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Abstract: An implicit compact difference Padé scheme was improved to solve the fully nonlinear
Korteweg-de Vries (KdV) equations and Ito-type coupled KdV equations. Particularly, this
method was applied to study the behaviors of solutions of compacton and Ito-type coupled KdV
equations. Numerical results show the effectiveness of this scheme.
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partial differential equations. For more details

0 Introduction about compacton solutions, consult Refs. [1~4].

compacton-producing
(2] .

In recent years, exact compacton solutions to An  example of a

a large number of nonlinear partial differential
equations have been found. It is the realization that
such equations possess special solutions in the form
of pulses which retain their shapes and velocities
after interaction between themselves. The
existence of such stable solutions is due to a

balance between dispersion and nonlinearity in the
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equation is the K(z,j,p) equation

w B, By, + B w)s, =0, L D
isjop > 1 J

In particular from the exact solutions of Eq. (1) for

370, the range of the nonlinearity parameters i,

j» and p for which compacton solutions are allowed

is 2<Li=j = p<5 whereas for §5 = 0 the
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corresponding range is 2<li=j = p<_3.
We will first show for B 7 0, the exact
solution of (1) is*
A, cos’ (B, (x — X)),
ulx,t) = | B,(x—2) [< /25 (2)
10 ,otherwise;

where §,,A, and B, are constants for n=2,3 and 5

respectively. For the K(3,3,3) equation,

83 - 29A3 - 2 %9
o (3
1 [T, 368 J
Be=1N "5 = Te0p

and for the K(5,5,5) equation,

1
15A
5:1,A5: =2
5 e l

(€Y)
_ 1 [34B , _ 225B° J
BN g 1 156p"

The fifth-order fully nonlinear K (i, j, p)

B;

equations (1) and wuseful for describing the
dynamics of various physical systems.

Another class of partial differential equations
that has soliton solutions with compact support is

[4

the Q(i,j, 1) equation’, which admits a linear

subclass of travelling solutions:
w, +aCu™), +oluC), ). +oluu') sue ]. = O.
(&)
In spite of the differences between the quintic
dispersion terms in Egs. (1) and (5), the emerging
patterns are quite similar. Unless otherwise we
shall assume that a = w = 1. To find traveling
waves with a constant speed we define s=x — Az
and integrate once to obtain
— e+ ut Fuld) +oulu)y, = Cy (= const. )
(6)
Disregarding the integration constant we cast Eq.
(6) into the obvious product ul [u (s)]. In
particular, if i/=j=/, we obtain a linear equation in
L[V (s)] where V=u',and
LIV()]=—2A+V+V +oV,=0. (D
Eq. (6) has one particular class of compacton

solutions which depend on special values of §, for

Ve j%cosumsm, | VA s < ms
S) —
lo

,otherwise;
(8)
for §=0. 09,

JZ/\[Z*COS(«/A7.$>]COS4(«/Af.S'/Z)a
| VA s < m;

0,otherwise;

(9)
where A — = (1— /1—48)/25. Finite difference

and finite element methods have been developed to
[5]

study K (n,7n) equations by Ismail and Taha In

this Paper we develop an implicit compact
difference Padé scheme to solve the generalized
Korteweg-de Vries (KdV) equations.

Besides, coupled nonlinear equations in which
a KdV structure is embedded occur naturally in
shallow water wave problems''™. We will use a
numerical method which is similar with the
methods dealing with K(;2,7n,n) equations to study

Ito-type coupled KdV equations.

1 Implicit Padé schemes

We will use the following notations for our
difference methods: The approximate numerical
value of u at the grid point (x,t) = (mh,nk) is
denoted by «,(m=0,1,+,M, n=0,1,-,N). u"
denotes the numerical value at nAz, while w,
denotes the numerical value at mAx. Here we set
h=Ax and k= Ar.

The first, second, third, forth and fifth space
derivatives (fo=f"s fu=1"s foe =17 s frovee ="+

s

S = f ) may be replaced by the functional

values using the compact expression*™ ;

a, ,‘1:71 _|_](H/z +aﬁ:ﬂ -G M +

6h
])1 f111+2 Z;L_fnzfz +Cl1 fm*] Z_h'f”171 , (10)
7/ 4 m _2 m+ m—
QJm 1+fl:,z/+af1:171 —C2 f 2 922 f : =+
2210 — 12 0 —
[)2 fm 2 4{;1+f111 Z+Cl2 fm+l };];‘I/l+flll 1 , (11)

afmtfntafin=
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bg fm+3 3ﬁ71+ +3fm 1 fm o+

8h?
as fm+2 _me+12<|};32f/"71 7f,”72 , (12)
f/lrl 1 ﬂ// a /rll/Ll -
b/l fm+3 _9fm+l +16f1‘/11 _9fm*l +fm*3 +
6h
a fm}274fm\ 1+6}{/1/7174fm*1 +fm*2 , (13)
aﬂ}z 1 _'_f::{”_'_a //n/ll -
b ﬁnﬂ 710][‘!11*2 +16f;11v1 716_][/71*1 _’_10]{;7172 7,][‘/11*/1 _'_

0 12k°

‘fnr‘r:% 74][‘1714’2 _’_5](‘1714’1 75](‘117*1 _’_4][‘171*2 7](‘117*3
ds 2}13 .

(14)
According to Talor expansion, to reach a
O(h*) in  the

approximation (10)~(14), we only need"*

*%(0{‘5—2)9 by :%(4a

truncation error of order

*1>9 C1 :O§

a :§<1—a>, by :%<—1+1oa>, ¢ = 0
Cl3:29f13:2a_1;
(14:2(17(1)3 b4:40/71§

ds :39 bs :2(1_2.

15)

If we set

Euy = wyy s

“ 1 1 1

p=5 (E* +E),

§=E'—E*,

[ P

§=5E—ED,

1
= S(E+ED.

F¥=E—2+E",

B = %(E»H?)(E Et)=
1 N
S(E—E" =6,

o = HE+EDE-E") =
1 2 2
(B E?),

Then Padé simulation of space derivatives ( f, =

f/7f11 ]H/ .Lll f// l./l.ll 7]d/// f.lll.l_l_f//,”) Wlth

a truncation error of O (h') can be written as

operator form as follows:

Ut 20 fl= - rged + aid) fors (16)
(U200 fi= 50 + @) fs an
1+ 2a) f1= 15 (0,0 + @88 [+ (18)
(1+ 2q0) f=

}11[ ( 56+~ 84>+a164]f,,,, (19)

(14 2a0) f=

In this section we only consider the case i =

+ %5&1 JFassst £ 20

j=p=3in Eq. (1), therefore, we assume B =
B=1, g = 36/169 in
computation, so we get

u, + W, + @) + W) e = 0. (2D
Leti =u, and f=u'.g=u' . h=u’.

order to simplify

In order to
simplify computation, we set by =0 in Eq. (15)
then we get « = 1/2. Using Egs. (10), (12) and
(14), then at the (n+1/2)th time level, Eq.
(21) becomes

1

. . 1.
?um 1 + Uy, + ?um—H +
Py(foe =10 000 —10f0 — fir2) +
PS (gm-‘rZ - Zgnr‘rl + ngfl - gm*Z) +

Ps(—h,i +18h,15 — 62h,,5 + 74D, —

74h,, +62h,,» —18h, s +h,—) = 0, (22)
where Py =1/12h, Py = 1/h*, P; = B3;/12h°. This
scheme has a truncation error of order O(h").

We use a two time levels (n, n + 1)

scheme, taking

2 = %w;,ﬂ O (23)

and employing the midpoint rulet® to improve the

accuracy and stability. Here,

wM = %(uiZH +up) s (24)
S = (u’*l”?)i,]
g = (Y, (25
RV = (utVE) P,

The advantage of using the midpoint rule
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rather than an explicit method, is that the
midpoint rule does not have the rigid time step
restriction At=0(h"). Of course, we pay for this
by having to solve a system of nonlinear equations,
but this can be done by Newton's method 1 which
is very fast in convergence.

To study the stability of the scheme (22), the
von Neumann method " is applied to the linearized
version of this equation. The K(3,3,3) equation is

linearized by freezing the terms which give nonlinearity.

When i=j=p=3, Eq. (21) can be written as"'"’
G =) G — g+ Gl —
24h6|:(u;'#2 + 10“1#1 — 10w — u;;tlz) + Cutjyrs + 10014

k 1 1 1 1
e G[(uiwz - Zu;/rH + 2up™y — ulrz) + (u;frrz

k
IR

(— s + 185 — 620 + Tduyy — 74wy + 62w, 5 — 18w, 5 +

Substitute u”, =™ Pt =£meP" where £=e*, and

after some manipulations the amplification factor is

given by
ok A - ZB
where
A=cosf+1,
B = [12ha(sm 20+ 10sin 0) +
K 5(sin 20— 2sin §) + 28, (— sin 40+
h® 12n° 7
18sin 30— 62sin 20+ T4sin 0) |
0= Bh.
From Eq. (29) we can deduce that
| et | =1 (30)
for all 6.
So this scheme is unconditionally stable in the
linearized sense. However, for the nonlinear

version, we have noticed that this scheme blows up
after certain time steps. Even if we reduce the time
step size, this can delay the blow up but it will not

prevent it. So in order to overcome this difficulty, an

L du P (o Ou
u + 3u 91+31'2 (3u 3’[)_’_&

s (2 55) =0
(26)

Now by assuming ¢ = 3u®, where u is
considered to represent locally the maximum value

of u,the resulting linear equation is

u; +0’7+6

= 0. 27

Since this scheme(22) ~ (25) is a system of two
level schemes,it can be expressed as the following

linearized version,

HrH ) +

— ZHZfrH + 2Up — Uy )] +

1 1 1 1 1 1 1 1
s ol (—uplly 18wty — 62wy + Tdugh — T4 + 62wy — 18wy +w ) +

117*4)] (28)

artificial dissipation term ed®u’ ! is added to Eq. (22).
Now by the addition of the dissipation term to
Eq. (28), the amplification factor of Eq. (29)

alters and satisfies the following condition;

AZ BZ
@rorrEsl @D

| et |2 =

where C=4¢ = (cos §—1)*>0 if we choose ¢<0.

3/1(’

The choice of ¢ is a delicate matter which we
can choose as small as possible in order not to lose
the accuracy and the properties of the differential

equations.

2 Modified implicit Padé schemes

For a=w=1 cases, Eq. (5) can be written as
w, + @) Fu, ) Fud) e +
ou, (u') e +0u ') e = 0. (32)
Set ¢« =0 in Eq. (10), the first space derivative
(u,=u") becomes

/T U2 + 8um+l 7 81’{111*1 _'_ u

m—2 4
Um — 12/1 JFO(}l ). (33)

So the semi-discretization of Eq. (32) in space can
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be expressed as below at the point of Az,
u+ @D A0, ) et (W) e 00, (U e
O, (U e OO [, + (W) e ] = 0,

(— tprs + Sttyrr — Sty + 1t 2) /(120).
Let f=u'"",
computation we set b, = 0 in (13) then we get
a=1/4 in Eq. (15), thus at the (n+1/2) th time

Unm

g=uw, h=u'. In order to simplify

— 2}?,. + for >+

)+

_ Shm 1 + 4hm 2 hm 3

(35)

(34
where level, Eq. (34) becomes
l . . l . fnrH 7 fnhl l . f‘er’Z 7 2](‘/71 + f‘m*Z f‘/rrH
4“/7171_'_“/11_'_ 4um+l+Pl< Zh )+P2< 2 4}12 +
1 8mts — 3gm+l _'_ Sg/rhl — 8m3 8mt2 — ZgnrH _|_ Zg/rhl — 8w
s(— = = 2 . 3
Py < 2 8h’ + 2h’
hm“rz _ 4h11‘r‘r1 + 6hm _ 4hm 1 + hm 2 hm“r% _ 4hm+2 + Shm—H
P 4< h' >+ ps (3 2h°
l . h‘m+/1 - 1Ohm+2 + 16hm+l - 16/1//1*1 + IOhNhZ - hnh’l >: 0
2 12h° ’
where

P, =3/2,P, =v,,
P; = u,,P, = 3/25v,,»Ps = du,,.
The scheme has a truncation of order
OG> +nh" +u, b+ @), k4 W) k™).

Due to the lack of smoothness at the edge of a
compacton, u, is not continuous at the edge of
the of ().
infinite at the same point.

According to error estimation above,the oscillation

curves, therefore, value is

unpredictable or

at the edge of solution curves appears, which will
be shown in Example 3. 2. However, by continued
mesh refinement, the numerical solutions of the Q
(i,7,1) equation (5) will become less oscillatory at
the tail of curves.

The
K(3,3,3) equation.

stability analysis is similar to the

3 Numerical examples and results

To illustrate the efficiency of the proposed
the

dynamics of solutions of the model equations (1) and

numerical method in studying nonlinear

(5), some test examples are solved in the following.
In this example we first show
the accuracy test result of K(3,3,3) and K(5,5,5)

equations in Tab. 1.

Example 3. 1

We also show the single
compacton propagation in Fig. 1 for the initial

condition

Acos’ (B(x —a¢)) s

| Bla—x) | < n/2; (36)
0, otherwise;
where §,A and B are defined in Eq. (3) for K(3,3,
3) ;assuming B =, =1.

L{(l‘ao) —

Example 3. 2 In this example we first show
the accuracy test result of Q(2,2,2) equation™"
w4 @)+ W) ) 0w’ ), = 0
(37

in Tab. 2 with the exact solution: for §=0. 16
4/%/\COSZ(\/A—(I*/\ZL)/2)9
u(fyf) -
1 | VA (x—2) | <
0, otherwise;

and with the exact solution: for §=0. 09,

(38)

u(l‘»t) —

\/ZA[Z—COS(«/A (x—Xx)) Jeos’ (VA _(x—X)/2),
1 VA (x—x) |< 7

0, otherwise.

(39

Next, we proceed to show the single
compacton propagation in Fig. 2 for the initial

condition

\ /%Acoswmfu—xo)/zx

40)
| VA (x—z0) | < x;

0, otherwise.
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Tab.1 Accuracy test for one-compacton experiment of K(i.j,p) equation (1) with the exact solution (2) ,where

B = P> =1. Periodic boundary condition,x, =0. K(3,3,3) and K(5,5,5) equation with N points at =10, k=0, 01

N K(3,3,3) K(5,5,5)
) L, error order L.. error order L, error order L.. error order
50 6. 08E—03 — 2. 44E—02 — 1. 40E—02 — 8. 54E—02 —
100 4. 67TE—04 3.70 3. 48E—03 2.81 3.33E—03 2.07 4, 09E—02 1. 06
200 4. 06E—05 3.52 7. 40E—04 2.23 5. 67E—04 2.55 1. 06E—02 1. 95
400 2. 84E—06 3. 84 9. 51E—05 2.96 1. 24E—04 2.19 4, 98E—03 1. 09
0.4 0.4 0.4
0.3 03 0.3
< 0.2 5 02 502
0.1 0.1 0.1
0 0 0
-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
x x x
(a) =0 (b) =50 () =100
Fig. 1 The single compacton solution of K(3,3,3), xo=0, A=0. 1. The initial data is taken

as Egs. (3) and (36), using 400 points in [ —10,20].

Tab.2 Accuracy test for one-compacton experiment of the Q(2,2,2) equation (37) with the exact solution (38)
and (40). Periodic boundary condition,x,=—5,6=0. 16 and 6=0. 09 with N points at t=10,k=0. 01

. 0=0.16 0=0.09
A L, error order L.. error order L, error order L.. error order
375 3.25E—03 2. 41E—02 — 4. 91E—03 — 3.58E—02 —
750 8. 32E—04 1.97 8. 93E—03 1.43 1. 42E—03 1.79 1. 39E—02 1. 37
1500 2. 67TE—04 1. 64 3.93E—03 1.18 3. 86E—04 1. 88 5.66E—03 1. 29
3000 9. 93E—05 1. 43 1. 84E—03 1. 10 1. 27TE—04 1. 60 2.55E—03 1. 15
0.6 0.6 0.6
0.5 0.5 0.5t o0.08
0.4 0.4 0.4 =0.04
0.3 0.3 0.3 0
2 S
0.2 0.2 0.2 0 4 8
0.1 0.1 0.1
0 0 0
—-0.1 -0.1 -0.1
-20 -10 0 10 20 =20 -10 0 10 20 -20 0 10 20
x x x
(a) =0 (b) =50 (c) =100

Fig. 2 The single compacton solution of 0(2,2,2), §=0.16, x,=—5, A=0. 1. The initial data is taken
as Eq. (39) ., using 2 667 points in [ —20,20].

also

We

show

the

single

compacton

propagation in Fig. 3 for the initial condition:

u(l’»O) —

the accuracy test for K (2, 2) and K (3, 3)
equations” in Tab. 3.

K(2,2) equation

«/ZA[chos( VA _(x—x0)) Jcos? (VA _(x—x0)/2) s
1 | VA (x—x0) [ < m;

0, otherwise,

Example 3. 3

4D

In this example we first show

w,+ W), + W)y =0

has the exact solution

U, (Ia

0, otherwise;

42

5 _J%UCOSZ(E/@, lel=|x—u | < 2x;

(43
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0.10
0.4 0.4 0.4 ‘%% J \‘
0.3 0.3 0.3 Lo T
20.2 20.2 302
0.1 0.1 0.1
0 0 0
-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20 10 -5 0 5 10 15 20
(a));=0 (b) =50 © =100

Fig. 3 The single compacton solution of Q(2,2,2), §=0.09, x,=—5, A=0. 1. The initial data is taken
as Eq. (41), using 3 000 points in[ —10,20].

Tab.3 Accuracy test for one-compacton experiment. Periodic boundary condition,v=2,x,=0. K(2,2)
and K(3,3) equation with N points in[ —10,50] at t=10,k=0. 1

‘ K(2,2) K(3,3)
N L, error order L.. error order L, error order L.. error order
50 3. 45E—01 — 1. 90E—00 3.31E—01 — 1. 78E—00 —
100 5. 85E—02 2.56 3. 64E—01 2.38 7.65E—02 2.11 6. 12E—01 1. 54
200 1. 16E—02 2.33 8. 43E—02 2.11 6. 26E—03 3.61 7. 14E—02 3.04
400 2.07TE—03 2.49 1. 53E—02 2. 46 1. 32E—03 2.25 1. 87TE—02 1.94
with below initial condition term 8w’ is added to this scheme for K (n,n)
4 veost (x/4) | x| < 2m; equation, where e >0 according to stability analysis.
u(x,0) =43 . (44) Because they all bear compact support,
. 0, otherwise. “compactons” interact with each other until the
K(3,3) equation moment of collision. Therefore, the initial
u 4+ @), + @, =0 (45)

has the exact solution
u(x,t) =
{i V30/2c08(&/3), | &= x—u | < 3n/2;
0, otherwise.
(46)
We the

inital condition

- {«/ 3v/2cos(x/3), | x | < 3n/2;
M(‘Tao) —

0, otherwise.

solve Eq. (45) subject to

conditions are delicately chosen to give three
compactons on a collision course.
For the collisions of K (2, 2) equations, as

Fig. 4, with the following initial condition

3
w(z,0) = D> u.,; (x,0) 47
j=1

4y cos ((x—D)/A)s | 2 — D, |< 2ns

w, =13

0, otherwise;

For implicit Padé scheme,an artificial dissipation (48)
3.0 3.0 3.0
2.0 2.0 2.0
N S S
1.0 1.0 1.0
0 0 0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
X e X
(a) =0 (b) =18 () =45

Fig. 4 The evolution of three K(2,2) compactons with speeds v=2,1.5 and 1

starting with centers x=10,25 and 40
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D1 :103D2:25,Dg:409
'111:2,‘1)2:1.57'113:1.0.
For the collisions of K(3,3) equations,as Fig.

5,with the following initial condition

3
w(x,0) = D> u.; (x,0), (49)
j=1
u(.,j(.r,O) =
{«/(Svj/Z)cos((x—Dj)/S), | 2 —D; | < 3n/2;

0, otherwise;
(50)
where
D, = 10,D, = 25,D; = 40,
v = 2,0, = 1.5,u3 = 1. 0.

From the numerical experiments we have found

5D

that the three compactons recover their shapes
after the collision (see Fig. 4 and Fig. 5). After the
reemergence of compactons in Fig. 4 and Fig. 5, the
collision site is marked by the birth of a small-
amplitude, zero-mass, compact ripple, which very
slowly evolves into compacton-anticompacton
pairs. Typically, the maximum amplitudes (and
velocities ) of newly created compacton-
anticompacton pairs are less than 1/20 of the
original compacton’s amplitude. We can compare
these results with Ref. [ 1]. The lack of smoothness
at the edge of the compacton reduces the numerical
precision and introduces dispersive errors into the
calculation that are difficult to distinguish from
radiation created in a nonelastic collision except by
continued mesh refinement. A further numerical
difficulty is caused by the delicate balance in the
nonlinear dispersion. When expanded, it has a

diffusion like term 2u,u... On the trailing edge of

the compacton u, >0 and this term acts like a
destabilizing backward diffusion operator.
Example 3.4 Ito-type coupled KdV equations:
u, + auu, + pov, + yu =0,
v, + pluv), = 0,
where a, s and y are arbitrary constants. For o =
—6,/~=—2,y=—1,0= —2,Eq. (52) represents

the Ito’s equation which describes the interaction

(52)

process of two internal long waves and has
infinitely many conserved quantities'”. It is noted
that this choice of parameters is not unique-'*. In
Ref. [14],it is shown that this coupled system can
be a member of a bi-Hamiltonian integrable
hierarchy.

In this example we show the numerical results

for the Ito’s equation by implicit Padé scheme.

u — (3Ll2 + 7)2 ),r - uJ:z:r = O ?
} (53)
v, — 2Cuv), =0,
with an initial condition
u(x,0) = cos(x),
} (54)
v(x,0) = cos(x).
We also choose a Gaussian initial condition
(‘ 70) - (7 < z ) D
ulx exp(—x 1 (55)

v(x,0) = exp(— %), f
From Fig. 6,7,8 and 9 we can see that the result
for u behaves like dispersive wave solutions and the
results for v behaves like shock wave solutions. We

can verify these figures with Ref. [16].

4 Conclusion

We have developed a high-order implicit
compact difference Padé scheme to solve fully

nonlinear Korteweg-de Vries equations and have

1.6

1.6 1.6
12

1.2 12

20.8 3 0.8 20.8

0.4 0.4 0.4

0 0 0

0 20 40 60 80 100 120 140
x
(a) =0

0 20 40 60 80 100 120 140
X
(b) =18

0 20 40 60 80 100 120 140
X
(c) =45

Fig. 5 The evolution of three K(3,3) compactons with speed v=2,1.5 and 1

starting with centers x=10,25 and 40
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(a) =0

1 2 3 4 5
x

(b) =0.5

1.0 12
0.6 0.8
0.2 0.4
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Fig. 6 Numerical results of u for the Ito’s equation (53) with the initial condition (54).

Periodic boundary condition in [ 0,27 ],using 200 points
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Fig. 7 Numerical results of v for the Ito’s equation (53) with the initial condition (54).

Periodic boundary condition in [ 0,27 ], using 200 points
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X X X
(a) =0 b) =1 (c) =2
Fig. 8 Numerical results of u for the Ito’s equation (53) with the initial condition (55).
Periodic boundary condition in [ —15,15], using 200 points
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02 0.2 0.2
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Fig. 9 Numerical results of v for the Ito’s equation (53) with the initial condition (55).

proven its stability and achieved high accuracy
numerical results. The schemes we present extend
the previous work of Refs. [ 6, 7] on compact
different Padé scheme solving partial differential

equations with higher spatial derivatives.

Periodic boundary condition in [ —15,15 ], using 200 points

The

this method.

studied by numerical

experiments,

elastic collision between K (2, n) equation is
Numerical
examples for Ito-type coupled KdV equations are

shown to illustrate the accuracy and capability of

(T#% 1067 1)
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