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Abstract; Let (X, T) be a TDS and .#(X) the space of all Borel probability measures on X
equipped with the weak* topology. (X, T) is topo-null if (X, T) has zero topological sequence
entropy. Given a pseudo-metric space and a self-map, the topological sequence entropy was
studied for a special class of pseudo-metrics induced by continuous real-valued functions on the
space. As an application, it was proved that, given a sequence /Z"Z. , if X is zero-dimensional
then (X, T) has zero topological entropy along </ if and only if (#(X),T) has zero topological
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a homeomorphism from X onto X. Let (X,T) bea
TDS and A(X) the space of all Borel probability
By a topological dynamical system (TDS) (X, T) measures on X equipped with the weak* topology,

0 Introduction

we mean that X is a compact metric space and T is then #(X) is a compact metric space. That is, for
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popr s pos o € MCX) sy, —>p if and only if Giff)
()= Cf) for each f€ C(X), where C(X)
denotes the space of all continuous real-valued
functions on X. Then T induces naturally an
action on #(X) (denoted still by T) such that
(M(X), T) forms a TDS, and (X, T) may be
viewed as a sub-system of (M (X), T) by a
canonical mapping xH>9,.

Entropy is defined in both ergodic theory and
topological dynamics. Since the introduction of

measure-theoretical entropy for an invariant
measure in 1958 and topological entropy in
19651, a lot of attention has been paid to these
two kinds of entropy and the relationship between
them, named the classical variational principle has
been obtained. Viewing the canonical mapping
x>0, it is clear that if (A(X),T) has zero
topological entropy then (X,T) also has zero
topological entropy. The converse of the statement
also holds, which was proved in Ref. [ 3] using two
different ideas. In fact, it has been studied in
Refs. [3~5] that certain dynamical properties of
(X, T) need not be enjoyed by (#(X),T), such as
minimality, unique ergodicity and so on; whereas,
besides zero entropy, there are some other
dynamical properties which do carry over.

In 1967 measure-theoretical sequence entropy
was introduced and measure-theoretical null
systems were characterized to be equivalent to the
systems having a discrete spectrum'™. Then in

1974  topological  sequence  entropy = was
introduced™, but according to Ref. [ 7] there is no
variational principle for sequence entropy. Let
(X,T) be a TDS. We say that (X,T) is topo-null
if (X,T) has zero topological sequence entropy, i.
e. it has zero topological entropy along any given
sequence /& Z,. When we consider topological
sequence entropy, a natural question arises that,
for a given sequence /= Z. whether (#(X),T)
must have zero topological entropy along </ if
(X,T) has zero topological entropy along .;
moreover, whether (#/(X),T) must be topo-null

if (X, is topo-null. The question is addressed in

this paper. In fact, in view of results obtained in
the paper, it seems possible that some dynamical
behavior of a TDS may be obtained by studying
some special pseudo-metrics on the space.

First, given a pseudo-metric space and a self-
map we introduce the topological sequence entropy
and give a systematic description of it, including a
special class of pseudo-metrics induced by
continuous real-valued functions on the space. We
prove that, given a TDS and a sequence ©/&=Z, ,
the system has zero topological entropy along ./ iff
all pseudo-metrics induced by continuous real-
valued functions on the space have zero topological
entropy along &/ Then, inspired by the geometric
idea in Ref. [ 3], as an application we prove that,
for any given sequence &/ Z;, if X is zero-
dimensional then (X, T) has zero topological
entropy along &/ iff (#(X),T) has zero topological
entropy along </, thus if X is zero-dimensional then
(X, T) is topornull iff (ACX),T) is toponull.
This gives an affirmative answer to our question in
the case of zero-dimensional spaces.

The question remains open that in the general
case whether (4 ( X), T) must have zero
topological entropy along «/ if (X, T) has zero
topological entropy along </ for any sequence /&
Z.. It should be mentioned that we were in the
process of completing the first version of the paper
when we were informed of Ref. [8, Theorem 5. 10]
by Huang, which states that (X, T) is topo-null iff
(M (X)), T) is topo-null using a completely
different method.

The paper is organized as follows. In Section
1 we introduce the topological sequence entropy of
a pseudo-metric space with a self-map and give it a
systematic description. Then in Section 2, on any
given TDS we study the topological sequence
entropy of a special class of pseudo-metrics induced
by continuous real-valued functions on the space,
and prove that given a TDS and a sequence of non-
negative integers, the TDS has zero topological
entropy along the sequence iff any pseudo-metric in

this special class has zero topological entropy along
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the sequence. As an application, in Section 3 we
prove that, given a zero-dimensional TDS (X, T)
and a sequence of non-negative integers, (X, T)
has zero topological entropy along the sequence iff
(M(X), T) has zero topological entropy along the
sequence, which implies that for a

dimensional TDS (X, T), (X, T) is topo-null iff
(M(X), T) is topo-null.

Zero-

1 Topological sequence entropy of a
pseudo-metric

In this section, as the main tool of the
following sections, we introduce the concept of
topological entropy of a pseudo-metric space with a
self-map for any given sequence &/ & Z., and
discuss some basic properties of it.

Let (X, p) be a pseudo-metric space and T
X—>X a self-map. Let n€N, ¢>0 and Y&7Z,; a
= {t; }en and fix it
A set E© X is said to be

(psnsescl)-separated with respect to (w. r. t.) T if

given sequence, Denote

throughout the paper.

for every x1 .2, €E, x17%x, implies

maxp(T’xl, Tiz,) >e.

1<<i<n

A set F=X is said to be (p,n,e,/)-spanning w. . t.
T if for every € X there exists ' € F such that
max p(T'"z, T"x")<le. Denote by sep, (p» Tses )

1<<i<n

(resp. span, (ps T, e, &/)) the largest (resp.
smallest) cardinality of a (p,n,e, 2/)-separated set
T. Note

(resp. (psn,e, /)-spanning set) w. r. t.

that they may be infinite. Then we set

h)(T) = sup lim supf log sep, (os Tses D).

JE
@b
We call h,/(T) the topological entropy of (X,p,T)
along /. Sometimes we write it as A, (X, T).
When /=7, , we shall omit the restriction </
And when (X, T) is a TDS with p the metric on
the space X, we shall omit the restriction p.
Obviously, it accords with the definition of
topological sequence entropy of a TDS. It's not
hard to check that
sep, (ps T2, /) <span, (p, Tyes o) <<

sep, (os Taes ) s

which implies that

h)(T) = sup lim supflog span, (o, Tye, D).

n—>oo

(2

Let X be a set and T: X—X a self-map. Let
o1 and p, be two pseudo-metrics on X. We say that
o1 dominates p; (denoted by p; >p,) if for each e=>0
there exists §>>0 such that p; (&1, x2) <0 implies
02 (x1,2,)<<e. We say that p is equivalent to p,
(denoted by p1 = p,) if p1 > p, and p; > p1. The
following fact is obvious.

Lemma 1.1 Let X be a set, T: X—>X a self-
map and “A=Z, a given sequence. Let p and p, be
two pseudo-metrics on X. If o) >p; then £, (T)=
h,, (T). Moreover, if py~p, then h, (T):h‘p; (D).

Let (X;,p0:) be a pseudo-metric space, i=1,2.
The pseudo-metric p Dp. on X; X X, is given by
0 Bpr (&g 520 5 (275 25)) = py (5 21) F s (s 20).
Then

Proposition 1.2 Let (X;, o) be a pseudo-
metric space, T;: X;—>X; a self-map (i=1,2) and
A =7, a given sequence. Then

max{h, (T1).h,, (T;)} <
hprwp, CTy X Ty) < hyy (T1)+l1 , (T2).
As a direct appllcatlon we have

Let X be aset, T: X—X a

self-map and «/=Z, a given sequence. Let p; and

Corollary 1.3

ez be two pseudo-metrics on X. The pseudo-metric
o1t on X is given by
(o1 +p2) (21 522) = p1 (a1 522) + o2 (a1 5 2).
Then
max{h, (T),h, (T)} <

B, (T < By (T ~+ hy (T).

Let X be a set and o1+ p2 two pseudo-metrics

on X. Put
dist(p1s ) =

SUP{ ‘ pl(Il 52 *(02(11 s 22) | : a3 € X
Then

Proposition 1.4  Let (X, p) be a pseudo-
metric space, T: X—>X a self-map and #/&Z. a
given sequence. Let {p }ien be a sequence of

pseudo-metrics on X satisfying dist (piy p) = 0.
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Then hp/(T)glim'inf h, ( T)<$g£ b, (T).
Proof Let ¢ >0. There exists N & N such

that if =N then dist(p;.0) <<+ which implies

(s 25)<pi(y s x2) —|—% for any x1,x, € X. So
for each n€ N, if E€ X is (p,n,e, /)-separated

w.r.t. T, then when i=N it is (o n, %, A)-
separated w. r. t. T which implies
sep, (‘Oa Ta€3 (’/) < S€EP, ((0; ’ T?% ’ f»/)
and
lim sup}%log sep, (ps Tae, ) <
. . 1 €
S S - S s Lo 0 ) .
sup nf Tim sup < log sep, or- T 5+)
Let e>0-+, we obtain
h,/(T) < sup infh,/(T) =
JEN =
lirlriinf h, (T) < %%) h, (). (3)
L]

Remark 1.5 The inequality h,/ (T) <
lim inf 2,/ (T) may hold strictly. For example, let
(X, p) be any pseudo-metric space containing

infinitely many points. For each i € N, we set

‘0,(1‘191‘2):1'1'121)({[0(‘2?19xz)a

)i #Ea and
pi (x1s2,) =0 if 2y =z, , which implies dist(p.p;) <<

2 . .
——(0. Whereas, from the construction, if x; #Zx,
7

then p; (2152, )Z% , thus for any self-map T; X—
X and any sequence &/ & Z. containing 0,
sep”(p,v,T,%,&/):oo if only n is large enough.

Then hp]’(T) =oo for each iEN,
Remark 1.6

X— X a self-map and «/ZZ, a given sequence.

In particular, let X be a set, T

Assume that {p ey is a sequence of pseudo-

metrics on X satisfying sup sup p; (z1 525 ) <00,
i< ESRED) cX
Then 2,/ (T) =0 iff h, (T) =0 for each i € N,

where p = 2 % In fact, set ‘0/,: 2 % for each

€N I<j<i

i€ N. We have dist(p:,p)ﬂo, so h, (T) <

lig’inf b,/ (T) (using Proposition 1.4). We also
have p>p/+1 > p;» thus h,/(T) =h,  (TH=h/(T)
(using Lemma 1. 1). That is, o/ (T) 7h/(T).
Consequently, A, (T) =0 iff hpf (T)=0 for each i &
N, iff hp/7 (T)=0 for each i€ N (using Corollary
1.3), iff b,/ (T)=0 (using Lemma 1.1, as p;/2'~p,)
for each iEN.

2 Topological sequence entropy of a
continuous function

In this section we shall study the topological
sequence entropy of a special class of pseudo-
metrics on any given TDS (X, T) induced by
continuous real-valued functions on X.

Let (X, T) be a TDS and /& Z; a given
sequence, Now for each f& C(X) we define a
pseudo-metric d, on X by setting d, (a1, x2) =
| fCeD)—fCa) [. We write (T, f)=h/ (T).
and also call it the f-topological entropy of (X, T)
along /. Thus
Let (X,T) bea TDS and /=7
a given sequence. Then h“/(T, | fD<<h’(T, /) for
each f€ C(X), where | /| denotes the absolute

value of f.

Lemma 2. 1

Equip C(X) with the maximum norm | < |
and denote by cl() the closure of A in the space
C(X) for each M=C(X). Note that if f, f1,fs,
€ C(X) satisly || f—f; [| =0 then dist(d,.d;)—
0, thus we have (using Proposition 1. 4)

Proposition 2.2 Let (X,T) be a TDS, «/C&
Z+ a given sequence and M4 & C (X). Then
h/(CT, =0 for each f& clCd) il B (T, f)=0
for each f€& .. Moreover,

sup L (T, ) = sup, W' (T, . €Y

The following basic facts are easy to obtain.

Proposition 2.3 Let (X,T) be a TDS, #/&
Z+ a given sequence and f, fi, f» € C(X). The
functions f¥, /¥ € C (X X X) are defined as
O sx)=f1 (x1) fo (x3) and f© (xys a0) =
fi(x))+ f2(x3). Then we have

(1) h'(T, ¢)=0, where ¢ is any constant

real function on X.
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(I (T, c+fH)=h"(T,f), where c is any
real constant.

(I A'CTs cf)=h"'(T, ), where ¢ is any
non-zero real constant.

(V) KW(TXT, fOO<h'(T, f1)+h'(T, f).

(V) h/(TXT, fO<h/(T, f1)+h"(T, f2).

(VD max{h’ (T, f1f2)s h' (T, f1 + f2)} <
RCT, f1)+h'(T, ).

proof Parts (I ), (II) and ([l[) are obvious
from the definitions and LLemma 1. 1.

(IV) The inequality holds clearly if || f1 || *
| f2 [l =0. Now we assume | £ || « [| > || >0.

Let e >0 and n € N. Let F;, & X be any
dy, ,n,HﬁH—M,&‘/)*Spanning subset w. 1. t.
T, i=1, 2. Set F=F, XF,CXXX. If (a1,2,) €
XX X, there exists . € F;(i=1, 2) such that

maxd, (TVz;, Tx}) =

1<<j=n

max | fi(Tiz,) — fi(Tiz)) |<

1<<j=n
5
. (5)

FAEIFA
Then we have
maxd © (T, T (T92], Thah)) =
max | fO(Tix, Tizy) — fO (Tix), Tixy) |<
ll'};lB;X( ‘ f® (le'l 9T-/1'2) _f® (T-/I; 9T'/1'2) ‘ )+

max (| fO (Tix), Tixy) — fO (Tix], Tizx}) |) <

1<j<n
| fo Il g\l,a<x. | [iTS2) — [Tz |+

H S ” * gl]a{)i | fz(le"z)*fz(Tj‘T,z) ‘g

CNAaT+HIAlD . (by Eq. (5)) =e.

€
AT+
That is, F is (d © yn,e,)-spanning w. r. t. T. So

span, (d/@ ’ T9€ . @/) <

2
dy Tor=s )
Hspan,,< f; I AT+ f >

=1

hence

lim sup llog span, (d o, Thes o) <

>0 n
h/CT, 1) +h'CT, f5). (6)
Then we claim the inequality by letting e—=>0-.
(V) We deduce it by a similar procedure as in

Eq. (6), if only we notice that

maxd @ (T, Tia,),(Tiz), Tix})) <

I<j<n

max ( | SO Tixy Tizy) — O (Tiz'y , Tizy) |+

1<j<n

max (| @ (Tizy, Tizy) — O (Tizy , Tizy) |) =

l<j=n

max | f1(Tix) — f1(T'z)) [+

1<j<n

1<j=n

2e
(by Eq. (5)).
TAT+TAT Y

(V) Let R denote the restriction of action
TXT on Ax, the diagonal {(x,x):2€ X} of X.
Note that h/(R,(g) " )<<h /(T X T, g) for each g€
C(X X X), where (g)" € C(Ax) denotes the
restriction of g over Ax. Then we have

h'CTs f1f2) =R, (f9)")
(via the canonical mapping (x,x)|—x) <
K (T X T, o <
h'CT, f1) +h'CT, f2) (by (IV)).
By the same reasoning we obtain

(T, fi 4 f2) <h/(T. 1) +h'(T, f). []

Denote by C'" (X) the collection of all non-
negative functions in C(X). We have
Let (X,T) be a TDS and A7,

a given sequence. Then the following statements

Lemma 2. 4

are equivalent:

(1) R'CTH=0.

(I (T, H)=0 for all FECX).

(I A (T, fH)=0 for all fECT (X).

() R/(T, f)=0 for all f&€ M, where M is
any dense subset of C(X).

(V) h'(T, f)=0 for all f&€ ., where M is
any dense subset of CT (X).

Proof (([[)& (V) and (([[) & CV))
follow from Proposition 2.2, (]I ) < (Il )
follows from Proposition 2. 3 ([[ ). Now let’s turn
to the proof of (([)&(C])). Let d be the metric
on X.

(CIH=C): Let f&€C(X) and e=>0. Since
X is compact, there exists § > 0 such that
d () ;)<< implies d;(x) »a) = | f () — f(x) [ <
e. That is d>>d;, hence '/ (T, f)<<h’'(T)=0
(using Lemma 1. 1),

(CIIH)=C1)): For the proof we shall follow
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the idea of Ref. [ 9, Lemma 4.2 ]. Assume the
contrary that there exists an open cover {U,,U,}
of X such that A/ (T, {U,,U,}) >0 and X\U,
(resp. X\U,) has a non-empty interior containing
x, (resp. x,). Then by the known Urysohn
Lemma there exists f€C" (X) such that f(x)=0
if v& X\U, and f(x)=1 if x& X\U;. Thus for

eachx€ X, {z:€X.d,;(x, z)<%} is contained in

either U, or U,.

1

Now for each n € N, if E is (d/»,n,g,if)*

spanning w. r. t. T then
UE 2 € X:d,(Tix, T'2) <%,1 <i<n} = X.

x€

Note that for all r€ X, {z€ X:d,(T'x, Tiz)<<

%, 1<<i<{n} is contained in some elements of
Vi, T 5{U,,U,}, we have

NV T59{ULU D < spann(d/,T,%,J\:/).
So

lim sup %log span,,(df,T,% N——

h(T,{Uy, Uy ) > 0.
In particular, A (T, f) >0, a contradiction with
the assumption. L]
For 4= C(X) denote by span (.#) the set

{ EC,f,:?’l 6 Nafl?"'af‘u 6 r/ﬂaCla'"?C” 6 R}.

1<<i<n
Then by Proposition 2. 3 and LLemma 2. 4 we have

Corollary 2.5 lLet (X, T) be a TDS, /<&
C(X) and #/&=Z. a given sequence. If span(.4) is
dense in C(X), then h’(T)=0 iff (T, f)=0 for
all fe .

Let (X, T) be a TDS and #/C Z. a given
sequence. We say that (X, T) has uniformly
positive entropy (u. p. e. ) along o7 if A7/ (T, U) >0
when U= {U,,U,} is a standard open cover of X
(i. e. both X\ U, and X\ U; have non-empty
interiors); and has uniformly positive sequence
entropy (u. p. s. e.) if for each standard open cover
U of X there exists a sequence «/&Z,; such that
h? (T, >0, Moreover, we say that (x;,x,) is an
entropy pair of (X, T) along </ if x; %% x; and

h'(T, >0 when U={U,,U,} is a standard open
cover of X with x, (resp. ;) in the interior of
X\U, (resp. X\U,). Then we have

Theorem 2.6 Let (X,T) be a TDS and /&
Z, a given sequence.

(1) Assume that (x,,2,) is an entropy pair
of (X,T) along &/ Then h’/(T, H>0if f€C(X)
satisfies f(a) 7= f(x2).

() Assume that (X, T) has u. p. e. along
. Then h7/(T, f)>0if f&€ C(X) is not a constant
function.

() Assume that (X,T) has u. p.s. e. Then
for each non-constant function f & C(X) there
exists a sequence A7 such that h/(T, )>0.

Proof Note that (X, T) has u. p. e. along &/
iff (xy.2,) is an entropy pair of (X, T) along </ for
any x; #x3, Part (]I ) follows from Part ().
Since the proof of Part ([l[ ) is the same as Part
(1), we only present the proof of Part ( ] ).

Let (x;, 22) be an entropy pair of (X, T)
along o/ and f € C(X) with f(x) # f (x2).
Without loss of generality we assume f(x;) =10
(using Proposition 2.3 (][ )). Moreover, by
Lemma 2. 1 it makes no difference to assume [ &

CT(X) with f(x,)=1. Set

U, — {1‘ € X: f(2) <%}
and

U, = {x € X: f(o) >%}

Then %= {U,,U,} is a standard open cover of X
with x, (resp. x1) in the interior of X\U, (resp.
X\U,), and so 77/ (T, U) >0, as (x1sx2) 1s an
entropy pair of (X, T) along <. Obviously, for

eachx€ X, {z€X. d,(x, z)é%} is contained in
either U; or U,.

discussion as In

Then conducting a similar

Lemma 2.4 we have
1
6"
implies A7 CT, ) =h"(CT,U)>0. []
Remark 2.7
above statements need not hold. There exists a
zero-dimensional TDS (X, T) such that each

NV, T 99< span,(d;, T, /), which

In general, the converse of the
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function f€ C(X) satisfying h% (T, f) =0 must

be a constant function, however it is not
transitive, and so not u. p. e. along Z; (each TDS
be weakly

having u. p. e. along Z;, must

101 and so transitive). For example, let

mixing
(X,,T) be any zero-dimensional TDS having u. p.
e. along Z. and x; € X, a fixed point. Set X to be
the space X; X {0, 1} identifying (x;, 0) and
(x1,1). Clearly, it is not transitive. Now assume
that f€ C(X) satisfies h% (T, f)=0. Let f; €
C(X, X{i}) be the restriction of f on X, X {i}, we
have h%+ (T, f;) =0, and so f; is a constant
function Capplying Theorem 2.6 (] ) to X; X

{i}), i=0, 1. Thus f is a constant function.

3 Topo-null TDSs

As an application of previous sections, we
prove that, if X is zero-dimensional then for any
(X, T) has zero
topological entropy along 7 iff (#(X),T) has zero

given sequence & & Z.,

topological entropy along &/, thus if X is zero-
dimensional then (X, T) is topo-null iff (A(X),T)
is topo-null.

First we need Ref. [ 3,Proposition 2. 1].
For any e >0 and >0 there
exist NEN and ¢>0 such that when n=N, if ¢.

Zi‘”»l,’; is a linear map with | ¢ || <1, and if

Lemma 3.1

95(81(111’“)) contains at least 2°" points xj, ***s 2y

with min d (x;, x;) >¢, then L, =>2". Here

1<i<j<

¢ C(resp. B, (lll‘” ), d) denotes the norm of the

linear operator ¢ (resp. the unit ball of ll1 , the

metric on [%).

Remark 3.2 A compatible metric on /"

(resp. I1) is given by >, D) | a(i.j) —bG.j) |

i>1 1<j<L,

(resp. sup max | a(i,j) —b(i.j) ).

=1 1=Zj<n
Let (X, T) be a TDS. Then the space C(X) is
separable, as X is a compact metric space. Let
{fi}ien=C(X) be a dense subset. Note that each

h& C(X) determines on #(X) a pseudo-metric

% 38 &
) | Jhd/m —Jhd/xz | .
o Quspe) = T F1 and a compatible

metric on #(X) is given by p = Z % with p;=p; .
€N

Then by Remark 1. 6, for any given sequence ./
Zi s h/CUXD), TH)=0 iff b/ CM(X), T)=0 for all
€N, Now let {g;},en&=C(X) with span({g;: i€ N})

dense in C(X). Note that for each f = 2 Aigis

1IN

pseudo-metric

Als ttty AN 6 Ry the
E A | ps Cllgi | +1) dominates the pseudo-

1IN
metric p/ . Then using Lemma 1.1 and Corollary
1. 3 it is not hard to obtain that

/M) T) =0 il hf (XD, T) = 0

for each i € N with {0/,-: s+ D)
Now let (X, T) be a zero-dimensional TDS.
For each clopen (closed and open) subset AC X
we denote by y, € C(X) the characteristic function

of A and write px = p;,. It is not hard to check

XA °
that span({y,:ASX is clopen}) is dense in
C(X). Note that in any compact zero-dimensional
metric space, there are at most countably many

clopen subsets in the space, thus using Eq. (7)

we have
R/ (MX),T) =0 iff h, (MX),T)=0
for each clopen subset A & X. (8)
Then following the ideas of Ref. [ 3, Section
2] we have

Theorem 3.3 Let (X, T) be a zero-
dimensional TDS and &/C Z. a given sequence.
Then (X, T) has zero topological entropy along &/
iff (4 (CX), T) has zero topological entropy
along /.

Proof First assume that (#(X),T) has zero
topological entropy along < (X, T), as a sub-
system of (.M (X), T),

topological entropy along </ as well.

obviously has zero

Now assume that (X, T) has zero topological
entropy along </ Using Eq. (8) it suffices to prove
R (AM(X), T)=0 by showing h, (U(X),T)=0 for
each clopen ACX.

Set U={A, X\A}, a clopen partition of X.
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And for each n€N we set
VT AT A

where L, = N(_i/1 T%U and l (9)

lim llog L,=0.

oo M
We define the matrix ¢, = (4, (j.i))1<jcr 1<ica by
setting ¢,(j, D=1 if T'"A’CA and ¢,(j, i) =0 if
T A" X\A. Then ¢, induces naturally a linear
map from Zi to [ by setting

8, (aCisj))mricyer, YD = D alk, D, (s

<<,
It is easy to check that || ¢, || <1.

Note that the space #(X) can be mapped into
I;" as follows

M 6 /ﬂ(X)l"(ILI(A’f) 7"'9,&(A’Iiu )§
0,0+,050,++) € [, (10

In fact, with the above mapping it may be viewed
as M(X) B, (li‘“) (here, for our proof it makes

no difference though the mapping may be not
injective) , so ¢, (B, (le‘” )2, (M(X)). Moreover,

as > p(ANS, (G = u(T"A) = T'u(A) for

1<<I

“n

each € M(X) and 1<</<{n, we have
.0 = (D) pu(AD $,G D)oo,

<<,

S CADS,Gan) 01001030, ) =

<=L,
(T'#(A),"',T”#(A);O,"',O;O,"')y
which implies that for all u,v & M(X) we have

(here, d denotes the metric on /)

d(¢n(ﬂ)9¢n(y)) - maj( ‘ T’M(A) 7T}V(A) |.

1<i<tn

(1D
If we assume the contrary that A, (A(X),T)>
0, then there exist e >0 and 5>0 such that for
infinitely many n we have sep, (o1, Tse, /) =2"",
thus there exists {p, -, s, } S M(X) such that
{prsvsp 1 1s (oasnsesch-separated w. r. t. T and

sa=sep, (oas Tres /. That is,

max | Tf’lu,-l (A) — T’,ujz (A) |>e

1=Zi<n
i 1<<j <j»<s.»
e d(, () s$, (g, )0 >e il 1<), <7j,<Cs, (using

Eq. (11)). Now applying Lemma 3. 1 we have that
there exists ¢ >0 such that L,>2" if n is large
which contradicts Eq. (9). Thus
h,, (M(X),T)=0. This completes the proof.  []

Let (Y,S) be a TDS. A TDS (X, T) is a

factor of (Y, S) if there exists a continuous

enough,

surjective map z: Y —>X such that zS= Tr. We
also say that (Y,S) is an extension of (X, T) and
7:(Y,S)—(X,T) is a factor map between TDSs.
Then, as a direct corollary of Theorem 3.3
we have

Theorem 3.4 Let (X,T) be a TDS and /&
Z a given sequence.

(1> If CA4CX), T) has zero topological
entropy along </, then (X, T) also has zero
topological entropy along /.

(II) Suppose that TDS (X, T) admits a zero-
dimensional extension (Y, S) with A/ (X, T) =
h'(Y,S). Then (M(X),T) has zero topological
entropy along «/ iff (X, T) has zero topological
entropy along ./,

Proof Part ( ] ) is obvious. Now we turn to
the proof of Part (]I ). We assume that TDS
(X,T) admits a zero-dimensional extension (Y, S)
with h/(X, T)=h"(Y,S). Using Part (), it
suffices to prove that if (X,T) has zero topological
entropy along </ then (#(X), T) has zero also
topological entropy along «Z Note that there exists
a natural homomorphism which maps #(Y) onto
M(X). In particular, the topological entropy along
ol of (M(X),T) is not more than that of (L#(Y),S).
If (X,T) has zero topological entropy along ./ and
so does (Y, S) (by assumption), then using
Theorem 3.3 we have that TDS (#(Y),S) has
zero topological entropy along ./, and so does
XD, 1. L]

Due to the contribution of Boyle, any TDS
with zero topological entropy admits a zero-
topological

dimensional extension with zero

[8+ Proposiion 2. 41 - Moreover, using the classical

entropy
variational principle, for each TDS with finite
4.0.5 ]

constructs a zero-dimensional extension with the

topological entropy, Ref. [ 11, Fact
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same topological entropy. It is natural to
conjecture similar results in view of topological
sequence entropy. However, it seems difficult to
construct a zero-dimensional topo-null extension
for any topo-null TDS. Thus we ask

Question 3.5 Let (X,T) be a TDS and «#/&
Z, a given sequence. Does it admit a zero-
dimensional extension with the same topological
entropy along /7 Does it hold if in addition we
assume h”'(T) =07

Assume that Question 3.5 has an affirmative
answer for a TDS (X, T) and a given sequence s/—
Z. satisfying h”/(T)=0. Then using Theorem 3. 4
(lI) (X, T) has zero topological entropy along «/
iff (MCX),T) has zero topological entropy along
o. Moreover, if Question 3.5 has an affirmative
answer for a TDS (X, T) and any given sequence
=7, satistying h/(T)=0, then (X, T) is topo-
null iff (4(X), T) is topo-null. It seems more
possible that for any given sequence “A—7. we can
construct a zero-dimensional extension for each
topo-null TDS such that the extension has zero
topological entropy along 2 Of course, if it is
true, this also implies that (X, T) is topo-null iff
(M(XD,T) is topo-null.
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