Q< C, the partition of condition
attributes P is U/Rp ={X;, X,,+*, X,,} and P’s
boundary region against knowledge Q is BNo(P),
the corresponding classification is BNg (P)/Q =
{(Gis Gy,

against Q and P’s boundary conditional entropy

=, G, }, then P’s boundary entropy

against Q are defined as follows respectively

En(@Q = > p(G)log, | G, |

t
i=1

E}W(P | Q) =

— DIpGH DI p(X; | Golog, p(X; | G
i=1 =1

Lemma 2. 1 Djecision system S= (U,CU D,
s P,QCC,XTU. If P=Q, then BNp(X)/P=<
BNqo(X)/Q.

Proof OrderU/P={X,,X;,+.X,,}, U/Q=
{(Z,sZy 40+, Z,}. Itis easily known that BNp(X)/PZ
U/P, BN, (X)/QCU/Q. Now to prove: BNp
(X)/PZBNL(X)/Q.

Order ¥ X; BNy (X)/P. From BNy (X)/PZ
U/P, we know X; ZU/P. Because of P=<Q, so
Z,€U/Q and X, &7,

On the other hand, because X;=BNy(X)/P,
X NX#0 and X; ZX. From X; &7, we have
ZNX#£0, Z, X, thus Z, CBNg (X)/Q. so
X, EBNo(X)/Q.

That is; BNp(X)/PZBN,(X)/Q is proved,
s0 BNy (X)/P=BNo(X)/Q.

Proposition 2.1 Decision system S=(U,CU
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D.f, P,QZC, XCU. If P=Q, then Epy(P)<<
Epn (Q).

Proof Because P =< Q, BNy, (X)/P =
BNg(X)/Q. Order BNp(X)/P={Y,Y;,*,Y,},
BNy (X)/Q={G,,Gy,++.G,; }. Because BNp(X)/P=<
BNq(X)/Q, for VY, we get Y, =G, and k=1,

Order 2=1Y,|, y=1G; |, so 1<<a<{y.
Besides
En(Q = Zp(G,-Hogz |G |=
\TZ \G \1ng|(1 | =
k
7‘(_] Z Gj‘10g2|G]“:
b
TZ log, v
Order f;(x)=xlog,x, because f;(x)=1/In 2+

log; x>0, fj( x) is an increasing function, therefore,

En(Q = T U 12 Zylogzy Ul U 2 2110821 =

Epv (P). That’s EBN(P)éEBN(Q).
From proposition 2.1, we know that if
knowledge Q is rougher than P, then Q’s boundary
region is not smaller than P’s,
Proposition 2.2 Decision system S=(U,CU

Daf)a P? Qgca U/RP = {X19X29 R Xm}’

BNo(P)/Q={G,,G3,**+,G,}, then Egpn (QUP)=
Ep (P|Q) —Ep (Q).
Proof
Exn(QU P) =

m

— Z 2p<X N Golog p(X; N G

=1 j=

Ep (P | Q) =

—Zp(G)Zp(X | G)log, p(X; | G =

m

—22p<x NG) -

=1 j=

m

*ZZMX N Golog: p(X, N G +

i=1 j=

E ZMXj N G log p(G)).

m

Additionally because ZJJ(Xj NG = p(G),
i=1

s0Epn (P |Q =En QU P)+ > p(G)log, p(G) =
i=1

Epn(Q U P) + Ep(Q). That’s Epv (Q U P) =
EBN(P|Q)_EBN(Q)-

Proposition 2.3 Decision system S=(U,CU
D,f), A,BCC, If A=<B, then Ep (D] A) <
Ep(D|B).

Proof Order U/R, =
BN, (D)={G, .Gy .G, }.

Because A=< B, then BN, (D) & BNy (D).
According to lemma 2.1, we have BN, (D)/A<
BNy (D)/B. Suppose BNy (D)/B=1{Gy,G,,++,
Gypo1s Gpr1s =" . G, G, UG,}.
According to proposition 2. 2

En(D] A =

{DM D29 "t Dm}’

g1 Gq+l s °°°

m

— >I37p(D; N GHlog, p(D; N G;) +

i=1 j=1
D p(GHlog, p(G))
j=1

EBN(D ‘ B) —

En(D| A — > p[(G, UG) N D] -
i=1

log, p[ (G, U G,) N D]+
»(G, UGPlog, p(G, UG +

m

DY p(G, N Dolog, p(G, N D) —
i=1

p(G)log p(G,) +

DY p(G, N Dolog, p(G, N D) —
i=1

(G log, p(G,)
So
AE - E]g;\r(D ‘ B) _EB;\](D ‘ A) —
— 2 lG, UGY N DT -
i=1

log: p[(G, U G N D, ]+
(G, U GPlog: p(G, U G +

m

M p(G, N DDlog p(G, N D) —
i=1

»(Glog, p(G,) +

D p(G, N D)log, p(G, N D)) —

i=1
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(G log, p(G,)

Additionally because >, p(D;, N G,) = p(G,),
i=1

DIp(D: N G = p(G). Thus
i=1

m

AE = > p[G, UG) N D]+
i=1

log, pl (G, U G,) N D:]1+

MG, UG N Dlog:p(G, U G, +
i=1

m

D1 p(G, N DDlog, p(G, N D) —

i=1

D1p(G, N Dolog, p(G,) +
i=1

m

D p(G, N D)log, p(G, N D, —
i=1

D1p(G, N D)log, p(G,) =
i=1

DG, N D) {log, p(G, N D)+

i=1

IOgZJ)(G/J ﬂ Gq) 7

log, p(G,) —log, p[ (G, U G,) N D. 1} +
EP(G(] ﬂ Dz){logZP(Gd ﬂ D,)"—

i—1

Ingp(Gli ﬂ Gd) o

log, p(G,) —log, pl (G, U G,) N D: ]} =

1 m .
ozl no i
logz |G/)DD1 HGﬁ UG(]‘
G, | (|G, ND; |+ G, "D D
|quDi"

log |GqﬂD1HG/)UGq|
Z‘G(1‘(|GI)DD1|+‘GQDD1|) )

Order |G, | =z, |G, |=y, |G,ND;|=ax,
|G, ND;|=by, obviously get 2>>0, y>0, 0<<a<l,

+

0<<b<1. then AE = ‘Tﬂz{mogz ar +ay |
i=1

ax + by

br +by| 1 < v
bylog; a.rJr/Jy} U] ;f,

IfaxXb=0, get f;>==0. 0<la<{1l, 0<<H<1

shall be only considered in the following.

Order ax=2, by=,, %:ﬁ, obviously get A>>0,

—1
g>0, 90 andf, = Alog, 208 1 glog, 102

AR

d(f)
d(®

AtB ’

d(f) __Ap—1)
hen d(];) :§€A+§B)'
d(fy) _dOD
d® ()
function f; gets the minimal f;|,=; =0.

The above shows, when AEZ=0, Euy (D] A)<<
Ep(D|B) is proved. The proposition shows that

SO9 <Oa O<6<1;

=0, =1

>0, 6>1. When 5:521,

boundary conditional entropy of knowledge
monotonously reduces with the diminishing of
information granularity.
2.2 Several propositions of knowledge boundary
conditional entropy
Some conclusions shall be given based on
boundary conditional entropy.
Proposition 2.4 S=(U,C,D) is a consistent
decision information system iff Egy (D|C)=0.
Proof
doesn’t have a boundary region, thus Egy (D|C)=0;
(<) order U/Rp = {D,, D;, -+, D, },
BNc(D)/C={G, .G, ,++,G,}. From Egy(D|C)=0
surely there is p(G;) =0 or P(D; |G)=1. If

P(D;|G)=1, then G=D;, that is, GGE=POS-(D),

f—

(=) consistency of decision system S

which is in contradiction with the formula G; &
BN¢(D). Therefore, p(G,) =0, i.e., G=0
means that the system doesn’t have a boundary
region. So, when Eyy(D|C)=0, S=(U,C,D) is
a consistent decision information system.

Proposition 2. 5 Decision system S= (U, C,
D, PSC, reP. If SS=(U,P,. D) is
consistent, then

POSp(D) = POSp(,, (D)&
Ep(D | P) = Epv(D | P\{r}).

Proof Because P C, S'= (U, P, D) is
consistent, i. e. , POSp (D) = U, according to
proposition 2.4 we have Egy (D | P) =0. Order
BNpy,; (D)/P\{r}={G1 .Gy, G, }.

(=) because POSp (D)= POSp,, (D) =U,
then BNp(,, (D)=, surely there is p(G,)=0, so
Epv(D|P\{r})=0, then Epy(D|P)=Eg (D|P\
{ri.

(<) because Egy (D|P) =0, Egp(D|P\{r})=

0, according to proposition 2.4, we have
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BNp, (D)=@, that's POSp, (D) = U, so
POSy(D)=POSp,, (D).

Proposition 2, 6 Decision system S= (U, C,
D, PSC, reP. If S=(U,P, D) is
consistent, then

POSp(D) # POSp,, (D)&
Ep (D | P) 7 Ep(D | P\{r})

Proof Because P C, S'= (U, P, D) is
consistent, i. e., POSp (D) = U, according to
proposition 2. 4 we have Egy (D| P) =0, POSp (D)7
POSp(,, (D)= POSp,, (D) #AUSBNp,, (D) # 0
SEp (D[ P\{r})#0=Ew (D|P)#E (D] P\
{rp).

3  Qualitative simulation and reasoning
with feature reduction based on
boundary conditional entropy of

knowledge

Knowledge entropy based on boundary region
definition and conditional information entropy are
considered by observing the basic cause of
knowledge uncertainty, so it can more accurately
reflect the essence of the issue. In addition, the
informational view of boundary conditional entropy
includes the conclusion in the algebraic view.
Thus, we can use boundary conditional entropy as
heuristic knowledge for reduction algorithm.

3.1 Heuristic algorithm for feature reduction based
on boundary conditional entropy

Definition 3.1 Decision system S= (U,CU
D, ), BE&C, the significance of 6 in B with
respect to D is defined as

Sigpy (D | {b}) = Epy (D | B\{b}) —Exy(D | B

We know such important conclusions as
information entropy is monotonously decrease with
the diminishing of information granularity.
Because B is more refined than B\ {6}, therefore,
Sigamu (D] {b}) =0. Definition 3. 1 C(attribute
significance) shows that 4 is important in B, which
can be measured based on the increment of
boundary conditional entropy. Especially, when
system S=(U,CUD, f) is not a decision system,

Le , D=0, then we can consider Eu (O] B)=H(DB).

Proposition 3. 1 5 is necessary in B when
Sigp ) (D] {b})=>0.

Definition 3.2 Decision system S= (U,CU
D,f), BCC, a €& C\B, the significance of a
relative to B with respect to D is defined as

Sigs(D | {a}) = En(D | B) —En(D | BU {a})

The above ( attribute

significance) shows that the greater change of

definition relative
boundary conditional entropy of knowledge caused

by adding an attribute, the more relatively
important this attribute is. Thus, it is possible to
use attribute significance and attribute relative
significance as heuristic knowledge for feature
reduction.

Algorithm 3.1 KIEBAFR (knowledge information
entropy-based algorithm for feature reduction).

Input: Decision system S=(U,C,D);

Output: A feature reduction Red of decision
system S=(U,C,D).
Step 1 Calculate the boundary conditional

information entropy Epy (D|C)
Step 2 For any ¢ € C,
significance of ¢ in C: Sign ({c}) and then obtain
Red={c|Siga; ({c})=>0};
Step 3 Repeat:
(1) Calculate
information entropy Epy (D|Red). If Egxy(D|C) =
Egv (D | Red), output a reduction set Red and

calculate the

boundary conditional

stop. Otherwise, continue (][ ).

(II) For each attribute a € C\Red, calculate
Sigra ({a}); select attribute a, to make Sigrq ({a})
the maximal, and compute Red=RedU {a,}, go to
CIO.

Next to analyze the time complexity of the
algorithm:

Step 1

equivalence is needed, which involves, comparison

For each x € U, calculation of the

of a number of |U|—1 objects on |C| attributes,
thus ti

Step 2
when Sign, ({c}) is computed for {c}.
C

Time complexity is OC|C| |U |?)
In the

time need to be circulated, so

worst condition,
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Time complexity of ( 1) is OC[C|*|U|?), in
the worst condition, |C| time need to be circulated, so
time complexity is OC|C|®* |U|?). So, the time
complexity of the algorithm is OC|C|?* |U|?).

3.2 Heuristic algorithm for feature reduction based
on conditional entropy '

Definition 1.2 (conditional entropy) shows
that B is important in C, which can be measured
based on the increment of conditional entropy

H(D|B). Therefore, WANG

heuristic knowledge reduction algorithms based on

presents two

conditional information entropy, that is, a

conditional entropy based algorithm for reduction
of knowledge with computing core (CEBARKCC)
and a conditional entropy based algorithm for
reduction of knowledge without computing core
(CEBARKNC). CEBARKNC is given as follows.

Algorithm 3.2 CEBARKNC

Input: Decision system S=(U,C,D);

Output: A feature reduction Red of decision
system S=(U,C,D).

Step 1
entropy H(D|C);

Step 2 For any ¢ € C,

significance of {¢} in C: and then sort descending

Calculate the conditional information

calculate the

according to the conditional entropy of H(D|{c});

Step 3 Order B=C, for any ¢ € C, select
attribute {c¢} in descending order of importance of
H(D]|{c}), repeat:

( 1) Calculate conditional information entropy
H(D | B\ {c¢}) when attribute {c¢} is removed
from B;

() If H(D|C)=H(D|B\{c}) then {c} is a
redundant attribute, so B=B\{c}; otherwise, {c}
is necessary in B, so B=B.

The time complexity of CEBARKNC is
OC|U|*) shown in Ref. [ 8]. So the time
complexity of KIEBAFR algorithm is less than
CEBARKNC algorithm.

3.3 Example analysis

For example, as shown in Tab. 1, a reduction
set {a, e} is obtained by CEBARKNC and
CEBARKCC™!,

% 38 &
Tab.1 A decision system
U a b c e d
1 1 0 1 1 0
2 0 1 0 1 1
3 0 0 0 0 0
4 0 0 0 1 1
5 0 0 0 1 1
6 0 0 0 1 1
7 0 0 1 1 1
8 0 0 1 0 0
9 0 0 1 1 1

The decision classes of objects are: D, ={1,3,
8, D,={2,4,5,6,7,9}. The condition classes of
objects are: X, =1{1}, X, ={2}, X;={3}, X, =
{4,5,6}, X;=1{7,9}, Xs=1{8}.

According to CEBARKNC, compute H(D|C)
first
0

(o} + 0k 3

H(D | C) =— 1

o
[i—
|

S
L8

\
+
<}
(S

—
[

o
o
9)
[0j¢]

L

log, 1 + 1

—_— — — ——
= o wlo == —lo o=
o
w
—_—
\

l
o

©ol— ©olv ©lw o|l— |-
w
: ? : :
—lo oo wlw =o ==
~— ~— \_|/ ~— ~——

—

iS)
g
N~

Then compute H(

(*1ogz =+ %log, f)—

HD | {a}) =— -

o=

%(%logz % +%10g2 %)} —0.217

Similarly, we can get H(D|{b})=0.217, H(D|
{¢})=0.255, H(D|{e})=0.518, then H(D|C\
{e})=0.198, H(D|C\{c})=0, H(D|C\{b})=0,
H(D|C\{a})=0.09, so we can get B={a,e}.

From definition 1. 2, if X; € POS: (D), then
the positive region of the decision system has no
effect on H(D|C). Therefore, many equations are
computed in conditional entropy just like H(D|C).
Our method, that is, boundary conditional entropy
doesn’'t need to compute the classes X; if X, €
POS-(D).

According to our method KIEBAFR, because
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BNq(D)/C= @, then easily get Eg (D] C)=0.
Next, we calculate the significance of {e} in
attributes C. Because BN, (D) /C\{e} ={{3,4,
5,6,{7,8,9}}, therefore

Sigv (D | {e}) =— {%(%10& % +%1ng %)+
S Ly e L2y 2\ _
§< 3logz 3 -+ 3logz 3 )} =0.198

Similarly, we can get Sign. (D | {c}) = 0;
Sigevg (D {6})=0; Signw (D] {a})=0. 09, so
Red={a,e}. Compute Epy (D]|Red) =0, because
Eu(D|C)=Eg (D|Red), output a result: {a,e},
stop.

3.4 Application of KIEBAFR

simulation and reasoning

in qualitative

Take the qualitative simulation of physical

(8] four variables can

system of spring by example
be described as follows: (] ) x, means the position
of the object; (ID v, means the velocity of the object:
v=dx/dt; (Ill) a, means the acceleration of the
object: a =dv/dt; (V) f, means the strength
exerted by the pulling object. The qualitative
analysis obtains knowledge expression system for
qualitative description of spring physical system as
shown in Tab. 2%, i, e., S=WU,C={[x],[ ],
Lal,[v]}.

Tab.2 A qualitative descriptive knowledge system

The qualitative differential equations of the
spring physical system can be obtained by KIEBAR
algorithm. i.e., [ f1=[al, [ f1=[x], [a]=[x].

The explanation is as follows: In the
qualitative expression information system, {[ v ],
[x]} is the reduction of the original qualitative
expression system (Fig. 1), which shows that it
makes no difference to the classification ability of
the original knowledge expression system whether
to delete [a]’s or [ f]’s attribute, so [a] and [ /]
have a consistent effect on the information system,
marked as [ f] = [a ], and the first qualitative
differential equation is obtained, so [ f]=[x],[a]=
[x]. The result is in accordance with that of the
qualitative differential equation after the qualitative
calculation of f=ma (m is the mass of the object)
and f = — kx (k is the modulus of spring
flexibility) .

knowledge expression system accords with physical

In other words, as long as the

rules, we can surely obtain the qualitative
differential equation by analyzing the state of the
physical system, constructing the qualitative
expression system as well as using the method of
RST, even if the qualitative equation is unknown;
Vice versa, the qualitative differential equation can
also be a guidance to estimate the qualitative

equation of the system (when it is unknown). To

U [x] L/] [a] [v] . . .
Sl T = - T summarize, RST is a powerful method in data
S2 + - - 0 mining.
S3 + — — —
St 0 0 0 + 4 Experiment result
S5 0 0 0 0
S6 0 0 0 - The experiments are performed on several
S7 — + + + . . . .
different real-life data sets obtained from UCIL
S8 — + + 0
S9 — + + — Notice that some of the data were discretized by
Tab.3 Experiment result of CEBARKNC and KIEBAFR algorithm
ucl condition attribute condition attrlbuteA numbers record CEBARKNC/s KIEBAFR /s
numbers after reduction numbers
iris 4 3 150 5.391 4,031
liver-disorders 6 3 345 38.423 31.922
mushroom 21 7 100 1. 953 1. 484
700 16 14 101 2.172 1. 875
balloons 4 3 20 0. 140 0. 094
letter 16 13 800 1 021.997 881. 859
vehicle 18 3 846 832. 563 291. 547

[Note] Experimental environment; Windows XP, P1. 6GHz,512M, Matlab 6. 5
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Rosetta, a rough set toolkit. Simulation result
(see Tab. 3) shows that KIEBARF algorithm is
more efficient than CEBARKNC.,

5 Conclusion

The existence of the boundary region is the
major cause of set uncertainty. The information
entropy and rough set entropy in general meaning
can’t explain it clearly. Based on this, the present
paper puts forward the definition of knowledge
boundary rough entropy and boundary conditional
entropy, and describes some algebraic views in
RST by using the method of boundary conditional
establishes the connection with the
RST.  These

conclusions also guarantee the feature reduction

entropy,
algebraic view of important
algorithm based on boundary conditional entropy.
Qualitative simulation of the spring physical
system shows that RST is a powerful method for
data mining and of good reliability and prospect in

qualitative reasoning and qualitative simulation.
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