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An enhanced meshfree treatment for
symmetric/antisymmetric and periodic problems
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Abstract: Most of the existing meshfree methods are based on moving least square (MLS) or
reproducing kernel (RK) approximation. One noticeable property of the MLLS/RK approximation
is the boundary truncation effect. An enhanced treatment of the special conditions of symmetry,
antisymmetry and periodicity in meshfree methods was proposed such that the reduced model was
able to yield identical solutions as the full model. In the proposed method, the exterior nodes
(dummy nodes) beyond the partial model (discretized with physical nodes) were included into the
construction of MLLS/RK approximation. Furthermore, using the kinematic relationship the extra
dummy nodes were linked to those physical nodes on the partial problem domain being modeled
and thus no additional degrees of freedom came into the later computation. It is shown that with
this straightforward modification, the resulting meshfree approximation based on the partial
model is exactly equivalent to that constructed from the full model. Then the truncation effect is
totally removed. The superior performance of the proposed approach compared to the original
meshfree formulation is verified through several symmetric, antisymmetric and periodic
examples. A possible strategy for removing general boundary effect was also presented.
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0 Introduction

Typical conditions such as symmetry,
antisymmetry and periodicity often occur for a
large class of engineering problems. Commonly we
can utilize these special characteristics to simplify
the computation by only modeling part of the
problems, i e , half model for symmetric or
antisymmetric cases, unit cell for periodic
problems. Since the 1980’s the so-called meshfree
methods have been very actively developed and
applied to solving various engineering and scientific
problems" =%, Most of these methods are based on
moving least square (MLS) or reproducing kernel
(RK) approximation:'™*, With monomial basis
functions these two methods give an identical
approximation. One major difference between the
MLS/RK approximation and the conventional
finite element approximation is that the MLS/RK
approximation generally is not an interpolation
function. Moreover, the shape functions associated
with the nodes right at or near the boundary are
not the same as those related to the interior nodes,
which exhibits a boundary truncation phenomenon
or boundary effect whereas there are no such
problems for finite elements. As we know, the
interior parts become new boundaries when the
symmetric, antisymmetric or periodic conditions
are invoked. Thus after meshfree discretization and
analysis based on the partial model, due to the
boundary truncation effect the results won’t be
the same as those obtained from full model
simulation.
In this paper, an enhanced meshfree
approximation strategy is presented to eliminate
this boundary cut-off effect mentioned above. In
this method, the exterior nodes (dummy nodes)
beyond the partial model (discretized with physical
nodes) are included into the construction of MLS/

RK approximation. Furthermore, based on the

kinematic relationship the extra dummy nodes are
cross-linked to their corresponding physical nodes.
In this way no additional degrees of freedom are
added to the later computation. It is shown that
with this straightforward modification, the
resulting meshfree approximation based on the
partial model is identical to that based upon the full
totally

model, then the truncation effect is

removed. The present approximation yields
identical results as the full model solutions,
obviously with much less computational cost. The
superior performance of the proposed approach
compared to the original meshfree formulation is
verified through several symmetric, antisymmetric
and periodic examples. The boundary effect for
general problems is also discussed and a method is
proposed as well to improve the solution accuracy.
It is noted that the imaginary or ghost node
approach was also proposed in the collocated SPH

to apply the boundary conditions'".

Compared
with SPH the realistic boundary conditions can be
implemented more easily for the MLS/RK based
Galerkin meshfree formulations, and there are
several effective methods such as Lagrangian
multiplier method, coupled meshfree and FE
method, transformation method, etc®*. The
mixed transform method is employed here to
efficiently enforce the boundary conditions. It
should be pointed out that the focus of this work is
not to impose boundary conditions but to use
auxiliary dummy nodes to construct a more
uniform approximation for better solution accuracy
involving  symmetry/

in solving problems

antisymmetry and periodicity.
1 MLS/RK approximation

In this section the MLLS/RK approximation is
summarized. For convenience in expression, the

following multi-index notations are used, i. e
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where n,; denotes the dimensions of space.
Consider a domain (2 discretized by a set of NP
particles x;,I=1,2,++,NP, the approximation of
a variable u (x), denoted by u"(x) can be
expressed as

NP
W' () = D W (2)d, ¢3)
I=1

where ¥, and d; are the shape function and nodal
parameter associated with node I. If the n, order
monomial basis is used, W, takes the
following form
Vi (x) = H (x —xpb(x0O)¢, (x—xp)  (3)
where H" (x—x;) is the basis vector defined as
H' (x—x) =[(x—x)%] 4=, =
(1 o—an o (x,,
— T, "] 4)
and the coefficient vector b(x) is
b (x) = [ba(x)],,\g,, =
[0 (X)) brgeg (x) boe01 (X) Doy (x)
Bo0n (x) ] (5

The function ¢, (x — x;) is called kernel

2 2
*Illw) (1"1*-7511)

(x

"sd

function which centers at x; and has a compact
support a;. The typical cubic splinet® is used in
this study and the 2D funcation is constructed as a
tensor product of two 1D splines.
The coefficient vector b (x) is obtained via
imposing up to n, order consistency conditions
NP
DI (xo)xt = x" 1
I=1
w J (6)
or D2 V(0 (x—xD% = §la0s | @< n
=1

Eq. (6) can be rewritten as a matrix form as
NP

v (x)H(x —x;) = H(0) (7
1

I=

Substituting Eq. (3) into Eq. (7) yields

b(x) =M ' (x)H(0) L

NP
M) = > H(x—xp)H (x —x)¢,, (x —xﬂf

1
(8)
Finally the function 1is
obtained as
¥ (x) = H' (OM ' () H(x — x)@¢, (x —x;)

(9)

From the consistency condition we have the

meshfree shape

relationship for the derivatives of shape function

DD w0 1l = (BB a1 1

NP

or > DLW (x0)](x; — )P = @l [
I=1
la|<n, [pl<n
10)
where 843=0,,p, 0.5, "0, B
2 Motivation
Consider the following 1D  boundary
value problem
U, +2(SECh(21))2 — Oa X 6 (_ 2’2)} (11)

The exact solution of this problem is given by
u(x) = {log[ cosh(4) ] —log[ cosh(x) ]}/2
u.,(x) =— tanh(2x) }

(12)

Note u (x) and u,., (x) are symmetric and
antisymmetric respectively about x=0. Due to the
symmetry, we can solve the problem using a half
model discretization with symmetric boundary
Here 6

uniform distributed nodes and a normalized support

condition u., = 0 prescribed at x = 0.

size 2 are used to solve the half model problem and
Fig. 1 (b) shows the gradient solution. For
comparison this problem is solved again using 11
equally spaced nodes with normalized support size
2 by the full model and the result is shown in Fig.
1(a). A comparison of both results indicates that
full and half models yield unexpected different
numerical solutions.

This unexpected difference is due to the
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Fig. 1 Gradient solution comparison of 1D symmetric problem

meshfree approximation functions. Here we use a
1D case to illustrate the details. Fig. 2(a) shows
the 1D meshfree shape functions based on an 11-
node uniform discretization. It is clear that unlike
FEM, for MLS/RK approximation even a uniform
nodal distribution gives non-uniform shape
functions over the problem domain, especially
close to the boundary, here we refer to this as the
boundary truncation effect. When dealing with the
half model, actually a new boundary is created at
the symmetric interface and thus due to the boundary
truncation effect the meshfree approximation field
using the half model is not equivalent to that of the full
model as shown in Fig. 2(b), where the dash lines
represents the half model shape functions. Then a
conventional — symmetric treatment fails to
reproduce the full model results and leads to a

reduction of solution accuracy.
3 Enhanced treatment of symmetric/
antisymmetric problems

To get a half model solution equivalent to that

of the full model this truncation effect needs to be

=% 1] 5
x
(b} half modcl

Fig. 2 Comparison of meshfree shape functions

eliminated. A systematic procedure is proposed for
the elimination of boundary truncation effect.
Without loss of generality, let’s first consider a 1D
symmetric problem to illustrate the proposed approach.

To  achieve  symmetry in  meshfree
approximation, as shown in Fig. 3, the additional
symmetric exterior nodes (dummy nodes) beyond
the half model are included in the construction of
MLS/RK approximation. Since the field variables
are also symmetric, these added nodes share the
same nodal values as their corresponding particles
( physical nodes) in the half domain being
modeled. Imposing this kinematic symmetry and
using static condensation, these additional nodes
can be eliminated so that no new degrees of

Thus the

meshfree approximation is given as

freedom are introduced. enhanced

NP o
W (x) = D T (x)d,
1

@ ( ) j‘?ﬁ (X) +‘P1' (JC), 1—”6 Supp(I)[

x fr—

! 1w (x. ra supp(D
13)

where I'* represents the symmetric interface.
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Fig. 3 1D discretization for symmetric problems

These new condensed shape functions are shown in
Fig. 2 (b) where clearly no boundary truncation
effect occurs. Note here the problem is still
formulated on the half domain which is much more
computationally efficient than modeling of the
whole problem. With this enhanced MLS/RK
approximation, the symmetric problem of Eq. (11)
is recalculated and the result is shown in Fig. 4. It
is observed that based on this enhanced
approximation, the solution with the half model is
exactly identical to that of the full model result.
As shown in Fig. 5, this approach can be easily
extended to 2D or 3D problems by defining ¥;(x) as
B JZ‘P,(x), € supp(D
T (x) =< JeP (14)
v (x), I & supp(D)
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Fig. 4 Half model gradient solution

with the enhanced RK approximation

Sym_inlerface
E hall ' model
1}

:\._..__..._

"

!

S I

]

A e e

:

L e »

: -

Do -9-04
-

Sym_pair

Fig. 5 2D discretization for symmetric problems

where IP represents a symmetric meshfree particle
pair associated with node I whose support covers

the symmetric boundary I"".

4 Extension to periodic problems

4.1 Periodic MLS/RK approximation

Periodicity is another special case often

encountered in numerical analysis. One typical

engineering application is the periodic boundary

conditions usually imposed in computational

homogenization'®'.

As shown in Figs. 6 and 7
periodicity implies infinity of repeated domains and

periodic conditions over a period ¥, such as
U(x) - M(x+12)’ 1 :J_Fly iza igs'"(lS)

NP P
| NP —— = -

[ :

Fig.7 2D discretization for periodic problems

Due to periodicity only one of these repeated
domains, called unit cell, needs to be considered.
However similar to the symmetry we discussed,
the MLLS/RK shape functions can not give a fully
periodic operator within one of the periodic
domains. Similar to the enhanced treatment for
symmetry, the periodicity in meshfree formulation
can be achieved by including extra periodic exterior
nodes outside the unit cell being considered.
Taking the advantage of periodicity, the degrees of
freedom associated with the additional nodes can be

removed such as the problem is formulated only
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with the degrees of freedom related to physical
nodes within the unit cell. For the particle
distribution shown in Fig. 6, the enhanced periodic

approximation is expressed as

W (x) = D W (x0)d,
I

Y (x) + Y (X)) + W (X)), L
v (x) :j I'" € supp(D)
L\P‘I(x) , I supp(D)
(16)
In 2D case, for the a repeated structure of unit
cells as shown in Fig. 7, only the cell with a solid
boundary is modeled where the exterior nodes are
present only for the purpose of approximation.
The enhanced meshfree shape function has the
same form of Eq. (14), where IP denotes a set of
particles associated with the physical node I whose
support covers the periodic boundary I'*, which is
formed by particles with repeated period from node
I,ie ,inFig. 7 IP={1,1,,1,,1;,1,}.
4.2 Numerical verification
Consider the following 2D example with
periodic response

in 0

— Au = 327’ sin(4xx) sin(4xy) an

u(x) =0 on dIN
where A is the Laplacian operator and (2 denotes a
square domain with a unit length. As shown in
Fig. 8 the exact solution to this problem is given by
ulx,y) = sin(4nx) sin(4dny) (18
This problem is solved by a 7 X 7 uniformly
spaced meshfree particles and the normalized
support size is set to be 2. The numerical solutions
by both conventional and enhanced meshfree
formulations are shown in Fig. 9, where the higher
accuracy of the enhanced meshfree approximation

solution is obviously demonstrated.

S Possible
boundary truncation effect

remedy to  general

In the above, we mainly concentrate on three
special boundary conditions commonly appearing in

bounded

problems the boundaries are unavoidable and the

engineering problems. For general

(b)

Fig. 8 Exact solutions of « and u.,

for the 2D periodic problem

boundary truncation shortcoming always exists.

Consider  the following one  dimensional

elasticity problem

(FAu,,),, +b(x) =0, x € (0,10) l

u(0) =0, u(l0) =1

b(x) =— 1002+ 1 0002 —1502*, EA = 10 OOOJ
(19

This problem is solved by RKPM using 11 and
21 uniform nodes with a normalized support size of
2. The strain results are shown in Fig. 10. It can
be seen that even with 21 meshfree nodes the
numerical error is quite evident, close to the right
boundary which is a high gradient region. So the
model refinement does not effectively reduce the
solution error.

Motivated by the previous enhancement with
exterior nodes, we believe that one way to remove
the boundary effect is to add extra nodes lying
outside the problem domain. As shown in Fig. 11
the procedure is very straightforward. The
problem domain is discretized by a set of nodes

with solid circles, and some exterior nodes denoted
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Fig. 10 Strain solution of Eq. (19)

by dash circles are also added to construct the
meshfree approximation. Note that the weak form
is still formulated and integrated on the real

problem domain. By adding two uniform exterior

|‘ problem domain _l

{—o—o—o—o—l

cxterior nodes

Fig. 11 Meshfree discretization with exterior nodes

nodes at the right boundary, the given problem is
solved again using 11 equally spaced nodes. The
result, as shown in Fig. 12(a), shows that by only
including two nodes outside the boundary to build
the approximation, the result is improved
tremendously and matches the exact solution, even
better than that of 21 nodes. An interesting
comparison is that if an equal number of nodes, all
the 13 nodes, are put within the problem domain,
the solution accuracy is much lower as shown in
Fig. 12(b). Then it is reasonable to say that the
exterior nodes contribute significantly to accuracy
improvement by reducing the boundary truncation

effect in meshfree methods.

6 Conclusion

An enhanced treatment for symmetry,

antisymmetry and periodicity in meshfree methods

was proposed. In the present approach, the
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exterior nodes beyond the partial model are
included to eliminate the boundary cut-off effect
MLS/RK

Moreover, these extra nodes are linked to those

and construct the approximation.
physical nodes on the partial problem model

through their corresponding kinematic
relationship. Thus the proposed approach does not
entail additional degrees of freedom for the whole
computation. It was shown that with the
straightforward enhancement, the partial model
solution is equivalent to that using the full model.
proposed

The superior performance of the

approach compared to the original meshfree

formulation was demonstrated through several
numerical examples. A possible remedy for general
boundary truncation effect was also presented via a

numerical example.
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