JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2008)05-0466-09

## Topological sequence entropy of the space of measures

HU Po<sup>1</sup>, ZHANG Guo-hua<sup>1,2</sup>

Department of Mathematics, University of Science and Technology of China, Hefei 230026, China;
 School of Mathematical Sciences, Fudan University, Shanghai 200433, China)

**Abstract:** Let (X,T) be a TDS and  $\mathcal{M}(X)$  the space of all Borel probability measures on X equipped with the weak\* topology. (X,T) is topo-null if (X,T) has zero topological sequence entropy. Given a pseudo-metric space and a self-map, the topological sequence entropy was studied for a special class of pseudo-metrics induced by continuous real-valued functions on the space. As an application, it was proved that, given a sequence  $\mathcal{A} \subseteq \mathbf{Z}_+$ , if X is zero-dimensional then (X,T) has zero topological entropy along  $\mathcal{A}$  if and only if  $(\mathcal{M}(X),T)$  has zero topological entropy along  $\mathcal{A}$ . In particular, if X is zero-dimensional then (X,T) is topo-null if and only if  $(\mathcal{M}(X),T)$  is topo-null.

Key words: topological sequence entropy; topo-null; pseudo-metric

CLC number: O189. 1; O192 Document code: A

AMS Subject Classification (2000): Primary 37A35; Secondary 37B40

### 测度空间的拓扑序列熵

胡 泊1,张国华1,2

(1. 中国科学技术大学数学系,安徽合肥 230026;2. 复旦大学数学科学学院,上海 200433)

摘要:给定一个拓扑动力系统(X,T),记 M(X)为 X 上 Borel 概率测度的全体,其上的拓扑由弱拓扑所诱导. 如果系统(X,T)具有零拓扑序列熵,则它称为拓扑-null 的. 对于给定的一个伪度量空间以及其上的一个自映射(不必连续),引入并研究沿着给定序列的拓扑熵,包括由空间上连续实值函数所诱导的伪度量. 作为应用可以证明,给定一个序列  $\mathcal{A}\subseteq \mathbf{Z}_+$ ,如果 X 为零维的,那么,系统(X,T)沿着  $\mathcal{A}$ 具有零拓扑熵当且仅当(M(X),T)沿着  $\mathcal{A}$ 具有零拓扑熵. 特别的,当 X 为一个零维空间时,系统(X,T)为拓扑-null 的当且仅当(M(X),T)为拓扑-null 的.

关键词: 拓扑序列熵; 拓扑-null; 伪度量

### 0 Introduction

By a topological dynamical system (TDS) (X,T) we mean that X is a compact metric space and T is

a homeomorphism from X onto X. Let (X,T) be a TDS and  $\mathcal{M}(X)$  the space of all Borel probability measures on X equipped with the weak\* topology, then  $\mathcal{M}(X)$  is a compact metric space. That is, for

Received: 2006-11-08; Revised: 2007-03-10

Foundation item: Supported by NNSF of China (No. 10401031).

Biography; HU Po, female, born in 1984, master. Research field; ergodic theory and dynamical system.

Corresponding author; ZHANG Guo-hua, PhD. E-mail; ghzhang@mail. ustc. edu. cn

 $\mu, \mu_1, \mu_2, \dots \in \mathcal{M}(X), \ \mu_n \to \mu$  if and only if (iff)  $\mu_n(f) \to \mu(f)$  for each  $f \in C(X)$ , where C(X) denotes the space of all continuous real-valued functions on X. Then T induces naturally an action on  $\mathcal{M}(X)$  (denoted still by T) such that  $(\mathcal{M}(X), T)$  forms a TDS, and (X, T) may be viewed as a sub-system of  $(\mathcal{M}(X), T)$  by a canonical mapping  $x \mapsto \delta_x$ .

Entropy is defined in both ergodic theory and topological dynamics. Since the introduction of measure-theoretical entropy for an invariant measure in 1958<sup>[1]</sup> and topological entropy in 1965[2], a lot of attention has been paid to these two kinds of entropy and the relationship between them, named the classical variational principle has been obtained. Viewing the canonical mapping  $x \mapsto \delta_x$ , it is clear that if  $(\mathcal{M}(X), T)$  has zero topological entropy then (X,T) also has zero topological entropy. The converse of the statement also holds, which was proved in Ref. [3] using two different ideas. In fact, it has been studied in Refs.  $[3 \sim 5]$  that certain dynamical properties of (X,T) need not be enjoyed by  $(\mathcal{M}(X),T)$ , such as minimality, unique ergodicity and so on; whereas, besides zero entropy, there are some other dynamical properties which do carry over.

In 1967 measure-theoretical sequence entropy was introduced and measure-theoretical null systems were characterized to be equivalent to the systems having a discrete spectrum<sup>[6]</sup>. Then in 1974 topological sequence entropy introduced<sup>[7]</sup>, but according to Ref. [7] there is no variational principle for sequence entropy. Let (X,T) be a TDS. We say that (X,T) is topo-null if (X,T) has zero topological sequence entropy, i. e. it has zero topological entropy along any given sequence  $\mathcal{A} \subseteq \mathbf{Z}_+$ . When we consider topological sequence entropy, a natural question arises that, for a given sequence  $\mathcal{A}\subseteq \mathbf{Z}_+$  whether  $(\mathcal{M}(X), T)$ must have zero topological entropy along  $\mathcal A$  if (X,T) has zero topological entropy along  $\mathcal{A}$ ; moreover, whether  $(\mathcal{M}(X), T)$  must be topo-null if (X,T) is topo-null. The question is addressed in this paper. In fact, in view of results obtained in the paper, it seems possible that some dynamical behavior of a TDS may be obtained by studying some special pseudo-metrics on the space.

First, given a pseudo-metric space and a selfmap we introduce the topological sequence entropy and give a systematic description of it, including a special class of pseudo-metrics induced continuous real-valued functions on the space. We prove that, given a TDS and a sequence  $\mathcal{A}\subseteq \mathbf{Z}_+$ , the system has zero topological entropy along  $\mathcal{A}$  iff all pseudo-metrics induced by continuous realvalued functions on the space have zero topological entropy along A. Then, inspired by the geometric idea in Ref. [3], as an application we prove that, for any given sequence  $\mathcal{A} \subseteq \mathbf{Z}_+$ , if X is zerodimensional then (X, T) has zero topological entropy along  $\mathcal{A}$  iff  $(\mathcal{M}(X), T)$  has zero topological entropy along  $\mathcal{A}_{\bullet}$  thus if X is zero-dimensional then (X,T) is topo-null iff  $(\mathcal{M}(X),T)$  is topo-null. This gives an affirmative answer to our question in the case of zero-dimensional spaces.

The question remains open that in the general case whether  $(\mathcal{M}(X), T)$  must have zero topological entropy along  $\mathcal{A}$  if (X, T) has zero topological entropy along  $\mathcal{A}$  for any sequence  $\mathcal{A}\subseteq \mathbf{Z}_+$ . It should be mentioned that we were in the process of completing the first version of the paper when we were informed of Ref. [8, Theorem 5. 10] by Huang, which states that (X, T) is topo-null iff  $(\mathcal{M}(X), T)$  is topo-null using a completely different method.

The paper is organized as follows. In Section 1 we introduce the topological sequence entropy of a pseudo-metric space with a self-map and give it a systematic description. Then in Section 2, on any given TDS we study the topological sequence entropy of a special class of pseudo-metrics induced by continuous real-valued functions on the space, and prove that given a TDS and a sequence of non-negative integers, the TDS has zero topological entropy along the sequence iff any pseudo-metric in this special class has zero topological entropy along

(1)

the sequence. As an application, in Section 3 we prove that, given a zero-dimensional TDS (X, T) and a sequence of non-negative integers, (X, T) has zero topological entropy along the sequence iff  $(\mathcal{M}(X), T)$  has zero topological entropy along the sequence, which implies that for a zero-dimensional TDS (X, T), (X, T) is topo-null iff  $(\mathcal{M}(X), T)$  is topo-null.

# 1 Topological sequence entropy of a pseudo-metric

In this section, as the main tool of the following sections, we introduce the concept of topological entropy of a pseudo-metric space with a self-map for any given sequence  $\mathscr{A} \subseteq \mathbf{Z}_+$ , and discuss some basic properties of it.

Let  $(X, \rho)$  be a pseudo-metric space and  $T: X \rightarrow X$  a self-map. Let  $n \in \mathbb{N}$ ,  $\varepsilon > 0$  and  $\mathscr{A} \subseteq \mathbb{Z}_+$  a given sequence. Denote  $\mathscr{A} = \{t_i\}_{i \in \mathbb{N}}$  and fix it throughout the paper. A set  $E \subseteq X$  is said to be  $(\rho, n, \varepsilon, \mathscr{A})$ -separated with respect to (w. r. t.) T if for every  $x_1, x_2 \in E$ ,  $x_1 \neq x_2$  implies

$$\max_{i \in \mathcal{I}} \rho(T^{t_i}x_1, T^{t_i}x_2) > \varepsilon.$$

A set  $F \subseteq X$  is said to be  $(\rho, n, \varepsilon, \mathcal{A})$ -spanning w. r. t. T if for every  $x \in X$  there exists  $x' \in F$  such that  $\max_{1 \le i \le n} \rho(T^{i_i}x, T^{i_i}x') \le \varepsilon$ . Denote by  $\sup_{n} (\rho, T, \varepsilon, \mathcal{A})$  (resp.  $\operatorname{span}_{n} (\rho, T, \varepsilon, \mathcal{A})$ ) the largest (resp. smallest) cardinality of a  $(\rho, n, \varepsilon, \mathcal{A})$ -separated set (resp.  $(\rho, n, \varepsilon, \mathcal{A})$ -spanning set) w. r. t. T. Note that they may be infinite. Then we set

$$h_{\rho}^{\mathcal{A}}(T) = \sup_{\varepsilon>0} \limsup_{n\to\infty} \frac{1}{n} \log \operatorname{sep}_{n}(\rho, T, \varepsilon, \mathcal{A}).$$

We call  $h_{\rho}^{\mathscr{A}}(T)$  the topological entropy of  $(X, \rho, T)$  along  $\mathscr{A}$ . Sometimes we write it as  $h_{\rho}^{\mathscr{A}}(X, T)$ . When  $\mathscr{A} = \mathbf{Z}_{+}$ , we shall omit the restriction  $\mathscr{A}$ . And when (X, T) is a TDS with  $\rho$  the metric on the space X, we shall omit the restriction  $\rho$ . Obviously, it accords with the definition of topological sequence entropy of a TDS. It's not hard to check that

$$sep_n(\rho, T, 2\varepsilon, \mathcal{A}) \leqslant span_n(\rho, T, \varepsilon, \mathcal{A}) \leqslant sep_n(\rho, T, \varepsilon, \mathcal{A}),$$

which implies that

$$h_{\rho}^{\mathcal{A}}(T) = \sup_{\epsilon > 0} \lim_{n \to \infty} \sup_{n \to \infty} \frac{1}{n} \log \operatorname{span}_{n}(\rho, T, \epsilon, \mathcal{A}).$$
(2)

第 38 卷

Let X be a set and  $T: X \rightarrow X$  a self-map. Let  $\rho_1$  and  $\rho_2$  be two pseudo-metrics on X. We say that  $\rho_1$  dominates  $\rho_2$  (denoted by  $\rho_1 \geq \rho_2$ ) if for each  $\varepsilon > 0$  there exists  $\delta > 0$  such that  $\rho_1(x_1, x_2) \leq \delta$  implies  $\rho_2(x_1, x_2) \leq \varepsilon$ . We say that  $\rho_1$  is equivalent to  $\rho_2$  (denoted by  $\rho_1 \approx \rho_2$ ) if  $\rho_1 \geq \rho_2$  and  $\rho_2 \geq \rho_1$ . The following fact is obvious.

**Lemma 1.1** Let X be a set,  $T: X \rightarrow X$  a selfmap and  $\mathcal{A} \subseteq \mathbf{Z}_+$  a given sequence. Let  $\rho_1$  and  $\rho_2$  be two pseudo-metrics on X. If  $\rho_1 \geq \rho_2$  then  $h_{\rho_1}^{\mathcal{A}}(T) \geqslant h_{\rho_2}^{\mathcal{A}}(T)$ . Moreover, if  $\rho_1 \approx \rho_2$  then  $h_{\rho_1}^{\mathcal{A}}(T) = h_{\rho_2}^{\mathcal{A}}(T)$ .

Let  $(X_i, \rho_i)$  be a pseudo-metric space, i=1,2. The pseudo-metric  $\rho_1 \oplus \rho_2$  on  $X_1 \times X_2$  is given by  $\rho_1 \oplus \rho_2((x_1, x_2), (x_1', x_2')) = \rho_1(x_1, x_1') + \rho_2(x_2, x_2')$ . Then

**Proposition 1.2** Let  $(X_i, \rho_i)$  be a pseudometric space,  $T_i: X_i \rightarrow X_i$  a self-map (i=1,2) and  $A \subseteq \mathbf{Z}_+$  a given sequence. Then

$$\begin{aligned} \max\{h_{\rho_{1}}^{\mathscr{A}}(T_{1}), h_{\rho_{2}}^{\mathscr{A}}(T_{2})\} \leqslant \\ h_{\rho_{1} \oplus \rho_{2}}^{\mathscr{A}}(T_{1} \times T_{2}) \leqslant h_{\rho_{1}}^{\mathscr{A}}(T_{1}) + h_{\rho_{2}}^{\mathscr{A}}(T_{2}). \end{aligned}$$

As a direct application we have

Corollary 1.3 Let X be a set,  $T: X \rightarrow X$  a self-map and  $\mathcal{A} \subseteq \mathbf{Z}_+$  a given sequence. Let  $\rho_1$  and  $\rho_2$  be two pseudo-metrics on X. The pseudo-metric  $\rho_1 + \rho_2$  on X is given by

$$(\rho_1 + \rho_2)(x_1, x_2) = \rho_1(x_1, x_2) + \rho_2(x_1, x_2).$$
  
Then

$$\max\{h_{\rho_1}^{\mathcal{A}}(T),h_{\rho_2}^{\mathcal{A}}(T)\} \leqslant h_{\rho_1+\rho_2}^{\mathcal{A}}(T) \leqslant h_{\rho_1}^{\mathcal{A}}(T) + h_{\rho_2}^{\mathcal{A}}(T).$$

Let X be a set and  $\rho_1$ ,  $\rho_2$  two pseudo-metrics on X. Put

$$\begin{aligned} \operatorname{dist}(\rho_1, \, \rho_2) &= \\ &\sup\{ \, | \, \rho_1(x_1, x_2) - \rho_2(x_1, x_2) \, | \, ; \, x_1, x_2 \in X \}. \end{aligned}$$
 Then

**Proposition 1.4** Let  $(X, \rho)$  be a pseudometric space,  $T: X \rightarrow X$  a self-map and  $\mathcal{A} \subseteq \mathbb{Z}_+$  a given sequence. Let  $\{\rho_i\}_{i \in \mathbb{N}}$  be a sequence of pseudo-metrics on X satisfying dist  $(\rho_i, \rho) \rightarrow 0$ .

Then  $h_{\rho}^{\mathcal{A}}(T) \leqslant \liminf_{i \to \infty} h_{\rho_i}^{\mathcal{A}}(T) \leqslant \sup_{i \in \mathbb{N}} h_{\rho_i}^{\mathcal{A}}(T)$ .

**Proof** Let  $\varepsilon > 0$ . There exists  $N \in \mathbb{N}$  such that if  $i \geqslant N$  then  $\operatorname{dist}(\rho_i, \rho) < \frac{\varepsilon}{2}$ , which implies  $\rho(x_1, x_2) < \rho_i(x_1, x_2) + \frac{\varepsilon}{2}$  for any  $x_1, x_2 \in X$ . So for each  $n \in \mathbb{N}$ , if  $E \subseteq X$  is  $(\rho, n, \varepsilon, \mathcal{A})$ -separated w. r. t. T, then when  $i \geqslant N$  it is  $(\rho_i, n, \frac{\varepsilon}{2}, \mathcal{A})$ -separated w. r. t. T which implies

$$\operatorname{sep}_n(\rho, T, \varepsilon, \mathscr{A}) \leqslant \operatorname{sep}_n(\rho_i, T, \frac{\varepsilon}{2}, \mathscr{A})$$

and

$$\limsup_{n\to\infty}\frac{1}{n}\log\,{\rm sep}_n(\rho,T,\varepsilon,\mathcal{A})\leqslant$$

 $\sup_{j\in\mathbf{N}}\inf_{i\geqslant j}\limsup_{n\to\infty}\frac{1}{n}\log\,{\rm sep}_n\Big(\rho_i\,,T\,,\frac{\varepsilon}{2}\,,\mathscr{A}\Big).$ 

Let  $\epsilon \rightarrow 0+$ , we obtain

$$h_{\rho}^{\mathscr{A}}(T) \leqslant \sup_{j \in \mathbf{N}} \inf_{i \geqslant j} h_{\rho_{i}}^{\mathscr{A}}(T) = \lim_{i \to \infty} \inf h_{\rho_{i}}^{\mathscr{A}}(T) \leqslant \sup_{i \in \mathbf{N}} h_{\rho_{i}}^{\mathscr{A}}(T).$$
(3)

Remark 1.5 The inequality  $h_{\rho}^{\mathscr{A}}(T) \leqslant \lim_{i \to \infty} \inf h_{\rho_i}^{\mathscr{A}}(T)$  may hold strictly. For example, let  $(X, \rho)$  be any pseudo-metric space containing infinitely many points. For each  $i \in \mathbb{N}$ , we set  $\rho_i(x_1, x_2) = \max \{\rho(x_1, x_2), \frac{1}{i}\}$  if  $x_1 \neq x_2$  and  $\rho_i(x_1, x_2) = 0$  if  $x_1 = x_2$ , which implies  $\operatorname{dist}(\rho, \rho_i) \leqslant \frac{2}{i} \to 0$ . Whereas, from the construction, if  $x_1 \neq x_2$  then  $\rho_i(x_1, x_2) \geqslant \frac{1}{i}$ , thus for any self-map  $T: X \to X$  and any sequence  $\mathscr{A} \subseteq \mathbb{Z}_+$  containing 0,  $\operatorname{sep}_n(\rho_i, T, \frac{1}{2i}, \mathscr{A}) = \infty$  if only n is large enough. Then  $h_{\rho_i}^{\mathscr{A}}(T) = \infty$  for each  $i \in \mathbb{N}$ .

Remark 1.6 In particular, let X be a set, T:  $X \rightarrow X$  a self-map and  $\mathscr{A} \subseteq \mathbf{Z}_+$  a given sequence. Assume that  $\{\rho_i\}_{i \in \mathbf{N}}$  is a sequence of pseudometrics on X satisfying  $\sup_{i \in \mathbf{N}} \sup_{x_1, x_2 \in X} \rho_i(x_1, x_2) < \infty$ . Then  $h_{\rho}^{\mathscr{A}}(T) = 0$  iff  $h_{\rho_i}^{\mathscr{A}}(T) = 0$  for each  $i \in \mathbf{N}$ , where  $\rho = \sum_{i \in \mathbf{N}} \frac{\rho_i}{2^i}$ . In fact, set  $\rho'_i = \sum_{1 \leqslant j \leqslant i} \frac{\rho_j}{2^j}$  for each  $i \in \mathbf{N}$ . We have dist  $(\rho'_i, \rho) \rightarrow 0$ , so  $h_{\rho}^{\mathscr{A}}(T) \leqslant$ 

 $\lim_{i\to\infty}\inf h_{\rho_i}^{\mathcal{A}}(T) \text{ (using Proposition 1.4). We also have } \rho \geq \rho_{i+1}' \geq \rho_i', \text{ thus } h_{\rho}^{\mathcal{A}}(T) \geqslant h_{\rho_{i+1}}^{\mathcal{A}}(T) \geqslant h_{\rho_i}^{\mathcal{A}}(T)$  (using Lemma 1.1). That is,  $h_{\rho_i}^{\mathcal{A}}(T) \nearrow h_{\rho}^{\mathcal{A}}(T)$ . Consequently,  $h_{\rho}^{\mathcal{A}}(T) = 0$  iff  $h_{\rho_i}^{\mathcal{A}}(T) = 0$  for each  $i \in \mathbb{N}$ , iff  $h_{\rho_i/2^i}^{\mathcal{A}}(T) = 0$  for each  $i \in \mathbb{N}$  (using Corollary 1.3), iff  $h_{\rho_i}^{\mathcal{A}}(T) = 0$  (using Lemma 1.1, as  $\rho_i/2^i \approx \rho_i$ ) for each  $i \in \mathbb{N}$ .

# 2 Topological sequence entropy of a continuous function

In this section we shall study the topological sequence entropy of a special class of pseudometrics on any given TDS (X, T) induced by continuous real-valued functions on X.

Let (X, T) be a TDS and  $\mathcal{A} \subseteq \mathbf{Z}_+$  a given sequence. Now for each  $f \in C(X)$  we define a pseudo-metric  $d_f$  on X by setting  $d_f(x_1, x_2) = |f(x_1) - f(x_2)|$ . We write  $h^{\mathcal{A}}(T, f) = h^{\mathcal{A}}_{d_f}(T)$ , and also call it the f-topological entropy of (X, T) along  $\mathcal{A}$ . Thus

**Lemma 2.1** Let (X,T) be a TDS and  $\mathcal{A} \subseteq \mathbb{Z}_+$  a given sequence. Then  $h^{\mathcal{A}}(T, |f|) \leq h^{\mathcal{A}}(T, f)$  for each  $f \in C(X)$ , where |f| denotes the absolute value of f.

Equip C(X) with the maximum norm  $\|\cdot\|$  and denote by c(M) the closure of M in the space C(X) for each  $M \subseteq C(X)$ . Note that if  $f, f_1, f_2, \cdots \in C(X)$  satisfy  $\|f-f_i\| \to 0$  then  $\operatorname{dist}(d_f, d_{f_i}) \to 0$ , thus we have (using Proposition 1.4)

**Proposition 2. 2** Let (X,T) be a TDS,  $\mathscr{A} \subseteq \mathbb{Z}_+$  a given sequence and  $\mathscr{M} \subseteq C(X)$ . Then  $h^{\mathscr{A}}(T,f)=0$  for each  $f \in cl(\mathscr{M})$  iff  $h^{\mathscr{A}}(T,f)=0$  for each  $f \in \mathscr{M}$ . Moreover,

$$\sup_{f \in \mathcal{M}} h^{\mathcal{A}}(T, f) = \sup_{f \in c(\mathcal{M})} h^{\mathcal{A}}(T, f). \tag{4}$$

The following basic facts are easy to obtain.

**Proposition 2.3** Let (X,T) be a TDS,  $\mathcal{A}\subseteq \mathbb{Z}_+$  a given sequence and  $f, f_1, f_2 \in C(X)$ . The functions  $f^{\otimes}, f^{\oplus} \in C(X \times X)$  are defined as  $f^{\otimes}(x_1, x_2) = f_1(x_1) f_2(x_2)$  and  $f^{\oplus}(x_1, x_2) = f_1(x_1) + f_2(x_2)$ . Then we have

( [ )  $h^{\mathcal{A}}(T, c) = 0$ , where c is any constant real function on X.

( [] )  $h^{\mathcal{A}}(T, c+f) = h^{\mathcal{A}}(T, f)$ , where c is any real constant.

( $\coprod$ )  $h^{\mathcal{A}}(T, cf) = h^{\mathcal{A}}(T, f)$ , where c is any non-zero real constant.

(IV) 
$$h^{\mathcal{A}}(T \times T, f^{\otimes}) \leqslant h^{\mathcal{A}}(T, f_1) + h^{\mathcal{A}}(T, f_2)$$
.

(V) 
$$h^{\mathcal{A}}(T \times T, f^{\oplus}) \leq h^{\mathcal{A}}(T, f_1) + h^{\mathcal{A}}(T, f_2)$$
.

$$(\text{W}) \max\{h^{\mathcal{A}}(T, f_1 f_2), h^{\mathcal{A}}(T, f_1 + f_2)\} \leqslant h^{\mathcal{A}}(T, f_1) + h^{\mathcal{A}}(T, f_2).$$

**proof** Parts ( [ ] ), ( [ ] ) and ( [ ] ] ) are obvious from the definitions and Lemma 1.1.

(N) The inequality holds clearly if  $||f_1|| \cdot ||f_2|| = 0$ . Now we assume  $||f_1|| \cdot ||f_2|| > 0$ .

Let  $\varepsilon > 0$  and  $n \in \mathbb{N}$ . Let  $F_i \subseteq X$  be any

$$(d_{f_i}$$
 , $n$  ,  $\frac{\varepsilon}{\parallel f_1 \parallel + \parallel f_2 \parallel}$  ,  $\mathscr{A}$  -spanning subset w. r. t.

$$T, i=1, 2.$$
 Set  $F=F_1\times F_2\subseteq X\times X$ . If  $(x_1,x_2)\in X$ 

 $X \times X$ , there exists  $x_i' \in F_i$  (i=1, 2) such that

$$\max_{1 \leqslant j \leqslant n} d_{f_i}(T^{l_j}x_i, T^{l_j}x_i') = 
\max_{1 \leqslant j \leqslant n} |f_i(T^{l_j}x_i) - f_i(T^{l_j}x_i')| \leqslant 
\frac{\varepsilon}{\|f_1\| + \|f_2\|}.$$
(5)

Then we have

$$\max_{1 \le j \le n} d_{f} \otimes ((T^{i_{j}}x_{1}, T^{i_{j}}x_{2}), (T^{i_{j}}x'_{1}, T^{i_{j}}x'_{2})) = \\
\max_{1 \le j \le n} |f^{\otimes}(T^{i_{j}}x_{1}, T^{i_{j}}x_{2}) - f^{\otimes}(T^{i_{j}}x'_{1}, T^{i_{j}}x'_{2})| \leqslant \\
\max_{1 \le j \le n} (|f^{\otimes}(T^{i_{j}}x_{1}, T^{i_{j}}x_{2}) - f^{\otimes}(T^{i_{j}}x'_{1}, T^{i_{j}}x_{2})|) + \\
\max_{1 \le j \le n} (|f^{\otimes}(T^{i_{j}}x'_{1}, T^{i_{j}}x_{2}) - f^{\otimes}(T^{i_{j}}x'_{1}, T^{i_{j}}x'_{2})|) \leqslant \\
||f_{2}|| \cdot \max_{1 \le j \le n} |f_{1}(T^{i_{j}}x_{1}) - f_{1}(T^{i_{j}}x'_{1})| + \\
||f_{1}|| \cdot \max_{1 \le j \le n} |f_{2}(T^{i_{j}}x_{2}) - f_{2}(T^{i_{j}}x'_{2})| \leqslant \\
(||f_{2}|| + ||f_{1}||) \cdot \frac{\varepsilon}{||f_{1}|| + ||f_{2}||} \text{(by Eq. (5))} = \varepsilon.$$

That is, F is  $(d_{\varnothing}, n, \varepsilon, \mathscr{A})$ -spanning w. r. t. T. So

 $\operatorname{span}_n(d_f\otimes,T,\varepsilon,\mathscr{A})\leqslant$ 

$$\prod_{j=1}^{2} \operatorname{span}_{n} \left( d_{f_{j}}, T, \frac{\varepsilon}{\parallel f_{1} \parallel + \parallel f_{2} \parallel}, \mathscr{A} \right),$$

hence

$$\limsup_{n\to\infty} \frac{1}{n} \log \operatorname{span}_n(d_{f^{\otimes}}, T, \varepsilon, \mathscr{A}) \leqslant h^{\mathscr{A}}(T, f_1) + h^{\mathscr{A}}(T, f_2). \tag{6}$$

Then we claim the inequality by letting  $\epsilon \rightarrow 0+$ .

( V ) We deduce it by a similar procedure as in Eq. (6), if only we notice that

$$\max_{1 \leq j \leq n} d_{f^{\oplus}}((T^{i_j}x_1, T^{i_j}x_2), (T^{i_j}x_1', T^{i_j}x_2')) \leqslant \\ \max_{1 \leq j \leq n} (\mid f^{\oplus}(T^{i_j}x_1, T^{i_j}x_2) - f^{\oplus}(T^{i_j}x_1', T^{i_j}x_2) \mid) + \\ \max_{1 \leq j \leq n} (\mid f^{\oplus}(T^{i_j}x_1', T^{i_j}x_2) - f^{\oplus}(T^{i_j}x_1', T^{i_j}x_2') \mid) = \\ \max_{1 \leq j \leq n} \mid f_1(T^{i_j}x_1) - f_1(T^{i_j}x_1') \mid + \\ \max_{1 \leq j \leq n} \mid f_2(T^{i_j}x_2) - f_2(T^{i_j}x_2') \mid \leqslant \\ \\ \frac{2\varepsilon}{\parallel f_1 \parallel + \parallel f_2 \parallel} \text{(by Eq. (5))}.$$

(VI) Let R denote the restriction of action  $T \times T$  on  $\Delta_X$ , the diagonal  $\{(x,x): x \in X\}$  of X. Note that  $h^{\mathscr{A}}(R,(g)^*) \leq h^{\mathscr{A}}(T \times T,g)$  for each  $g \in C(X \times X)$ , where  $(g)^* \in C(\Delta_X)$  denotes the restriction of g over  $\Delta_X$ . Then we have

$$h^{\mathscr{A}}(T, f_1 f_2) = h^{\mathscr{A}}(R, (f^{\otimes})^*)$$
  
(via the canonical mapping  $(x, x) | \rightarrow x$ )  $\leqslant$   
 $h^{\mathscr{A}}(T \times T, f^{\otimes}) \leqslant$ 

$$h^{\mathcal{A}}(T, f_1) + h^{\mathcal{A}}(T, f_2)$$
 (by ([V])).

By the same reasoning we obtain

$$h^{\mathcal{A}}(T, f_1 + f_2) \leqslant h^{\mathcal{A}}(T, f_1) + h^{\mathcal{A}}(T, f_2).$$

Denote by  $C^+(X)$  the collection of all non-negative functions in C(X). We have

**Lemma 2.4** Let (X,T) be a TDS and  $\mathcal{A}\subseteq \mathbb{Z}_+$  a given sequence. Then the following statements are equivalent:

 $(\ \ )\ h^{\mathcal{A}}(T)=0.$ 

( $\prod$ )  $h^{\mathcal{A}}(T, f) = 0$  for all  $f \in C(X)$ .

( $\parallel$ )  $h^{\mathcal{A}}(T, f) = 0$  for all  $f \in C^+(X)$ .

(N)  $h^{\mathcal{A}}(T, f) = 0$  for all  $f \in \mathcal{M}$ , where  $\mathcal{M}$  is any dense subset of C(X).

(V)  $h^{\mathscr{A}}(T, f) = 0$  for all  $f \in \mathscr{M}$ , where  $\mathscr{M}$  is any dense subset of  $C^+(X)$ .

**Proof**  $(( \ | \ ] ) \Leftrightarrow ( \ | \ V ))$  and  $(( \ | \ ] ) \Leftrightarrow ( \ V ))$  follow from Proposition 2.2,  $(( \ | \ ] ) \Leftrightarrow ( \ | \ ] ))$  follows from Proposition 2.3  $( \ | \ ] )$ . Now let's turn to the proof of  $(( \ | \ ) \Leftrightarrow ( \ | \ ] ))$ . Let d be the metric on X.

 $((\ \ ])\Rightarrow (\ \ ])$ : Let  $f\in C(X)$  and  $\varepsilon>0$ . Since X is compact, there exists  $\delta>0$  such that  $d(x_1,x_2)\leqslant \delta$  implies  $d_f(x_1,x_2)=|f(x_1)-f(x_2)|\leqslant \varepsilon$ . That is  $d\geq d_f$ , hence  $h^{\mathscr{A}}(T,f)\leqslant h^{\mathscr{A}}(T)=0$  (using Lemma 1.1).

 $(( []) \Rightarrow (])$ : For the proof we shall follow

the idea of Ref. [9, Lemma 4.2]. Assume the contrary that there exists an open cover  $\{U_1, U_2\}$  of X such that  $h^{\mathscr{A}}(T, \{U_1, U_2\}) > 0$  and  $X \setminus U_1$  (resp.  $X \setminus U_2$ ) has a non-empty interior containing  $x_1$  (resp.  $x_2$ ). Then by the known Urysohn Lemma there exists  $f \in C^+(X)$  such that f(x) = 0 if  $x \in X \setminus U_1$  and f(x) = 1 if  $x \in X \setminus U_2$ . Thus for each  $x \in X$ ,  $\{z \in X: d_f(x, z) \leqslant \frac{1}{3}\}$  is contained in either  $U_1$  or  $U_2$ .

Now for each  $n \in \mathbf{N}$ , if E is  $(d_f, n, \frac{1}{3}, \mathcal{A})$ spanning w. r. t. T then  $\bigcup_{x \in E} \left\{ z \in X : d_f(T^i x, T^i z) \leqslant \frac{1}{3}, 1 \leqslant i \leqslant n \right\} = X.$ Note that for all  $x \in X$ ,  $\{z \in X : d_f(T^{i_i} x, T^{i_i} z) \leqslant \frac{1}{3}, 1 \leqslant i \leqslant n \}$  is contained in some elements of

 $N(\bigvee_{j=1}^n T^{-t_j}\{U_1,U_2\}) \leqslant \operatorname{span}_n(d_f,T,\frac{1}{3},\mathscr{A}).$  So

 $\bigvee_{j=1}^{n} T^{-t_{j}} \{U_{1}, U_{2}\}, \text{ we have }$ 

$$\limsup_{n\to\infty} \frac{1}{n} \log \operatorname{span}_n(d_f, T, \frac{1}{3}, \mathscr{A}) \geqslant h^{\mathscr{A}}(T, \{U_1, U_2\}) > 0.$$

In particular,  $h^{\mathscr{A}}(T, f) > 0$ , a contradiction with the assumption.

For  $\mathcal{M}\subseteq C(X)$  denote by span  $(\mathcal{M})$  the set  $\{\sum_{i\in\mathcal{I}}c_if_i:n\in\mathbf{N},f_1,\cdots,f_n\in\mathcal{M},c_1,\cdots,c_n\in\mathbf{R}\}.$ 

Then by Proposition 2. 3 and Lemma 2. 4 we have

**Corollary 2.5** Let (X, T) be a TDS,  $\mathcal{M} \subseteq C(X)$  and  $\mathcal{A} \subseteq \mathbf{Z}_+$  a given sequence. If  $\operatorname{span}(\mathcal{M})$  is dense in C(X), then  $h^{\mathcal{A}}(T) = 0$  iff  $h^{\mathcal{A}}(T, f) = 0$  for all  $f \in \mathcal{M}$ .

Let (X,T) be a TDS and  $\mathscr{A} \subseteq \mathbf{Z}_+$  a given sequence. We say that (X,T) has uniformly positive entropy (u. p. e.) along  $\mathscr{A}$  if  $h^{\mathscr{A}}(T,\mathscr{U}) > 0$  when  $\mathscr{U} = \{U_1, U_2\}$  is a standard open cover of X (i. e. both  $X \setminus U_1$  and  $X \setminus U_2$  have non-empty interiors); and has uniformly positive sequence entropy (u. p. s. e.) if for each standard open cover  $\mathscr{U}$  of X there exists a sequence  $\mathscr{A} \subseteq \mathbf{Z}_+$  such that  $h^{\mathscr{A}}(T,\mathscr{U}) > 0$ . Moreover, we say that  $(x_1,x_2)$  is an entropy pair of (X,T) along  $\mathscr{A}$  if  $x_1 \neq x_2$  and

 $h^{\mathscr{A}}(T, \mathscr{U}) > 0$  when  $\mathscr{U} = \{U_1, U_2\}$  is a standard open cover of X with  $x_2$  (resp.  $x_1$ ) in the interior of  $X \setminus U_1$  (resp.  $X \setminus U_2$ ). Then we have

**Theorem 2.6** Let (X,T) be a TDS and  $\mathcal{A}\subseteq$   $\mathbf{Z}_+$  a given sequence.

( [ ) Assume that  $(x_1, x_2)$  is an entropy pair of (X, T) along  $\mathcal{A}$ . Then  $h^{\mathcal{A}}(T, f) > 0$  if  $f \in C(X)$  satisfies  $f(x_1) \neq f(x_2)$ .

( [] ) Assume that (X,T) has u. p. e. along  $\mathcal{A}$ . Then  $h^{\mathcal{A}}(T,f)>0$  if  $f\in C(X)$  is not a constant function.

(||||) Assume that (X,T) has u. p. s. e. Then for each non-constant function  $f \in C(X)$  there exists a sequence  $\mathcal{A} \subseteq \mathbf{Z}_+$  such that  $h^{\mathcal{A}}(T,f) > 0$ .

**Proof** Note that (X,T) has u. p. e. along  $\mathcal{A}$  iff  $(x_1,x_2)$  is an entropy pair of (X,T) along  $\mathcal{A}$  for any  $x_1 \neq x_2$ , Part ([]) follows from Part ([]). Since the proof of Part ([]) is the same as Part ([]), we only present the proof of Part ([]).

Let  $(x_1, x_2)$  be an entropy pair of (X, T) along  $\mathcal{A}$  and  $f \in C(X)$  with  $f(x_1) \neq f(x_2)$ . Without loss of generality we assume  $f(x_1) = 0$  (using Proposition 2.3 ([])). Moreover, by Lemma 2.1 it makes no difference to assume  $f \in C^+(X)$  with  $f(x_2) = 1$ . Set

$$U_1 = \left\{ x \in X \colon f(x) < \frac{3}{4} \right\}$$

and

$$U_2 = \left\{ x \in X \colon f(x) > \frac{1}{4} \right\}.$$

Then  $\mathcal{U}=\{U_1,U_2\}$  is a standard open cover of X with  $x_2$  (resp.  $x_1$ ) in the interior of  $X \setminus U_1$  (resp.  $X \setminus U_2$ ), and so  $h^{\mathscr{A}}(T,\mathcal{U}) > 0$ , as  $(x_1,x_2)$  is an entropy pair of (X,T) along  $\mathscr{A}$ . Obviously, for each  $x \in X$ ,  $\{z \in X: d_f(x,z) \leqslant \frac{1}{6}\}$  is contained in either  $U_1$  or  $U_2$ . Then conducting a similar discussion as in Lemma 2.4 we have  $N(\bigvee_{j=1}^n T^{-t_j} \mathscr{U}) \leqslant \operatorname{span}_n(d_f, T, \frac{1}{6}, \mathscr{A})$ , which implies  $h^{\mathscr{A}}(T,f) \geqslant h^{\mathscr{A}}(T,\mathcal{U}) > 0$ .

**Remark 2.7** In general, the converse of the above statements need not hold. There exists a zero-dimensional TDS (X, T) such that each

function  $f \in C(X)$  satisfying  $h^{\mathbf{Z}_+}$  (T, f) = 0 must be a constant function, however it is not transitive, and so not u. p. e. along  $\mathbf{Z}_+$  (each TDS having u. p. e. along  $\mathbf{Z}_+$  must be weakly mixing<sup>[10]</sup>, and so transitive). For example, let  $(X_1, T)$  be any zero-dimensional TDS having u. p. e. along  $\mathbf{Z}_+$  and  $x_1 \in X_1$  a fixed point. Set X to be the space  $X_1 \times \{0, 1\}$  identifying  $(x_1, 0)$  and  $(x_1, 1)$ . Clearly, it is not transitive. Now assume that  $f \in C(X)$  satisfies  $h^{\mathbf{Z}_+}$  (T, f) = 0. Let  $f_i \in C(X_1 \times \{i\})$  be the restriction of f on  $X_1 \times \{i\}$ , we have  $h^{\mathbf{Z}_+}$   $(T, f_i) = 0$ , and so  $f_i$  is a constant function (applying Theorem 2.6 (  $\mathbf{I}$  ) to  $X_1 \times \{i\}$ ), i = 0, 1. Thus f is a constant function.

#### 3 Topo-null TDSs

As an application of previous sections, we prove that, if X is zero-dimensional then for any given sequence  $\mathscr{A} \subseteq \mathbf{Z}_+$ , (X, T) has zero topological entropy along  $\mathscr{A}$  iff  $(\mathscr{M}(X), T)$  has zero topological entropy along  $\mathscr{A}$ , thus if X is zero-dimensional then (X,T) is topo-null iff  $(\mathscr{M}(X),T)$  is topo-null.

First we need Ref. [3, Proposition 2.1].

**Lemma 3.1** For any  $\varepsilon > 0$  and b > 0 there exist  $N \in \mathbb{N}$  and c > 0 such that when  $n \geqslant N$ , if  $\phi$ :  $l_1^{L_n} \rightarrow l_\infty^n$  is a linear map with  $\|\phi\| \leqslant 1$ , and if  $\phi(B_1(l_1^{L_n}))$  contains at least  $2^{bn}$  points  $x_1, \dots, x_l$  with  $\min_{1\leqslant i < j \leqslant l} d(x_i, x_j) > \varepsilon$ , then  $L_n \geqslant 2^m$ . Here  $\|\phi\|$  (resp.  $B_1(l_1^{L_n})$ , d) denotes the norm of the linear operator  $\phi$  (resp. the unit ball of  $l_1^{L_n}$ , the metric on  $l_\infty^n$ ).

**Remark 3.2** A compatible metric on  $l_1^{L_n}$  (resp.  $l_{\infty}^n$ ) is given by  $\sum_{i\geq 1}\sum_{1\leqslant j\leqslant L_n}\mid a(i,j)-b(i,j)\mid$  (resp.  $\sup_{i\geq 1}\max_{1\leqslant j\leqslant n}\mid a(i,j)-b(i,j)\mid$ ).

Let (X,T) be a TDS. Then the space C(X) is separable, as X is a compact metric space. Let  $\{f_i\}_{i\in\mathbb{N}}\subseteq C(X)$  be a dense subset. Note that each  $h\in C(X)$  determines on  $\mathcal{M}(X)$  a pseudo-metric

$$ho_{h}^{\;*}\left(\mu_{1}\,,\mu_{2}
ight)=rac{|\int\!hd\mu_{1}-\int\!hd\mu_{2}\;|}{\parallel h\parallel+1}$$
 and a compatible

metric on  $\mathcal{M}(X)$  is given by  $\rho = \sum_{i \in \mathbf{N}} \frac{\rho_i}{2^i}$  with  $\rho_i = \rho_{f_i}^*$ .

Then by Remark 1.6, for any given sequence  $\mathcal{A} \subseteq \mathbf{Z}_+$ ,  $h_{\rho}^{\mathcal{A}}(\mathcal{M}(X), T) = 0$  iff  $h_{\rho_i}^{\mathcal{A}}(\mathcal{M}(X), T) = 0$  for all  $i \in \mathbf{N}$ . Now let  $\{g_i\}_{i \in \mathbf{N}} \subseteq C(X)$  with span( $\{g_i: i \in \mathbf{N}\}$ ) dense in C(X). Note that for each  $f = \sum_{1 \leq i \leq N} \lambda_i g_i$ ,

 $\lambda_1$ , ...,  $\lambda_N \in \mathbf{R}$ , the pseudo-metric  $\sum_{1 \leq i \leq N} |\lambda_i| \rho_{g_i}^* (\|g_i\| + 1)$  dominates the pseudo-metric  $\rho_f^*$ . Then using Lemma 1.1 and Corollary 1.3 it is not hard to obtain that

$$h_{\rho}^{\mathcal{A}}(\mathcal{M}(X), T) = 0 \quad \text{iff} \quad h_{\rho_{i}}^{\mathcal{A}}(\mathcal{M}(X), T) = 0$$

$$\text{for each} \quad i \in \mathbf{N} \quad \text{with} \quad \rho_{i}' = \rho_{g_{i}}^{*}. \tag{7}$$

Now let (X,T) be a zero-dimensional TDS. For each clopen (closed and open) subset  $A \subseteq X$  we denote by  $\chi_A \in C(X)$  the characteristic function of A and write  $\rho_A = \rho_{\chi_A}^*$ . It is not hard to check that span( $\{\chi_A : A \subseteq X \text{ is clopen }\}$ ) is dense in C(X). Note that in any compact zero-dimensional metric space, there are at most countably many clopen subsets in the space, thus using Eq. (7) we have

$$h_{\rho}^{\mathcal{J}}(\mathcal{M}(X), T) = 0$$
 iff  $h_{\rho_{A}}^{\mathcal{J}}(\mathcal{M}(X), T) = 0$  for each clopen subset  $A \subseteq X$ . (8)

Then following the ideas of Ref. [3, Section 2] we have

**Theorem 3.3** Let (X, T) be a zero-dimensional TDS and  $\mathcal{A} \subseteq \mathbf{Z}_+$  a given sequence. Then (X,T) has zero topological entropy along  $\mathcal{A}$  iff  $(\mathcal{M}(X), T)$  has zero topological entropy along  $\mathcal{A}$ .

**Proof** First assume that  $(\mathcal{M}(X), T)$  has zero topological entropy along  $\mathcal{A}$ . (X, T), as a subsystem of  $(\mathcal{M}(X), T)$ , obviously has zero topological entropy along  $\mathcal{A}$  as well.

Now assume that (X,T) has zero topological entropy along  $\mathscr{A}$ . Using Eq. (8) it suffices to prove  $h^{\mathscr{A}}(\mathscr{M}(X),T)=0$  by showing  $h^{\mathscr{A}}_{\rho_{A}}(\mathscr{M}(X),T)=0$  for each clopen  $A\subseteq X$ .

Set  $\mathcal{U} = \{A, X \setminus A\}$ , a clopen partition of X.

And for each  $n \in \mathbb{N}$  we set

$$\bigvee_{i=1}^{n} T^{-t_i} \mathcal{U} = \{A_1^n, \dots, A_{L_n}^n\},$$
where  $L_n = N(\bigvee_{i=1}^{n} T^{-t_i} \mathcal{U})$  and
$$\lim_{n \to \infty} \frac{1}{n} \log L_n = 0.$$

We define the matrix  $\phi_n = (\phi_n(j,i))_{1 \le j \le L_n, 1 \le i \le n}$  by setting  $\phi_n(j,i) = 1$  if  $T^{t_i}A_j^n \subseteq A$  and  $\phi_n(j,i) = 0$  if  $T^{t_i}A_j^n \subseteq X \setminus A$ . Then  $\phi_n$  induces naturally a linear map from  $l_1^{L_n}$  to  $l_\infty^n$  by setting

$$\phi_{\scriptscriptstyle n}((a(i,j))_{i\geqslant 1,1\leqslant j\leqslant L_{\scriptscriptstyle n}})(k,l) = \sum_{1\leqslant j\leqslant L_{\scriptscriptstyle n}} a(k,j)\phi_{\scriptscriptstyle n}(j,l).$$

It is easy to check that  $\|\phi_n\| \leq 1$ .

Note that the space  $\mathcal{M}(X)$  can be mapped into  $l_1^{L_n}$  as follows

$$\mu \in \mathcal{M}(X) \mid \rightarrow (\mu(A_1^n), \cdots, \mu(A_{L_n}^n);$$

$$0, \cdots, 0; 0, \cdots) \in l_1^{L_n}. \tag{10}$$

In fact, with the above mapping it may be viewed as  $\mathcal{M}(X) \subseteq B_1(l_1^{L_n})$  (here, for our proof it makes no difference though the mapping may be not injective), so  $\phi_n(B_1(l_1^{L_n})) \supseteq \phi_n(\mathcal{M}(X))$ . Moreover, as  $\sum_{1 \leq j \leq L_n} \mu(A_j^n) \phi_n(j,l) = \mu(T^{-l_l}A) = T^{l_l}\mu(A)$  for each  $\mu \in \mathcal{M}(X)$  and  $1 \leq l \leq n$ , we have

$$egin{aligned} \phi_n(\mu) &= \Bigl(\sum_{1\leqslant j\leqslant L_n} \mu(A_j^n) \; \phi_n(j,1), \cdots, \ &\sum_{1\leqslant j\leqslant L_n} \mu(A_j^n) \phi_n(j,n) \; ; 0, \cdots, 0 \; ; 0, \cdots \Bigr) = \ &(T^{l_1} \mu(A), \cdots, T^{l_n} \mu(A) \; ; 0, \cdots, 0 \; ; 0, \cdots), \end{aligned}$$

which implies that for all  $\mu, \nu \in \mathcal{M}(X)$  we have (here, d denotes the metric on  $l_{\infty}^{n}$ )

$$d(\phi_{\boldsymbol{n}}(\boldsymbol{\mu}),\phi_{\boldsymbol{n}}(\boldsymbol{\nu})) = \max_{1 \leq i \leq \boldsymbol{n}} \mid T^{i_i}\boldsymbol{\mu}(A) - T^{i_i}\boldsymbol{\nu}(A) \mid.$$

If we assume the contrary that  $h_{\rho_A}^{\mathscr{A}}(\mathscr{M}(X),T)>0$ , then there exist  $\varepsilon>0$  and b>0 such that for infinitely many n we have  $\sup_n(\rho_A,T,\varepsilon,\mathscr{A})\geqslant 2^{bn}$ , thus there exists  $\{\mu_1,\cdots,\mu_{s_n}\}\subseteq \mathscr{M}(X)$  such that  $\{\mu_1,\cdots,\mu_{s_n}\}$  is  $(\rho_A,n,\varepsilon,\mathscr{A})$ -separated w. r. t. T and  $s_n=\sup_n(\rho_A,T,\varepsilon,\mathscr{A})$ . That is,

$$\begin{split} \max_{1\leqslant i\leqslant n} \mid T^{t_i}\mu_{j_1}(A) - T^{t_i}\mu_{j_2}(A) \mid > \varepsilon \\ & \text{if} \quad 1\leqslant j_1 < j_2 \leqslant s_n, \\ & \text{i. e. } d(\phi_n(\mu_{j_1}),\phi_n(\mu_{j_2})) > \varepsilon \text{ if } 1\leqslant j_1 < j_2 \leqslant s_n \text{ (using } s_n < s_n <$$

Eq. (11)). Now applying Lemma 3.1 we have that there exists c > 0 such that  $L_n \ge 2^m$  if n is large enough, which contradicts Eq. (9). Thus  $h_{\rho_A}^{\mathcal{A}}(\mathcal{M}(X), T) = 0$ . This completes the proof.

Let (Y, S) be a TDS. A TDS (X, T) is a factor of (Y, S) if there exists a continuous surjective map  $\pi: Y \rightarrow X$  such that  $\pi S = T\pi$ . We also say that (Y, S) is an extension of (X, T) and  $\pi: (Y, S) \rightarrow (X, T)$  is a factor map between TDSs. Then, as a direct corollary of Theorem 3.3 we have

**Theorem 3.4** Let (X, T) be a TDS and  $\mathscr{A}\subseteq \mathbf{Z}_+$  a given sequence.

(  $\underline{I}$  ) If ( $\mathcal{M}(X)$ , T) has zero topological entropy along  $\mathcal{A}$ , then (X, T) also has zero topological entropy along  $\mathcal{A}$ .

( [] ) Suppose that TDS (X,T) admits a zero-dimensional extension (Y,S) with  $h^{\mathcal{A}}(X,T) = h^{\mathcal{A}}(Y,S)$ . Then  $(\mathcal{M}(X),T)$  has zero topological entropy along  $\mathcal{A}$  iff (X,T) has zero topological entropy along  $\mathcal{A}$ .

**Proof** Part ( [ ) is obvious. Now we turn to the proof of Part ( [] ). We assume that TDS (X,T) admits a zero-dimensional extension (Y,S)with  $h^{\mathcal{A}}(X,T) = h^{\mathcal{A}}(Y,S)$ . Using Part ( [ ), it suffices to prove that if (X,T) has zero topological entropy along  $\mathcal{A}$  then  $(\mathcal{M}(X), T)$  has zero also topological entropy along  $\mathcal{A}$ . Note that there exists a natural homomorphism which maps  $\mathcal{M}(Y)$  onto  $\mathcal{M}(X)$ . In particular, the topological entropy along  $\mathcal{A}$  of  $(\mathcal{M}(X), T)$  is not more than that of  $(\mathcal{M}(Y), S)$ . If (X,T) has zero topological entropy along  $\mathcal{A}$  and so does (Y, S) (by assumption), then using Theorem 3.3 we have that TDS  $(\mathcal{M}(Y), S)$  has zero topological entropy along  $\mathcal{A}$ , and so does  $(\mathcal{M}(X),T).$ 

Due to the contribution of Boyle, any TDS with zero topological entropy admits a zero-dimensional extension with zero topological entropy<sup>[3, Proposition 2, 4]</sup>. Moreover, using the classical variational principle, for each TDS with finite topological entropy, Ref. [11, Fact 4.0.5] constructs a zero-dimensional extension with the

same topological entropy. It is natural to conjecture similar results in view of topological sequence entropy. However, it seems difficult to construct a zero-dimensional topo-null extension for any topo-null TDS. Thus we ask

**Question 3.5** Let (X,T) be a TDS and  $\mathcal{A}\subseteq \mathbb{Z}_+$  a given sequence. Does it admit a zero-dimensional extension with the same topological entropy along  $\mathcal{A}$ ? Does it hold if in addition we assume  $h^{\mathcal{A}}(T)=0$ ?

Assume that Question 3.5 has an affirmative answer for a TDS (X,T) and a given sequence  $\mathcal{A}\subseteq \mathbf{Z}_+$  satisfying  $h^{\mathscr{A}}(T)=0$ . Then using Theorem 3.4 ([]) (X,T) has zero topological entropy along  $\mathscr{A}$  iff  $(\mathscr{M}(X),T)$  has zero topological entropy along  $\mathscr{A}$ . Moreover, if Question 3.5 has an affirmative answer for a TDS (X,T) and any given sequence  $\mathscr{A}\subseteq \mathbf{Z}_+$  satisfying  $h^{\mathscr{A}}(T)=0$ , then (X,T) is toponull iff  $(\mathscr{M}(X),T)$  is toponull. It seems more possible that for any given sequence  $\mathscr{A}\subseteq \mathbf{Z}_+$  we can construct a zero-dimensional extension for each toponull TDS such that the extension has zero topological entropy along  $\mathscr{A}$ . Of course, if it is true, this also implies that (X,T) is toponull iff  $(\mathscr{M}(X),T)$  is toponull.

**Acknowledgement** We thank Huang W for many useful comments. We also thank Prof Ye X

for the valuable discussions.

#### References

- [1] Kolmogorov A N. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces [J]. Dokl Akad Nauk SSSR, 1958, 119: 861-864.
- [2] Adler R L, Konheim A G, McAndrew M H. Topological entropy[J]. Trans Amer Math Soc, 1965, 114: 309-319.
- [3] Glasner E, Weiss B. Quasi-factors of zero-entropy systems[J]. J Amer Math Soc, 1995, 8: 665-686.
- [4] Bauer W, Sigmund K. Topological dynamics of transformations induced on the space of probability measures[J]. Monatsh Math, 1975, 79: 81-92.
- [5] Glasner E. Distal and semisimple affine flows [J]. Amer J Math, 1987, 109: 115-131.
- [6] Kushnirenko AG. On metric invariants of entropy type [J]. Russian Math Surveys, 1967, 22: 53-61.
- [7] Goodman T N T. Topological sequence entropy[J]. Proc London Math Soc, 1974, 29: 331-350.
- [8] Kerr D, Li H F. Dynamical entropy in Banach spaces [J]. Invent Math, 2005, 162; 649-686.
- [9] Kerr D. Entropy and induced dynamics on state spaces [J]. Geom Funct Anal, 2004, 14: 575-594.
- [10] Blanchard F. Fully positive topological entropy and topological mixing [J]. Contemporary Mathematics, 1992, 135: 95-105.
- [11] Downarowicz T. Entropy structure[J]. J Anal Math, 2005, 96: 57-116.