H39E 5 1 11 ¥ B # 2 £ £ X & & 4 Vol. 39,No. 11

2009 ﬁ‘: 114 JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA Nov. 2009

Article 1D:0253-2778(2009)11-1224-08

The extension of OpenMP parallel programming
model to support transactional memory execution
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Abstract; Although OpenMP is the popular multithread programming model on CMP
architecture, OpenMP compilers do not check data dependency, memory access confliction and
other problems likely to cause program errors. The traditional lock is applied by programmers to
guarantee the correctness of their programs, It is easy to write coarse-grain lock programs, but
the parallelism of the program may be lost. On the other hand, potential parallelism of a
programs can be found by writing fine-grain lock programs, but it may bring about unwanted
problems, such as priority inversion, deadlock, etc. Applying binary instrumentation technology
to realize the extension of OpenMP to support transactional memory can effectively alleviale the
contradiction between the simplicity and productivity in writing parallel OpenMP programs.
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0 Introduction

The room for increase in the processing power
of the processor by raising its clock speed is limited
by Moore’ s Law. More recently, there is a
growing trend to put more than one processor
cores in the same module, instead of creating more
complicated single processors. Chip multiprocessor
(CMP) is proved to provide comparable or better
performance at lower power. The popularity of
CMP implementations has a significant impact on
the programming model. In order to take
advantage of multi-processors’ potential computing
power, multithreading parallel programming on
shard-memory architectures is preferred.

Although OpenMP is the industrial standard
for writing multithreading parallel programs on
shard-memory architectures, there are no
safeguards in either the OpenMP specifications or
its implementation to prevent data-dependency
from the program code. That is to say, avoiding
all the problems such as data access confliction,
dead lock, race condition causing wrong execution

should be the

programmers. It is more difficult for programmers

results responsibility of the

to use the compiler directive correctly in the

complex applications. It is common for

apply conventional lock to

guarantee the correctness of their

programmers to
program.
Compared with coarse-grain lock programs, fine-
grain lock programs may expose more potential
parallelism in programs. However it is not easy to
write fine-grain lock programs without priority
inversion or deadlock problems.

Transactional memory can solve the dilemma
between the simplicity and productivity of writing
parallel OpenMP programs by abstracting the
complexity of concurrency shared data to simplify
parallel program development. The extension of
OpenMP  to

combines  the

support transactional memory

execution popular  parallel

multithread programming model (OpenMP) and

intuitive  shared data programming model

(transactional memory execution). Programmers
only need to care about where should primitive
instruction be used, instead of thinking about

which mechanic should be applied.

1 Related work

OpenMP™Y is an application programming
interface ( API) which supports multi-platform
shared memory multiprocessing programming in
C/C + + and Fortran on many architectures,
including Unix and Microsoft Windows platforms.
It consists of a set of compiler directives, library
routines and environment variables that influence
run-time behavior. OpenMP offers a set of low-
level primitives around locks and the high-level
critical construct to protect the access to shared
data. However, dealing with complex shared-data
access using low-level primitives may cause many
unwanted problems, such as dead lock, priority
inversion and lock convoying.

Transactional memory (TM)Y is a crucial
mechanism to tackle this problem by abstracting
away the complexities associated with concurrent
access to shared data where multiple threads need
to simultaneously access shared memory locations
atomically. TM makes it relatively easy to develop
Fig. 1

transactional memory model using the checkpoint

parallel programs. describes a  basic
interface. A transaction must check its program
state upon beginning a transaction, in case it needs
to abort the transaction and roll back execution.
All memory access modified by the transaction

should be recorded to detect conflicts between

begin transaction

save checkpoint

no
record memory access

conflict?

yes|abort

commit transaction

Fig. 1 Transactional memory execution model
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concurrent transactions. If a conflict is detected
and the thread is chosen to abort, it must use its
log to restore all the memory locations it has
modified and revert back to its saved checkpoint to
retry the transaction. If the thread completes the
transaction without detecting any conflicts, it can
effectively commit its changes by discarding the
checkpoint and log.

Transactions have long been used for fault

tolerance in databases and distributed systemst*

‘) provides an

Transactions memory execution
intuitive model for reasoning about coordinate
access to shared data, which comprises a series of
read and write operations that provide the
properties of failure atomicity, consistency and
durability. Herlihy et al. ®! introduced hardware
transactional memory (HTM) and showed that
bounded-size atomic transactions that are short
enough to be completed without context switching
could be supported using simple additions to the
existing

Unbounded HTM™ aims to
disadvantages of simple bounded HTM designs by

cache mechanisms of processors.

overcome the

allowing transactions to commit even if they exceed
on-chip resources and/or run for longer than a
thread’s scheduling quantum. Herlihy et al'™ have
software  transactional

designed a practical

memory, which is obstruction-free and requires

only the readily available compare-and-swap
(CAS) instruction. Damron et al.'® apply the
HyTM  approach to provide an STM

implementation that does not depend on hardware
support beyond what is widely available today, and
also to provide the ability to execute transactions
using whatever HTM support is available in such a
way that the two types of transactions can coexist
correctly.

The fusion of OpenMP with TM can simplify
the development of parallel programs for CMP. It
makes it possible for programmers to apply popular
parallel programming model coupled with a more
intuitive way of writing shared-data programs.

Programmers only need to care about where should

primitive instruction be used, instead of thinking
should be
Nebelung'  system brings together TM with

about which mechanic applied.
OpenMP. It can be easily customized to work with
STM, HTM and HyTM systems. However it has
to do the modification of compilers. Binary
instruction technology is applied in the paper to
realize the combination OpenMP and TM, instead
of modifying compilers. It provides the inspiration

for the new transaction memory hardware design.

2  Design and implementation

As described in Fig. 2, the instruction and
analysis routines are instrumented with OpenMP
program through binary instrumentation tool Pin.
Pin''* was designed to provide functionality similar
to the popular ATOM toolkit. Unlike ATOM, Pin
does not instrument an executable statically by
rewriting it, but rather adds the code dynamically
while the executable is running. This also makes it
possible to attach Pin to an already running
process. Pin provides a rich API that abstracts
away the underlying hardware instructions and
allows context information such as register
contents to be passed to the injected code as
parameters. Pin automatically saves/restores some
registers before/after they are overwritten by the
injected codes, so that the application may

continue running under its normal context.

Limited access to symbol and debug information is

available as well.

the the
instrument| analysis -
routines | routines the instrumented
{} program
the OpenMP % pin the Openl\iIFP progm
program the analysis routines

Fig. 2 The system structure

2.1 The transaction execution program structure
Fig. 3 presents the structure of the OpenMP
transaction

program and the program using

memory execution. begin_transaction ( ) registers
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a transaction, and all the memory instructions
inside the transactions are recorded to detect
conflict between concurrent transactions. By
examining other registered transactions’ record
information, a thread can ensure that it is not
modifying a memory location accessed by another
transaction or accessing a memory location
modified by another transaction. Once a conflict is
detected, a thread is chosen to be the winner to
continue specific

running according to the

arbitration policy, while others are to be aborted

If the thread

completes the transaction without detecting any

using abort _ transaction ( ).

conflicts, it can effectively commit its changes and

be unregistered using end_transaction ( ).

original program: transformed program:

£ pragma omp parallel # pragma omp parallel parallel

for i=omp_get_thread_numQ) ; |for (i=omp_get_thread_num);

<< i<<N; i+ =omp_get_num_
N; i + = omp _ get _ num _ threads())
threads()) )
{ begin_transaction() ;
function(i) ; function(i) ;
if((conflicts) &-&. loser of
} arbration())

then abort_transaction()

goto begin_transaction

else end_transaction() ;

Fig. 3 Transforming OpenMP program

in transaction execution program

2.2 The instrument and analysis routines

The main functions of the tool are:
supervising the OpenMP program, recording the
detailed

information, realizing the transaction execution

comprehensive, memory access
roll back and recovery semantics. It supports lazy/
eager conflict checking algorithms, the efficient
arbitration algorithms and the log functions. In
order to control the OpenMP program, the
instrumentation should be done for the API and

memory access instruction, as described in Tab. 1.

Tab.1 The analysis routines

analysis routines function

before_begin_transaction save the checkpoint for roll back

before_end_transaction  commit the transaction without conflict

before_abort_transaction roll back to the save checkpoint

2.3 Memory access conflicts detection

Before and after each memory access, the
before_ memory access() and after memory access ()
analysis routines are instrumented respectively.
For normal instructions, the after memory access ()
should be

instruction; For unconditional jump instruction

instrumented before its following
(such as the subroutine call, return instruction),
the after memory access should be instrumented
at the position where it is to be jumped to; For
conditional branch instruction, the after _memory
access () should be the success and fall through
respectively. There are two memory access conflict
detection mechanisms applied here: lazy memory
access conflict detection and eager memory access
conflict detection.
Algorithm 2.1 Checking confliction algorithm
input;
is_writing; write instruction or no.
addr:

output: none

: the valid memory write address.

void detect _and _deal with _conflictions (bool is _ writing,
ADDRINT addr)
{
if (current thread. is_aborting) {
abort_current_transaction() ;
if (number of transactions > 0) {
if (number of transactions > 1 or not in
transaction) {
detect conflictions with other transactions,
put the conflicting threads in set conflicts;
winner = arbitrate _ conflictions ( current _
thread, conflicts);
if (winner ! =current_thread)
abort_current_transaction() ;
else / * set aborting flags of conflicting threads * /
for each thread t in conflicts

t. is_aborting=true;
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According to the difference of mechanics of
detecting conflictions among transactions, there
are lazy memory access conflict detection and eager
memory access conflict detection. lLazy memory
access conflict detection is similar to the hardware
mechanics of LogTMM!2 | The memory access
conflict detection is stalled until the transaction is
going to be committed. This requires all the
memory modification of one transaction be invisible
to all others. Therefore after recording the new
value of one variable, the old value should be
restored. Before committing one transaction, the
following equation should be checked. For the
transaction 7 and j, the read set (read set) and
write set (write_set) should satisfy the following
equation, Otherwise there are conflictions happen.

(read_set; (] write_set;) |J (write_set; )

read_set;) (write_set; |J () write_set;) = @ (1)

Algorithm 2. 2

algorithm

Lazy recording memory access

input: is_reading:read instruction or not.
raddr: the address of read instruction,
is_writing: write instruction or not.

waddr ; the

instruction.

address of  write

output: read set: the set of the current read
instruction.
write_set: the set of the current write

instruction.

void before  memory access (bool is_reading, ADDRINT
raddr,
bool is _writing, ADDRINT
waddr)

lock(memory_access_mutex) ;
if (is reading &.&. is_writing &.&. raddr==waddr) {
if (has previous write in current transaction) {
raddr=write_set[ raddr ]. new_value
/ * previous write value * /;
} else {
write_set[ raddr]. old_value= # raddr;

}

read_set[ raddr |= * raddr;
} else if (is_reading) {
if (has previous write in current transaction) {
* raddr=write_set[ raddr]. new_value
/ * previous write value * /;
}
read_set[ raddr ]= % raddr;
} else if (is_writing) {

write _ set [ waddr ]. old _value = % waddr /* old

value * /;
}
}
}
void after _ memory _ access (bool is _ reading, ADDRINT
raddr,
bool is _ writing, ADDRINT
waddr)
{
if (is_reading &.&. is_writing &.&. raddr==waddr) {
write _set [ raddr |. new value = % raddr /% new
value * /3

% raddr=write_set| raddr |. old_value;
} else if (is_reading) {
if (has previous write in current transaction)
% raddr=write_set| raddr |. old_value;
} else if (is_writing) {
write _set [ waddr ]. new _value = * waddr /* new
value * /;
% waddr=write_set waddr]. old_value;

}

unlock(memory_access_mutex) ;

Eager memory access conflict detection is
similar to the hardware mechanics of TCCM?.
Before executing each memory access instruction of
each transaction, the following equation should be

checked. If the

conflictions happen.

equation is not satisfied,
addr & trans;. write_set and (not is_writing or

addr ¢ trans;. read_set) (2)

Algorithm 2.3

access algorithm

Eager recording memory

input: is_reading:read instruction or not.
raddr: the address of read instruction.

is_writing: write instruction or not.
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waddr: the address of write instruction,
output: read set: the set of the current read
instruction.
write_set: the set of the current write

instruction.

void before _ spec _ memory _ access ( bool is _ reading,

ADDRINT raddr,
bool is _
ADDRINT waddr)

writing,

detect &. deal with memory access conflictions with other
threads;
if (is_reading)
read_set[ raddr ]= % addr;
else / * is_writing % /
if (is first write in current transaction)

write_set[ waddr |. old_value= * waddr;

}

2.4 Arbitration policies

Arbitration policies are applied to select
winner traction among conflicting transaction sets.
The random policy selects the winner from the
conflicting transactions randomly. The timestamp
policy checks these transactions’ timestamp and
regards the winner as the youngest transaction
when it encounters an opposing transaction. The
workload policy keeps traces of how much work a
transaction has done in terms of the number of
write instructions that a transaction has executed.

Algorithm 2.4  Arbitrating conflictions algorithm

input: current thread: the current thread.

thread-set conflicts; the conflicting

threads set.

output: the winner transaction.

thread arbitrate conflictions (thread current thread, thread-
set conflicts, )
{

if ( select_criterial=random)
{

return winner= random(conflicts) ;
}

else if ( select criterial==timestamp)

{

return winner = { thread | thread— timestamp= min (

thread—timestamp | thread (-conflicts)

}

else if ( select_criterial==workload)

{

return winner = { thread | thread — workload = max (

thread—>workload | thread (-conflicts)

}

2.5 Transaction commission and abortion

end atomic ( ) 1is applied to commit a
transaction, If the transaction does not conflict
with other transactions, then what it has modified
is confirmed. Transaction abort happens when
there is a conflict between transactions. The loser
of the arbitration aborts the current transaction.
Transaction abortion is realized by two steps. The
first step is to recover what the transaction has
modified, and the second step is to roll back to the
beginning of the transaction for the next try. pin_
SaveContext, pin_ExecuteAt, pin_SaveCheckpoint
and pin _ resume are applied to realize the

mechanics.

# define begin_transaction( ) save check point();
# define abort_transaction( )\

current_transaction, restore_memory( ) ;

current_thread. is_aborting= true;

resume_execution(); //resume after save check point
2.6 Transaction execution log

The execution information is important for

guaranteeing the correction of programs. In
addition, the log information is also necessary for
the evaluation of conflict checks and arbitration
algorithms. The log information includes the run
time, the total number of conflicts, the race

condition variables, etc.

3 Evaluation

The case of transactional memory execution of

OpenMP is as follows:

# define N 300000
int primes[ N J;
int main(int argn, char * % argv)

{
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int 1, total=0;
# pragma omp parallel parallel
for (i=omp_get_thread_num(); i<N; i+ =omp_get_

num_threads())

begin_transaction() ;
if (is_prime(i) ) {
primes| total |=1;
total=total+1;//
}

end_transaction() ;

There are no safeguards in either the OpenMP
specifications or its implementation to avoid race
conditions from the program code. Many
programmers write parallel applications that have
race conditions during the development cycle,
either consciously or unconsciously. A data race

04 oecurs when two or more threads in a

condition
single process access the same memory location
concurrently, of which at least one of the accesses
is for writing, and the threads are not using any
exclusive locks to control their accesses to that
memory. When these three conditions hold, the
order of accesses is non-deterministic. Therefore
each run can give different results depending on the
order of the accesses.

In order to verify that the tool can detect and
avoid race condition in OpenMP, the common
example with race condition from the tutorial of
using Sun data race detection tool"™ is selected.
Through checking the memory access record
information of transactions, the race condition
variable “total” is found due to its being accessed
by more than one thread at run time. As described
in the case above, programmers only need to do a
little modification of the source program to prevent
Therefore, the

extension of OpenMP to support transactional

race condition from occurring.

memory can solve the dilemma between the
simplicity and productivity of writing parallel
OpenMP programs.

Based on the correct program results and the
eager conflict  detection

memory access

mechanisms, arbitration algorithms are compared
according to the variety number of threads. As can
be seen in Fig. 4, work-related arbitration policy is
the best because the rolling back threads have to

clean up what they have modified before.

1.6
1.4 <
12 »
1.0 \

. '\-——.4.__<_‘ —e—random

0.8 —=— timestamp
0.6 ——workload

0.4
0.2
0

transactions / (10° s)

0 10 20 30 40
threads number

Fig. 4 The comparison of different arbitration policies

4 Conclusion

of OpenMP to

transactional memory can

The extension support

solve the dilemma
between simplicity and productivity of writing
parallel OpenMP programs. Different from the

previous technologies combining transactional
memory and OpenMP, the tool presented in the
paper is based on the dynamic binary
instrumentation technology. Therefore there is no
need to recompile or re-link the source code, and
the code is discovered at runtime. In addition,
transactional execution is applied to reduce the
common problems that lock is prone to. These
include but are limited to deadlock, lock convoying
and priority inversion.

The slowdown of the tool is caused by the
instrumentation for each individual memory access
instructions and tremendous conflict checks. The
software is conductive to the design of future
hardware transaction memory, that will reduce

slowdown significantly.
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