JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Vol. 38, No. 9 Sep. 2008

Article ID: 0253-2778(2008)09-1017-03

Edge-fault-tolerant bipanconnectivity of hypercubes

JING Jin¹, DU Zheng-zhong¹, MA Mei-jie², XU Jun-ming¹

(1. Department of Mathematics, University of Science and Technology of China, Hefei 230026, China; 2. Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China)

Abstract: It was shown that for any two vertices u and v of the hypercube $Q_n(n \ge 4)$ with at most n-1 faulty edges, which are not incident with the same vertex if they are exactly n-1, there exists a fault-free uv-path of length l with $d_{Q_n}(u,v)+4 \le l \le 2^n-1$ and $2 \mid (l-d_{Q_n}(u,v))$. This improves some known results.

Key words: Hamiltonian path; fault-tolerance; hypercube; bipanconnectivity

CLC number: O157. 5; TP302. 1 Document code: A

AMS Subject Classification (2000): Primary 05C38; Secondary 90B10

超立方体网络的边容错二部泛连通度

经 約1,杜正中1,马美杰2,徐俊明1

(1. 中国科学技术大学数学系,安徽合肥 230026;2. 浙江师范大学数学系,浙江金华 321004)

摘要:证明了对于至多有n-1条故障边的容错超立方体网络 Q_n ,如果它正好有n-1条故障边但不关联于同一个顶点,那么对于 Q_n 中任意两点u 和v,存在一条长为l 的uv 非故障路,路长l 满足 $d_{Q_n}(u,v)+2 \leqslant l \lesssim 2^n-1$ 且 $2|(l-d_{Q_n}(u,v))$. 这改进了许多已知结果.

关键词:哈密尔顿路;容错;超立方体网络;二部泛连通性

0 Introduction

It is well-known that when the underlying topology of an interconnection network is modelled by a connected graph G = (V, E), where V is the set of processors and E is the set of communication links in the network, study of the structure of G is of quite great interest.

A graph G is panconnected if for any two different vertices u and v in G there exists a uv-path of length l with $d_G(u,v) \leq l \leq |V(G)| - 1$,

where $d_G(u,v)$ is the distance between u and v in G. A bipartite graph G, since it contains no cycles of odd length, is bipanconnected if for any two different vertices u and v in G there exists a uv-path of length l with $d_G(u,v) \leqslant l \leqslant |V(G)|-1$ and $2|(l-d_G(u,v))$.

A graph G is k-edge-fault-tolerant panconnected if the resulting graph by deleting any k edges from G is panconnected. A subgraph of G is fault-free if it contains no faulty edges in G.

Received: 2007-09-14; Revised: 2007-12-14

Foundation item: Supported by NNSF of China (10671191).

Biography: JING Jin, male, born in 1980. Research field: graphs and combinatorics. E-mail: jingmath@mail. ustc. edu. cn

Corresponding author: XU Jun-ming, Prof. E-mail: xujm@ustc. edu. cn

1 Main results

In this paper, we consider the hypercube Q_n and show that for any two different vertices u and v of Q_n ($n \ge 4$) with at most n-1 faulty edges, which are not incident with the same vertex if they are exactly n-1, there exists a fault-free uv-path of length l with $d_{Q_n}(u,v)+4 \le l \le 2^n-1$ and $2 \mid (l-d_{Q_n}(u,v))$.

As consequences of our results, we immediately obtain Li et al's result that Q_n is bipanconnected and (n-2)-edge-fault-tolerant edge-bipancyclic^[1], and Wang's result that FQ_n is (n-1)-edge-fault-tolerant Hamiltonian^[3].

The proof of our main theorem is in Section 2. Throughout this paper, we follow Xu^[4] for graph-theoretical terminologies and notations not defined here.

2 Edge-fault-tolerant bipanconnectivity of Q_n

The *n*-dimensional hypercube Q_n is a graph with 2^n vertices, each vertex with a distinct binary string $u_n \cdots u_2 u_1$ on the set $\{0,1\}$. Two vertices are linked by an edge if and only if their strings differ in exactly one bit. As a topology for an interconnection network of a multiprocessor system, the hypercube structure is a widely used and well-known interconnection model since it possesses many attractive properties^[2,4]. In particular, Q_n is vertex-transitive and edgetransitive with diameter n.

By definition, for any $k \in \{1, 2, \dots, n\}$, Q_n can be expressed as $Q_n = L_k \odot R_k$, where L_k and R_k are the two (n-1)-subcubes of Q_n induced by the vertices with the k position being 0 and 1, respectively. We call edges between L_k and R_k k-dimensional, which form a perfect match of Q_n . Use u_L and u_R to denote the two vertices in L_k and R_k , respectively, linked by the k-dimensional edge $u_L u_R$ in Q_n . For a subset F of $E(Q_n)$ and any $k \in \{1, 2, \dots, n\}$, we always express Q_n as $Q_n = L_k \odot R_k$, and let $F_L = F \cap E(L_k)$, $F_R = F \cap E(R_k)$. Clearly,

for any edge e of Q_n , there is some $k \in \{1, 2, \dots, n\}$ such that e is k-dimensional. Let E_k be all k-dimensional edges in Q_n . Clearly,

$$E(Q_n) = E_1 \cup E_2 \cup \cdots \cup E_n$$
.

Lemma 2. 1^[5] If $Q_n(n \ge 2)$ has at most n-2 faulty edges, then for any two different vertices u and v there exists a fault-free uv-path of length l with $d_{Q_n}(u,v)+2 \le l \le 2^n-1$ and $2 \mid (l-d_{Q_n}(u,v))$.

Theorem 2.2 Let F be a set of faulty edges in $Q_n(n \ge 4)$. If $|F| \le n-1$, and all edges in F are not incident with the same vertex if |F| = n-1, then for any two different vertices u and v there exists a fault-free uv-path of length l with $d(u,v)+4 \le l \le 2^n-1$ and $2 \mid (l-d(u,v))$.

Proof We prove this theorem by induction on $n \ge 4$. For n = 4, we have verified this conclusion with a computer by the depth first search method within a polynomial time. Suppose that the theorem is true for m with $4 \le m < n$. Let F be a subset of $E(Q_n)$, and without loss of generality, |F| = n - 1 and suppose that all edges in F are not incident with the same vertex. Let u and v be the two vertices in Q_n and we need to construct a uv-path of length l in $Q_n - F$ with $d(u, v) + 4 \le l \le 2^n - 1$ and $2 \mid (l - d(u, v))$.

Let $F_k = F \cap E_k$. We choose $k \in \{1, 2, \dots, n\}$ according to the following rules:

([]) If it is possible, we choose any k such that $|F_k| \ge 2$.

(\prod) Otherwise, the n-1 faulty edges are on different dimensions. We choose k such that the k-dimensional faulty edge is incident with maximum faulty edges.

We express $Q_n = L_k \odot R_k$. Let $F_L = F \cap L_k$, $F_R = F \cap R_k$. Then $F = F_k \cup F_L \cup F_R$, $|F_k| \ge 1$, $|F_L| \cup |F_R| \le n-2$ and there are no n-2 faulty edges in L or R which are incident with the same vertex.

Case 1 $u,v \in L$ (or R).

Since $|F_L| \leq n-2$, by the induction hypothesis, there is a *uv*-path P_w of length l in L with

$$d(u,v) + 4 \le l \le 2^{n-1} - 1,$$

 $2 \mid (l - d(u,v)).$

Let P_L be a uv-path of length l_L in L with $2^{n-1}-6 \leqslant l_L \leqslant 2^{n-1}-1$ and $2 \mid (l_L-d(u,v))$. Since $2^{n-1}-6 > 2(n-1)$ when $n \geqslant 5$, there exists an edge xy of P_L such that $\{xx_R, yy_R, x_Ry_R\} \cap F = \emptyset$. By the induction hypothesis, there is an x_Ry_{R-1} path $P_{x_Ry_R}$ of odd length l_R in R with $1 \leqslant l_R \leqslant 2^{n-1}$. Then $1 \leqslant l_R \leqslant 2^{n-1}$. Then $1 \leqslant l_R \leqslant 2^{n-1}$ is a $1 \leqslant l_R \leqslant 2^{n-1}$ of length $1 \leqslant l_R \leqslant 2^{n-1}$ in $1 \leqslant l_R \leqslant 2^{n-1}$ and $2 \leqslant l_R \leqslant 2^{n-1}$ and $2 \leqslant l_R \leqslant 2^{n-1}$.

Case 2 $u \in L$, $v \in R$ (or $u \in R$, $v \in L$). Subcase 2. 1 Assume $d_Q(u,v) \geqslant 2$.

Suppose that one of the two edges $\{uu_R, vv_L\}$ is fault-free. Without loss of generality, uu_R is fault-free. It is clear that $d(u,v)=1+d(u_R,v)$.

By the induction hypothesis, there is a u_Rv -path P_{u_Rv} of length l_L with $d(u_R,v)+4 \leqslant l_L \leqslant 2^{n-1}-1$ and $2 \mid (l_L-d(u_R,v))$. Thus $uu_R+P_{u_Rv}$ is a uv-path of length l with $d(u,v)+4 \leqslant l \leqslant 2^{n-1}$ and $2 \mid (l-d(u,v))$.

We construct a uv-path of length l with $2^{n-1}+1 \leqslant l \leqslant 2^n$ and $2 \mid (l-d(u,v))$ as follows. Select a fault-free k-dimensional edge $x_L x_R$ in Q_n . By the induction hypothesis, there is a ux_L -path P_{ux_L} of length l_L with $(n-1)+4 \leqslant l_L \leqslant 2^{n-1}-1$ and $2 \mid l_L-d(u,x_L)$ in L since $d(u,x_L) \leqslant n-1$. Similarly, there is an $x_R v$ -path $P_{x_R v}$ of length l_R with $(n-1)+4 \leqslant l_R \leqslant 2^{n-1}-1$ and $2 \mid (l_R-d(x_R,v))$ in R. Thus $P_{ux_L}+x_Lx_R+P_{x_R v}$ is a uv-path of length $l=l_L+l_R+1$ in Q_n-F with $2^{n-1}+1 \leqslant l \leqslant 2^n-1$ and $2 \mid (l-d(u,v))$.

When the two edges $\{uu_R, vv_L\}$ are both faulty, then $|F_k| \ge 2$, $|F_L| \bigcup |F_R| \le n-3$.

There exists a neighbor vertex x_L of u in L such that $\{ux_L, x_Lx_R\} \cap F = \emptyset$ and $x_R \neq v$. It is clear that $d(u,v) \geqslant d(x_R,v)$. By Lemma 2.1, there is an x_Rv -path P_{x_Rv} of length l_R with $d(x_R,v)+2 \leqslant l_R \leqslant 2^{n-1}-1$ and $2 \mid l_R-d(x_R,v)$ in R. Since the edge ux_L is fault-free and $|F_L| \leqslant n-3$, there is a ux_L -path P_{ux_L} of odd length $l_L=1$, $3,5,\cdots,2^{n-1}-1$ in L. Thus $P_{ux_L}+x_Lx_R+P_{x_Rv}$ is a uv-path of length $l=l_L+l_R+1$ in Q_n-F with $d(u,v)+4 \leqslant l \leqslant 2^n-1$ and $2 \mid (l-d(u,v))$.

Subcase 2.2 Assume $d_{Q_n}(u,v) = 1$. Without

loss of generality, let $|F_L| \ge |F_R|$.

Assume $|F_k| \ge 2$. Note that every neighbor x of u is adjacent to neighbor x_R of v. If there exists a vertex x adjacent to v in R such that $\{xv, xx_L\} \cap F = \emptyset$, by Lemma 2.1, there is a vx-path P_R of odd length l_R in R with $1 \le l_R \le 2^{n-1} - 1$ and there is a ux_L -path P_L of odd length l_L in L with $3 \le l_L \le 2^{n-1} - 1$. Then $P_L + xx_L + P_R$ is a uv-path of odd length l in $Q_n - F$ with $5 \le l \le 2^n - 1$.

Notice that $|F_L| \geqslant |F_R|$, if we can not choose a vertex x adjacent to v in R such that $\{xv, xx_L\} \cap F = \emptyset$, then every $xx_L \in F_k$ and $|F_k| = n - 1$, $|F_L| = |F_R| = 0$. There exists a vertex y in L such that $uy + yy_R + y_Rv$ is a uv-path of length 5 in $Q_n - F$. There is a uy-path P_L of even length l_L in L with $2 \leqslant l_L \leqslant 2^{n-1} - 1$ and there is a vy_R -path P_R of even length l_R in R with $2 \leqslant l_R \leqslant 2^{n-1} - 1$. Then $P_L + yy_R + P_R$ is a uv-path of odd length l in $Q_n - F$ with $1 \leqslant l \leqslant 2^n - 1$.

Assume $|F_k|=1$. At least two incident edges with u in L are fault-free. There exists a neighbor x of u in L such that $xx_R \notin F_k$. By the induction hypothesis, there is a ux-path P_L of odd length $l_L=1$, $2^{n-1}-1$ in $L-F_L$. Since $|F_R| < n-3$, by Lemma 2.1, there is a vx_R -path P_R of odd length l_R in $R-F_R$ with $3 \le l_R \le 2^{n-1}-1$. Then $P_L+xx_R+P_R$ is a uv-path of odd length l in Q_n-F with $5 \le l \le 2^n-1$.

This completes the proof of Theorem 2.2. \square

References

- [1] Li L K, Tsai C H, Tan J M, et al. Bipanconnectivity and edge-fault-tolerant biancyclicity of hypercubes [J]. Information Processing Letters, 2003,87:107-110.
- [2] Saad Y, Schultz M H. Topological properties of hypercubes [J]. IEEE Trans Comput, 1988,37(7):867-872.
- [3] Wang D. Embedding Hamiltonian cycles into folded hypercubes with faulty links[J]. J Parallel and Distrib Comput, 2001, 61:545-564.
- [4] Xu Jun-ming. Topological Structure and Analysis of Interconnection Networks [M]. Dordrecht/Boston/ London: Kluwer Academic Publishers, 2001.
- [5] Xu Jun-ming, Ma Mei-jie, Du Zheng-zhong. Edge-fault-tolerant properties of hypercubes and folded hypercubes[J]. Australasian Journal of Combinatorics, 2006, 35; 7-16.