H39% 561 ¥ 68 #4 2 £ £ X & 3 4 Vol. 39,No. 6

2009 ﬁi 6 H JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA Jun. 2009

Article 1D:0253-2778(2009)06-0570-13

Competitive exclusion and coexistence of a class
of sexually-transmitted disease models

CHAI Cai-chun', JTIANG Ji-fa®?

(1. School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China;
2. Department o f Mathematics . University of Science and Technology of China, Hefei 230026, China;
3. Department o f Applied Mathematics, Tongji University . Shanghai 200092, China)

Abstract; The dynamics of sexually transmitted pathogens in a heterosexually active population
was studied, where females were divided into N—1 different groups based on their susceptibility
to two distinct pathogenic strains. The coexistence and stability of that boundary equilibria was
investigated, and the sufficient and necessary conditions for the existence and stability of these
equilibria were obtained. It was verified that there is a strong connection between the stability of
boundary equilibria and the existence of the coexistence equilibrium, that is, there exists at least
one coexistence equilibrium if and only if the boundary equilibria both exist and have the same
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0 Introduction

Theoretical biologists and bio-mathematicians

have long been concerned with evolutionary
interactions that result from changing host and
pathogen populations. Advances in evolutionary
biology, behavior, and social dynamics have
brought to the forefront of research the importance
of a multitude of factors that not only influence
disease dynamics, but also play a role in the
STDs., such

have incredibly high incidences

evolution of virulencel!+3:4:7:8:11:12.13.15]

as gonorrhea,
throughout the world, providing the necessary
environment and opportunities for the evolution of

14 Understanding the mechanisms

new strains
that lead to coexistence or competitive exclusion is
a matter of urgency to the development of disease
management strategies, to our understanding of
STD dynamics and to stimulating additional
research on those factors that may facilitate
pathogens’ survival and diversity.

In Refs. [ 5, 6, 7, 10, 17, 227, the authors
formulated and analyzed two-sex SIS STD models
with multiple competing strains in an exclusively
heterosexually active population, where it was
assumed that a host cannot be invaded
simultaneously by more than one strain, and that
symptoms appeared—a function of the pathogen,
strain, virulence, and an individual’s degree of
susceptibility—then individuals could be treated
and/or would recover. In a behaviorally and

population they

[5,10]

genetically ~ homogeneous
established that coexistence was not possible
However, in a heterosexually active population
where two “genetically” different female groups
interact with a homogeneous (genetically uniform)
male population in the presence of two competing
strains of a venereal disease, the outcome was
different as both competitive exclusion and
coexistence were possiblet®7?! They obtained the
sufficient and necessary conditions for the
existence and the global stability of the boundary

equilibria and the positive coexistence equilibrium.

As a continuation of their work, in this paper,
we consider general 2N-group models (NZ>4) with
two strains, where N denotes the total number of
the subpopulation of the infective with each
subpopulation divided into classes with strains x
and y, respectively.

This paper is organized as follows: we
introduce the model in Section 1. Section 2

presents some preliminaries. The necessary
thresholds are computed and the stability of the
infection-free state is studied in Section 3. A
principle of competitive exclusion for SIS STD
models with homogeneous mixing is established in
Section 4. Section 5 presents our coexistence
results. Some special results for N =4 will be
given in Section 6. In Section 7, we discuss the

biological meaning of our results.

1 Model description

In this paper, we consider a two-sex
heterosexually active population. The population
includes a single group of males and N—1 groups
of females, based on their susceptibility, which is
determined by their sexual behavior, genetics, or
other factors. We assume that the infective are
divided into two classes based on the pathogen
strains in their bodies, and that the susceptible are
infected by infectives with a certain pathogen strain
will carry the same pathogen strain.

We use superscripts fo, f3,**, fn to denote
the N—1 female groups and the superscript m to
denote the male group. We think of susceptible
hosts as patches that are invaded or colonized by a
pathogen. The assumption here is that once a
patch has been infected (colonized), it cannot be
invaded again. However, it is also assumed that if
patches recover by getting rid of the pathogen and
become equally susceptible to infection again, that
is, the patches’ immune systems do not remember
B _fz\" ’

denote the susceptible males, susceptible females

previous infections. Let S*, k= m, fs, **

in N—1 different groups, and let I¥, k=m, f5,**,

fn» i=1,2, denote the infectives with strains i,
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respectively. The model that describes the

dynamics of the disease spread then takes the form

[ D

N f_]
Blin — (Tm , T/Z Jeee, T/\ )Sm Z ﬂ/j %f .
i=2 Y

Bf _ r/(Tm,T/Z ’-..,T/:‘\‘)S/ﬂlin %’ | = fza'"’va

2

Sk :Ak_Bk_#kSkJrZnyg’
i=1

It = B — (/70O I,

k :m9f‘29"'7f‘1\73 1= 1,2,

where

2
Bt = ZBf, k=m, s,y fn>
=1

with the constraint
7" ( Tm , ’I‘f2 yeen, T,(N )Tm —

N
2 i (T, T eee , TIN)TY
=
Here A* denotes the input flow (recruitment)
. . . 1 .
entering the sexually active subpopulations; —; is

the average sexual life span for people in group k;
2
y:* is the rate of recovery; T" = S* 4 Z I* is the
=1
total number of males and females in group f5.+**,
fw s respectively; 7, as a function of T, T'2 , -+,
T/~ is the number of partners per individual per
unit of time; and § is the rate of infection. The
constraint indicates that the total number of female
sexual partners of males per unit of time and the
total number of male partners of females per unit
of time given the current availability of partners
must be balanced.
The principle of system (1) can be shown

in Fig. 1.

uT

7L

Fig. 1 Principle of system (1)

The limiting system of (1) is given by

2 N
Ir ==y +(p" — 20 2 a1l s
i=2

n=1

- S (@)
I =—olilli + (pi — E Ii)alimIr,

n=1
j=2.,3,.N,
where we define

o (A A L A

m?  f,? ’ N
ptops ey
and write
k
koo k k [ A
o, *— MU +7¢7P T TR
/l
[ — bmé}/; fm e b// T
ai = - ali™ =
z ])/j ? z pm ’

j=2,3,-,N.
2 Preliminaries

To facilitate our analysis, let
x =17, xy = [ sttty TN ::I{N .
v =18y, =10 ey yy =10V,
7i =o' s YN =afN

Y o=ab s =ol ey W o=alN,

"y§ ;:Gl‘ g

e _atf . aty
a2 *— 0"1” s 13— 0"1“ ’ s AIN *— 6'1“ ’
e @l ah
ﬁlz — 6]2” 4 ﬁls — 61217 4 ’ ﬁle — ()_1211
L a{Z m - a{yn - alf“\,m
azr — e a3l 9"t ANl T N
ol of; ol
B . Clgz m B . (1,53 m ﬁ . ag‘:\,m
21 T e P31 2" PN1 T N
ol ol e
— pm — pfy IN
pl ] 7[) [) 1) ’ [)\4 [) )
an — az — — 2N T a3z — — 3N —
Q2 — =y = =an = =aw = 0,

ﬁn = ﬁzz = = ﬁzw = ﬁaz = = ﬁw -
vt =fBin = B = = P = 0.
With these notations, system (2) can then be

T
S

written into the following compact form:

N
=yt P —x—y) D ar;] =X (z,y),
j=1

N
i =ny b= =) 2 By ] =Yy,
=1

1 = 1,27"'9N.
(&)
Note that p; is the total population of group i, i=
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1,2,-+, N. Here we consider only the dynamics
(3) in CR%, where
0= {(x,y) € R x;+y, < piy i = 1,2,--,N},
and
x= (21,255 say) € RY,
y=(yisyzsmn) € RY,
RELN: {(xy,225 2N sV s V2t s YN ¢
2, >0, v, >0, i=1,2,-,N}.

We can observe that the flow generated by (3)
is positively invariant in (2. Furthermore, the flow
is monotone under the special order given below
Refs. [5, 6.

Definition 2. 1 Let K={x=(x,,22,**s22n)
ERN t 2,20, i=1,2..N; 2,0, j=N+1,
«+,2N}. A type K order, denoted by “<(x”, is
defined in such a way that

x<gy if and only if y—ax € K. 4)
With this order, it is easy to see that the flow
generated by Eq. (3) is monotone.

Theorem 2. 2
y2sersyn) and let (2 (), (1)) *=¢, (205 y0) be a

Let (x,y):(xl s L2 9 s N Y1 o

solution of (3) with initial value (xy,y,). Then
@t (o s 30) <kl (20530) s t =0,
if
i (o5 30) s ¢ (05 30) € Q
and
@6 (o s y0) <<kt (205 y0).

Proof let Q=diag(q,) with ¢y =¢, ==
gv=1s qne1 = gniz = = gov = — L. Then the
matrix QJ (x, y) Q has nonnegative off-diagonal
elements for every (x,y) €2, where J(x,y) is the
Jacobian of Eq. (3) evaluated at (x,y). It follows
from Lemma 2. 1 in Ref. [ 16] that the flow ¢, (20, 30)
preserves a type K order on (2; that is, the flow is

monotone under this type K order. L]

3 Thresholds

Considering the linearization about the
infection-free equilibrium of system (3):
z =Xr, y=Yy.
We notice that the diagonal elements of —X
and —Y are positive and their off-diagonal elements

are nonpositive. Hence, — X and —Y are M-

matrices. Let

1 — Dz T pras — DN
Aw = b ! 0 0 s
— pPnan 0 0 1
1 — DBz — PP — P1BN
_ 1 0 0
B — D2
— B 0 0 1
Then

X = dlag('}’f 9'}’5 9"'3’}’11\/)149
Y = diag(}’f,}’f,“"}’yy\v)B»

N
detAyy = 1— Z D1bijarjag s
—2

j7

N
deth =1— Zplpjﬁljﬁﬂ'
=2

N N
Hence, lf Z plpjﬂl]‘ﬁjl < 1 and 2 plp]‘aljaﬂ <
j=2 j=2

1, the leading principal minors of Axy and By are
detANN

positive, it follows from M-matrix theory* that

positive, meanwhile and detByy are

the infection-free equilibrium is locally stable. If

N N
Z;plpjﬂljﬂﬂ > 1 or Z;plpjaljaﬂ > 1, the
ijnfection—free equilibrium]is unstable.

Define the reproductive number R;,1=1,2 as
follows:
R\ = piprarzan + p1psaizaz + o+ p1 pyvaivan s
Ry = pip2fiafor + Dro2fisBs + o+ proNSINBM

5

We can make the following observations. If R;<(1,
i=1,2, ¢ (x0530)—>(0,0). If R;<<1, for both i=
1 and 2, then the infection-free equilibrium is
stable, thatis, R;<1, for both ;=1 and 2, leads
to the extinction of the disease in the population. If
there exists at least one strain such that R, >1,
then ¢, (95 y0) #(0,0), that is, the disease will
spread in the population.

Following from the work in Ref. [ 5], we
can get:

Lemma 3.1 Let E,=(x,0) and E; = (0, y)
be equilibria of Eq. (3), where x>0, if R, >1;
=0, if Ry<<l and y>0, if R,>1; y=0, if R,<Cl.
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Let §=(p1spss***s pn+0,+++,0) and &=(0,+-+,0,
prspzaetspy). Then
}in}gof(éi) =E.i=1,2.

Theorem 3.2 Let the reproductive number R;
be defined in Eq. (5). If R;<{1 for both i=1 and
2, then the epidemic goes to extinction regardless
of the initial level of infection. If, on the other
hand, R;>>1 for i=1 or :=2, then the epidemic

spreads in the population.
4 Competitive exclusion

4.1 Existence of boundary equilibria
The boundary

whenever the epidemic spreads in the population.

equilibrium always exists
We have the result as follows.

Theorem 4.1 Boundary equilibrium E, = (x,0)
exists if and only if R > 1,

equilibrium E,=(0,y) exists if and only if R, >1.

and boundary

Proof Without loss of generality, we prove
only the existence of E,. From
—x +(py —x) (apxs + o +anaen) = 0,
A |

—ay T+ (py —axn)anmar = 0, J
(6)
it follows that
7 = J2LIES! vy = DPsaz 1 T — Pnanity
1+anm 1+ ann 1+anx
D)

Substituting Eq. (7) into the first equation of Eq.
(6) yields

1 _ < Dravzas I Prainant ): 0.

P — 1+anx 14 anx
(8)
Define
g . 1 Pprovan v Praanan
Sl P —x <1+a211'1 * +1+Q’NIII>.

It is easy to check
f/(xl) >0, ILYTPI f(x) =+ oo,

there exists a unique positive solution x; of Eq. (8)
if and only if £(0)<C0.

However,

£ =LA— S ppaan) = LA—R) <0
D = g

if and only if R, > 1. This unique positive x,
uniquely determines positive x;, j=2,3,*, N, via
Eq. (7). The proof is complete. L]
4.2 Stability of the boundary equilibria

Now we establish stability criterion for the
boundary equilibrium. The Jacobian of Eq. (3) at

the equilibrium E, has the form

S {Ju 0 J
.]2] .]22 '

N
o=yl a+ =) D). (D
j=1

Let &:RY—>R" be defined by the right hand side of
Eq. (9). Clearly, @ is cooperative and D@ (x) is

Consider

irreducible for every +€RY. For any « € (0,1) and
x2=(21 295 sxn) Ent(RY ), there holds

N
Y (—ax; + (p; —ar,v)Za,ja xj) >
=

N
a’yif(_lvi +(p, _1'1')2(11]'1']')7 1= 17 27“'7 N.
i=1

Thus @ is strongly sublinear on RY (see Refs. [19,
247]), it then follows that for any x, € RY, the
unique solution ¢, (o) of Eq. (9) exists globally on
[0,00), ¢ (xe)= 0, YVt= 0 and Eq. (9) has a
unique positive equilibrium = (x,,+**,xy) and x
is globally asymptotically stable for x& RY\{0}.

So the stability of the nontrivial equilibrium
(x, 0) is determined by the stability of matrix
J» s where

Joo = diag(pd .98 oo 9% o

—1 (pl*l'l)ﬁlz (plil‘l)ﬂlg\"
(P2 — 22 —1 0
(Pw - 1’N)ﬁw1 0 cee —1
Let
Ms\w -
1 o (pl e )ﬁIZ - (pl —a )[913\’
— (B 1 0
- (sz_I;\' )ﬂ\l 0 cee 1

Then the diagonal elements of Myy are positive and
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its off-diagonal elements are nonpositive. Hence,
My is an M-matrix.
After simple algebraic manipulations, we have

— 1 ( (a2 — fizfr ) +

X azi

detMw = b

.t (ainani — BinBm )1';\">. (10)

QN1

Denote A; *=aijan —fijBjns j=2:3:++=N.

N

Then if A; =0 and >,A? # 0, the leading

ji=2
principal minors of matrix Myy and detMyy are

positive. Hence, it follows from M-matrix theory

that the equilibrium E. is locally stable. On the
N

other hand, if A; << 0 and ZA]? % 0, the
=)

equilibrium E, is unstable. It follows from Lemma

3.1 that if a boundary equilibrium is locally stable,
it is globally stable.

Summing up the discussions above we obtain
the following result;

Theorem 4.2 If Ry, >1(R,>1) and R, <1
(R, <<1), then boundary equilibrium E, (E,) does
not exist and boundary equilibrium E, (E,) is
globally asymptotically stable. Suppose both R, >
1 and R,>>1. Then if A;=>(<00,;=2,3,---,N and

N
ZAJZ # 0, the boundary equilibrium E, is globally
j=z

asymptotically stable (unstable) and the boundary
equilibrium E, is unstable (globally asymptotically
stable).
Biologically, Theorem 4.2 implies that if
E.(E)

E,(E,) is unstable, strain 1(2) persists in the

is globally asymptotically stable and
population globally and strain 2(1) goes extinct.
Note that whenever one boundary equilibrium is
Then, the
competitive exclusion holds under the assumptions

in Theorem 4. 2.

stable, the other one is unstable.

5 Coexistence

The existence and stability of a positive
coexistence endemic equilibrium E* = (x",y"),
characterize the coexistence of the two competing

pathogen strains in the population. We investigate

the dynamics of the coexistence endemic
equilibrium below.

Theorem 5.1 Coexistence is not possible if

N
A; =0, j=2,3,+++,N and D) A? # 0 or A;<0, j=
j=2

N
2,3,++,N and D> A? 0.
j=2

Proof
then there exists (x, y) such that the following

If the coexistence equilibrium exists,

equations are true

—x;,+(p — —y,v)ia,-jl‘j) = O,l
) - AD
— v+ ((py — —y,->_§;@,y,-> =0. J
Let q,:;b,—r,—y,v,i:1,2,--j-,N. Then
Ty = Q21 X1 s XT3 = Q303115 s TN = GNANIT] s }
Vo = @fayisYs = @Gyttt YN = BN
(12)
Substituting Eq. (12) into Eq. (11) yields
(1 —q (Gazan +@Gasan + o +gnaivan)) = 0,
A —=q (@Pifr + Ll + o+ pinfBn)) = 0.
Then

N
EQJ'A]‘ = 0. (13
=2

If Eq. (11) has a positive solution then Eq. (13)

holds. While Eq. (13) is true only if A;,j=2,3,

-+, N have different signs or Ay, =A; =++=Ay=0.

N
That is, if A;==0, j=2,3,++. N, DA} # 0 or

ji=2

N

A<0, j=2,3,++,N, D A? # 0, Eq. (11) does
=2

not have a positive solution, O]

Proposition 5.2 System (3) has at least one
positive equilibrium, if the boundary equilibria
both exist and have the same stability.

Proof
system (3) at (x,y), which has the form
J(x,y) = DF(x,y) =

Let J (x, y) denote the Jacobian of

IX(x,y) IX(x,y)
D(X(ory) Yooy — | F %
Y T Y (y) Y ()
dx dy
oX oY

Then E and Iy have nonnegative off-diagonal
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Q(<07 ﬂgo» % and ﬂ haVe
dy dx dx dy

elements,
negative diagonal elements. Let 2= (x,y), thus
IF
dz
(x* ,y* )=x0. It follows from Ref. [21] that the

solution ¢, (xys yo) of system (3) tends to an

—x0. Hence, there exists (2" ,3y* ) such that F

equilibrium as ¢ — oo, Then, if the boundary
equilibria are unstable, there exists at least one
stable if both
boundary equilibria are stable, it follows from
theorem 2. 6 in Ref. [22] and Refs. [ 16, 18, 21,
23] that there exists a positive equilibrium and that
is unstable. ]

globally positive equilibrium;

Theorem 5.3 Dynamics (3) has at least one
positive equilibrium if the boundary equilibria have
the same stability. Furthermore, if system (3) has
a unique positive equilibrium, then the coexistence
is globally stable (unstable) if the boundary
equilibria are unstable (stable)!?: 2!,

The result is one of results in Theorem 3. 2 in
Chapter 4 in Ref. [ 20], so the theorem can be
proved in the same way.

Hence, we can summarize our results as follows.

System (3) (and hence (1)) has a positive
coexistence equilibrium if the two nontrivial
boundary equilibria have the same stability (both
are stable or unstable). If the positive coexistence
Then the

coexistence is stable if the boundary equilibria are

equilibrium is  unique. positive
both unstable. In this case the positive equilibrium
is a global attractor. The positive coexistence
equilibrium is unstable if the boundary equilibria
are both stable. Furthermore, if there is no
coexistence equilibrium, then the locally stable
boundary equilibrium, if it exists, is also globally
stable (See Refs. [ 20, 21]).

Referring to the foregoing discussion, in the
case where either R| <{1 or R, <{ 1, the global
behavior for Eq. (3) is clear. But in the case where
both R >1 and R, >>1, we can’t give a clearly
answer. So in the next section we focus on the

study for R;>1, R,>>1 and N=4.

6 The dynamics of system (3) for N=4
Consider the following system

4
o= yi[—xi+ (pi—x— ) D ayx; s
j=1

4
j/z' = }/;"[—yl + (p, — X; —y[)ZBijyj:lv {
=1

i =1,2,3,4.
as
In the case where both R, >1 and R, >1, as

shown in Section 6, there exists no positive

4
coexistence equilibrium if A;= 0 and > A? # 0 or

j=z

1
A<0, j=2,3.4and D A? £ 0. H Ay=As=A, =

i—2
0, then we can prove ]that there is a continuum of
equilibria. However, this is a very special and
unrealistic situation,

Without loss of generality, we assume that
A, <<0, A; >0, A, >0, If A, >0, A;<<0, A,<<O0, all
our results in the following remain true.
Furthermore, we assume a1 =au and ;1 = In
the section.

Remark 6.1 O If A, >(<0, A;<<(>)0,
A, >(<0, our results in Sections 6.1 and 6.2
remain true with aizs azs fizs Bu» P2 exchanged
for aiss asis Biss Bos Ds.

@ U A, >(<D0, A;>(<D0, A<<(>)0, our
results in Sections 6.1 and 6. 2 remain true with ais »
ans Bizs B po exchanged for ais ans Bus s pu.
6.1 Boundary equilibria of system (14)

Next, we discuss the computation for 1, xs
x5 x4 in the case Ry >1 and A,<<0, A; >0, A, >0.

Make the transformation

_ _ 0 0.
X :Z/L>O, Xy — <~1+~2)a2]u91

w1 w2

(15)
X3 — ailuy Xy, — a’ilu’ (92 - éél [

w1 w2 AS

Then us 0 s wi s w: satisfy the equations
—wiwr + (pr— ) G (0w +h2 (0w = 0,
pz(:)l(,:)z — (s + 000 (1 +azyu) = 0, 1
Psc:n*(l—kaglu) =0, [
prwr — (I +anu) =0,
(16)
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where
hi () = Oraian + asas »
hy(0:) = Orarzan + avian.
Hence, by the last two equations in Eq. (16)

&ﬁ:iﬂ+mm%&f:ﬁﬂ+mmlﬂﬂ

Substituting Eq. (17) into Eq. (16), we have the
following system of u and 0, :
(14 a5 ) (1 —2p1 pihs (01 +
Can + 2pih: (02w +
(A4 anw) (1 —2p, pshy (0,) +
(asi +2pshi (0:)w) = 0,
(14 a5t (Pis — p1 ps pihs (s +
(P pihs (0) + pibras)du) +
(1 +anw) (ps01 — pi ps pshi (01) +
(p2 pshi (0) + pyOiaz)w) = 0.

Noticing the assumption that a5, =as; » We obtain

L= pipihe () — prpshi (B +
Cast + pihz(0:) + pshy (0,))u = 0,
pi0: 4 o0y — P o pihs (B2 — Py pe pshy (0)) + ¢
(Popihs(0:) + piboas + {
D2 pshy (00) 4 psOyas du = 0.
(18®)
From Eq. (18), we have

P1pihe (02) Jipl psh 0, )N_ 1
ast T pshi (0y) + pihy (02)
P12 (Ppihy (0 + pshi (01)) — (i + ps61)

D201y (02) A= po pshi (01) + pibraz + psbian’

which implies that 8, must be a positive root of

G@;) = Dp1pihs (05) —hplpghl 0, )~7 1
1 asi 1 pshi (01) + pih, (02)

P1p2 (])s_hl @)+ P4hz~(92 ) *_(])492 + P§(§1 )
D201 (02) A= po pshi (0)) + piboaz + psbian’

0, = 0.

= uyu =

We can rewrite

G0) =

g(91>9

((13] +p3h1 (91) +p,1/12 (92))(]72171}12 (92) ernghl (91) +P/192a21 +p391(121)

where
200 = (p1pihz(02) + prpshi (0:) — 1) »
(P2 pih2 ) = 2 pshy 01 + pibras + psBran) —
(P12 (pshy (00 + pahs(0:)) —
(pa0> 4 P30 Cagt + pshi (01 + pihs (02)).
From the definition of A; (8,) and hy (0,).
g(0)) is a quadratic function where the coefficient
of 6,% is positive. Moreover,
gC0) == po(pihy (0) 4 p3hi (0)) (1 + praz) < 0.
Hence, there exists a unique >0, such that
2(0) =0, and

g0 = 0.0, > 015 g(6) < 0. 00 <01
that is,
G0 =0, 1
G0 > 0,0, > 05
aaw<mo<a<w1(
From now on, we discuss the stability of the
boundary equilibrium E,. The Jacobian J(E,) of
Eq. (14) at E, takes the form
Cc, C,
0 CJ ’

where C), is a stable matrix by Section 4 and

(19

JE) = [

7 (1 *;1)/3’13 7 (P *;1)[914

- 7 (p — ) Bz
7%(?2*52)&1 — 7
C22 - ) —_
Yi(ps —x3) B 0
7i (py _;4)@1 0
We consider the following matrix
et 0
~ 0 -7
Cy, = ’
0 0

7 (pr— i ) Bu

7 (p— ) Bus

0 0
-7 0
0 -
0 Vi (py —x)fa
0 Vi (ps — s ) Bs1
—7 V(b2 —22) B
VW (P —x1) B -
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which is similar to Cy,. Note that the off-diagonal
entries of —Cs, are nonpositive, diagonal entries of
—C,, are positive and that the first three leading
principal minors of —C,, are positive, if
det(— Cyy) = det Gy, > 0.

Then, it follows from Ref. [ 2] that all eigenvalues
of —C,, have positive real parts. Hence, Cy, is
stable.

stable and, equivalently, G, s

Furthermore, from Eq. (16) we obtain

b=
(pg _1'3)(])4 _1'4)‘

(20)

straightforward

(9/15)2 +(9{zc:)1 - 916:)2 +é26:)1 -

Now Eq.

calculation yield

det G, = W7yl (; _;1)(P3 —a3)

(20) and a

@manxm+ﬂﬁu@g+%@)

From this expression and the assumption that
A;<<0, A;>0, and A, >0, it is easy to check that
E. is linearly stable (unstable) if and only if

As A0 > 0(<Z 0).
Hence, we have the results in the following

theorem.
A Py Vi
Theorem 6.2 Let 6, A 0> A, g,

/7.1* :hl (61* ) and /7.2* :hg (6; ).
(unstable) if and only if

pipihs +pipshi —1
asi + pshi + pihs

PP (pshi + pihs ) — (pu0s + psOi )
Dopihs + papshi + pi0s azn + P36t an

(1)11)4 hs + Pl])shl* —1
asi T pshi’ + pihs

PP (pshi + pihs ) — (puGs + psOi ) )
P2pihs + p2pshi + pi0s azn + P30 az

and E, is stable (unstable) if and only if

prbihs £ pipshy —1
Bs1 + pshi + pihs
P12 (Ppshi —+ pihs ) — (piGs + ps67)
parpihs + prpshi =+ pi0s Por + P3O0 B
<P1P1h2* + pipshi —1
Bs1 + pshi” + pihs
1P (Ppshi + pihs ) — (piGs + ps67) )
DPapihs + popshi + pi6s B + P30 B/

Then E, is stable

>

<

6.2 The positive endemic equilibrium of (14)
We first establish conditions for the existence
of a coexistence

positive equilibrium.  Any

equilibrium must satisfy the system

4
— i+ (pi— 2 — y) Daga; =0,
j=1

4
_yi+(pz'_l'[_yi)2‘8[jyj_O,[ (21)
=1

i=1,2,3,4.

Letg=p,—xi—v;» i=1,2,3,4. Then

T2 = Q2121 s X3 = Q331 X1 s T4 — Quas1 X1 s }

V2 = 612,8213/1 s V3 — Chﬁglyl s Vi — (1/1,8/113/1-

(22)

Substituting Eq. (22) into Eq. (21), we have

1 (1 —qi (garan + Gasan + qanan)) = 0,

n({l—aq ((12,@12521 + %[913,831 + ‘h,&iﬁu )) = 0.

Hence

Qrai12a21 +q3a13a31 +Q4a140141 -

Q2121 + Q33 B + Qi Pufn.

Denote
gr = —As _ aasi — PP
| = = ’
Ay Pifa —anan
hi =00 aizan + arzan »
g; = — B _ auan —Bufu
) = = ’
Ay Biefa —aizan
hs =05 arzan + aran.
Then

C A
0 =01 =07 0,

¢ =00 q;+0; q (23)
and it follows from Egs. (22) and (23) that a

positive solution of Eq. (21) must have the form

o | 0
T = Uy Ty = (*+*)a21u»
w1 w2
az; u _oaquu
X3 — s Xy — ’
1 w2
o g 24
1 2
Vi = UVsy2 = <*+7)321'U’
w1 w2
_ @31?1 7@11'0
V3 — s Vi — )
w1

w?2
where
1 1
w] *— s W2 *— T .
q3 qi
By substituting Eq. (24) into Eq. (21), we obtain
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equations for u,v,w; »w, in the following form:

u [—wiar + (p1 —u— O azan + aan dan +

w1ar

(& arzaz +ansaun )601] =0,

az}(: [pranan—0" wn + 05 ) (1 +a21u+321"0)] =0,
1

w

Os)ilu[Pswl —U+anutpuv)] =0,
1

a“u[ﬁlwz — —|—a41u+ﬁ41v)] =0,

w?2

Y [—wan + (pr —u—0) O P + Pl +

w1ar

3 ﬁlzﬁn +514ﬁ41 )(Ul] =0,
B2 a0 40 )+t f0)] = 0.
1

‘%}[Pswl - (1 +a31u+ﬁgﬂ))] - O,
1

RY

[Puuz — +a/11u‘|—ﬁu”0)] =0.

w2
(25)
Notice that
07 arzan + azaz = 07 ,312321 "‘,813,831 =hi,
05 arzaz + anan = 05 Biffr +Pufn = hs .
Then, Eq. (25) is reduced to the system
wiws — (p1 —u—0v) (W wy +hs w) =0,
Pranawr — (O w2 + 05 ) (1 Fanu—+ o) = O,l
pson — A+ asu+pav) =0,
praw — A+ anutBuv) = 0,

L

(26)
and system (21) has a positive solution if and only
if system (26) has a positive solution.

Hence, by the third equation and the fourth
equation in Eq. (26)

w1 :pi(l +a31u—|—&1v), wzzpi(1+a41u+ﬁ“v)'
4

3
27
Substituting (27) into (26), we have the following
system of u and v:
A +anu—+Lav)(1—2p pihs +
Can +2pshs Du—~+ By +2pshs Do) +
Q4+ anu+Luv) (1 —2p pshi +
Cazt T 2pshi Du+ (B + 2pshi dv) = 0,
(A +asiu—+ Bs10)(ps05 — prp2prhs +
(p2pihs —+ pi0s andu—+

(popihs =+ pi6s5 B o) +
(It anu+Buv) (00 — p1p2pshi’ +
(papshi’ + psOi e )u—+
(P2 pshy + ps07 Ba)v) = 0.
Noticing the assumptions that a; =as and S5 =
B s we have

(A Fanutpav)(2—=2pipihs —2p1pshi +
(a1 T 2pihs +as +2p3hi Du—+
([341 + 2pihs _’_[331 +2pshi )v) = 0,

(A +asiu—+Bav)(pibs + psb — pip2pihs —
P12 pshi + Cpspihs + pi0s s +
Dapshi + P30 ax))u+ (papihs +
D105 By + p2pshy + P30l fdv) = 0.

(28)

After simple algebraic manipulations, we
arrive at the following results.

Theorem 6.3

positive equilibrium if and only if one of the

System (14) has a unique

following conditions is satisfied;
(HD) prpihs +prpshi —12>0, pypo (pihy +
Pshf )7(@152* +Pg(9f )>0, and

asi T pshi’ + puihs ~
Popihs + popshi + pibs an + P30 an

prpihs +pipshi —1
D1pe (Pﬁth; +P3hf ) — (PU% +P3(91* )

B 4= pihs + pshi
papihs 4 papshi + pibs B + P3O B’
(H2) pipihs +prpshi —1>0, pip: (pihs +
pghl* )*(Pu?f _'_pgﬁf )>Ov and
az + pshi + pihs <
Popihs + popshi + pi0s an + ps0i an
prpihs +pipshi —1
D12 (pahs + pshi ) — (pibs + ps6i)
B + pihs + pshi
popihs + p2pshi’ + pi0s By + ps0i B’
Remark

>

<

In Theorem 6.3, we exclude the
very special case where
asi T pshi’ + puhs
DPapihs + prpshi —+ p205 an + ps0f an

p1pihs + pipshi —1
P10 (pihs + pshi ) — (pi0s ~+ ps67)
Bs1 + pihs + pshi
PoDihs + papshi =+ puls By + P30 B
In this case it is easy to see from Eq. (28) that
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system (14) has a continuum of interior equilibria.
As an immediate consequence of Theorems
6.2 and 6. 3, the following results are obtained.

Corollary 6. 4

equilibrium if and only if the boundary equilibria

Eq. (14) has a coexistence

both exist and have the same stability.
Furthermore, the coexistence equilibrium is stable
(unstable) if the boundary equilibria both are
unstable (stable).

Example 6.5 We now use the following set
of parameters:
ae =1 =as =Lfu=p1=p=ps=ps =1,

an =1 =an = Pz = 2y an = an =iz = fu = 3.

Then

Az :*47A3 - 17A/1 =3,

o =105 =3 = Lo =1,
asi 1= pshi & pihs _
DPapihs + papshi + P05 az £ P30 an 13
pipihs + pipshi —1 — 1=
D12 (pahs + pshi ) — (pubs + ps6i)
Bsi + pihs + pshi 12

Pepihs + papshi + pi0s Bor + P30 B BRE)
Hence, from Theorem 6. 3 and Corollary 6. 4, the
coexistence equilibrium exists and it is stable.

Example 6.6 Let
Lh=p=ps=p=ar=a1 =an =P =Pu=1,

321 =2, ﬂ12 :ﬂ41 :ﬂ.ﬂ =3,

a3 = au = an = 4.
Then
Az :727A3 - 17A/1 - 17
1 . 1 .. .
61 :?7(92 :?9}11 :67112 :6,

asi T pshi + pihs _ 13
Dapihs + papshi + pabs an + psOi an 16

prpihs +pipshi —1
P1p2(pahs + pshi ) — (paBs + ps0i )

B+ pihs 4 pshi _ 15
P2 pshs  prpshi = pi0s B + P3O B 14
Hence, by Theorem 6.3 and Corollary 6.4, the

coexistence equilibrium exists and it is unstable.

<

=1<

7 Conclusion

In this section we mainly summarize our

results and give their biological meanings.

In this article, we have mainly studied the
asymptotical behavior of general 2N-groups STD,
by the theory of type-K monotone dynamical
system. Especially as N =4, under two limited
conditions, we have given the complete results in
Section 6. It is shown that, if there is no positive
equilibrium, then one of the nontrivial boundary
equilibria attracts all positive solutions; if there is
only one positive equilibrium, then the unique
positive equilibrium attracts all the positive
solutions or the only two positives solutions tend
to it and the others tend to boundary equilibrium;
otherwise the system has a continuum of
equilibria.

System (3) is not only an epidemic model but
also a model incorporating competition among
multiple strains. One of the most important
subjects in epidemic models is to obtain a threshold
or reproductive numbers that determine the
persistence or extinction of the disease. Theorem
3. 2 provides the reproductive numbers R,, R, of
the two strains in this model, which are the
threshold parameters for the diseases to invade into
the population. From Ref. [17], we learn that R, ,
R, are the total numbers of secondary cases
generated by infection of the disease. When the
two strains are able to invade into the same
population, they will compete for the same
resource, 1. e. the susceptibles. Because the model
incorporates competition between two strains, we
have studied the conditions for the coexistence as
well as the competitive exclusion.

Theorem 4.2 is the principal mathematical
results of boundary equilibria. Moreover, the
conditions and results in this theorem reflect some

simple causes and results in biology.
N

The case A;=>(<0, j=2,3,+,N and >,
J

=2
0. Biologically, A;>(<00, j=2,3,+-, N can be
understood to mean that the epidemic of the disease
with strain 1 is better (worse) in the sexual

activity, between colonizing males and females of
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the colonizing group f;, j=2,3,---, N. In fact, it
follows from the expression of A; that we have

ppha, = DB OB B g
X J m *
o1

o1 /i o szf

The first and the second items of the above formula
can be understood as the number of secondary
cases in the males and females of group f;
generated by infection of strain 1 and strain 2,
respectively. We can easily see that A; > (<00,
j=2,3,++, N imply the number of secondary cases
in the males and females of group f; generated by
infection of strain 1 is greater (less) than
generated by infection of strain 2, i.e. , strain 1 is
better (worse) of colonizing the males and females
of colonizing group f;. These lead to the fact that
strain 1 may persist in the population while strain 2
will go extinct. Then, the competitive exclusion
will hold, i. e. , E, is global asymptotically stable.

Theorem 6.2 and Theorem 6.3 are the
mathematical results of system (14) under two
limited conditions. Next, we will explain those
biologically meanings of the conditions and results
in Theorems 6. 2 and 6. 3. We pick up two typical
cases to explain their biological meanings. The
other cases can be explained in the same way. For
clearer explanation, males are excluded from our
consideration.

(1) The case Ry >1, R,>1, A,<<0, A;=>0,
A, >0,

piLpihs + pipshy —1

asi T pshi’ + pihs

D1D2(pshi —+ pihs ) — (pa0s + ps00 )
Dapihs + popshi’ =+ pi0s an + P30 an’
It follows from the above that A,<<0, A; >0, A, >

0 means strain 1 is better at colonizing group 3 and

>

group 4, but worse at colonizing group 2, and
strain 2 has the opposite order to that of strain 1.
While from
pipihs +pipshi —1 ~
asi T pshi’ =+ pihs

D1D2 (pshy + pahs ) — (pubs + ps00)
Dapihs + papshi’ + pibs an + pi0i an’

we have

(ﬁlzﬂn —anzazn ) (Ps —a3) + [(ﬂlaﬁal —aisaz Dw: +

(BuPu — aan dan J(ps —x3) (pys — ) < 0.
And B B (p; —x5) is the number of secondary
cases generated by infection of strain 2 in group 2

when the number of susceptibles in the females of

4
group 2 1s 22 *;2. Brleﬂy Eﬁljﬁjl(pj - ;j)
=2

denotes the total number of secondary -cases
generated by the infection of strain 2 when the

system has strain 1 only and is in balance. While

4
Dayan (p; — x;) denotes the total number of
=

secondary cases generated by the infection of strain
1 when the system has strain 1 only and is in
balance. So
pipihs + pipshi —1
asy + pshi’ + pihs

PPz (pshi 4 pihs ) — (pyl; + ps00)
popihs + popshi + pils an + ps0i an

can almost be understood that the number of

>

secondary cases generated by infection of strain 2 is
always smaller than that of strain 1. Which implies
that females cannot provide proper refuge for
strain 2. Therefore, strain 1 may persist in females
while strain 2 will go extinct, i.e. , E, is stable.
(II) The case R, >1, R,>1, A,<<0, A; >0,
A, >>0,
asi T pshi’ + pihs ~
DPopihs =+ p2pshi + pi0s an + psOi an
pipihs +pipshi —1 -~
prp2(pihs = pshi' ) — (pu0: —+ ps0i)
Bt £ pihs + pshi
Dopihs + popshi’ —+ pabs Bor + P60 Bt
We have learned that A,<<0, A; >0, A, >0 means

group 2 creates refuge for strain 2 and groups 3, 4

create refuge for strain 1. Meanwhile
asi T pshi + pihs ~
Drpihs + papshi’ + pubs asn + P3O an
Y2l P4h2* + Plpsllf —1
D12 (pahs + pshi ) — (pibs + ps6i)
B £ pihs + pshi

popihs + papshi —+ pu0s B + P30 B

understood that the

>

can be approximately
population may create proper refuge for stains 1
and 2. It is such proper refuges that make the
possible.,

coexistence of the two strains
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Furthermore, from the above discussion, the multiple  pathogen  strains  in  heterosexual

positive equilibrium E* is globally asymptotically
stable.
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