

TiCl₄/XROH/MgCl₂/Et₃Al 催化剂合成 宽分子量分布乙烯/1-己烯共聚物

孔 媛"汪红丽"义建军"张明革"黄启谷""杨万泰"

("北京化工大学化工资源有效利用国家重点实验室,碳纤维及功能高分子教育部重点实验室 北京100029; ^b中国石油石油化工研究院合成树脂重点实验室 北京)

摘 要 采用 MgCl₂负载 TiCl₄及 1,3-二氯-2-丙醇给电子体(XROH),与三乙基铝助催化剂组成的催化剂体 系,合成了 1-已烯共聚率高且宽分子量分布的乙烯/1-已烯共聚物。讨论了催化体系的组成、配比和聚合条件 对乙烯/1-己烯共聚合行为,共聚物结构、分子量及分子量分布的影响。结果表明,n(Ti):n(Mg) = 10:1, n(XROH):n(MgCl₂) = 2.6:1,n(Al):n(Ti) = 100:1,乙烯压力 0.45 MPa,聚合温度 80 ℃,聚合时间 2 h,共聚 单体(1-hexene)浓度 0.25 mol/L 时,催化效率达 23.2 kg/g cat。采用¹³ C NMR、X-ray、SEM、WAXD、DSC、GPC 等测试技术对催化剂、共聚物的结构进行了表征。结果表明,在 Zieglar-Natta(Z-N)催化体系中,给电子体多卤 代醇与 TiCl₄结合,载体 MgCl₂的晶体结构发生了变化。结晶度降低,有利于催化剂负载量的提高(ω(Ti) = 4.8%)和催化效率增大。催化体系产生了多种活性中心,使聚烯烃分子量分布变宽(15~20)。多卤代醇还可 增强1-己烯与乙烯的共聚能力,在共聚物中1-己烯的摩尔分数达 5.1%。

关键词 负载型 Z-N 催化剂,多官能团内给电子体,烯烃共聚物,宽分子量分布
 中图分类号:0632.1 文献标识码:A 文章编号:1000-0518(2010)06-0626-06
 DOI:10.3724/SP.J.1095.2010.90592

宽分子量分布聚烯烃中的低分子量部分可改善聚烯烃的加工性能,而高分子量部分可增强其机械 性能,可使吹塑瓶、挤塑管材和型材进一步薄壁化,并且具有更好的耐环境应力开裂性能。单活性中心 茂金属催化剂及非茂金属催化剂催化乙烯与1-己烯共聚合时,1-己烯的插入量较高,但共聚物的分子量 分布(MMD)窄(一般为2~4),加工较困难。采用限定几何构型催化剂(CGC)合成的聚烯烃弹性体 Engage^[1]是高熔体强度的乙烯/1-己烯共聚物,分子量分布为3左右,1-己烯在聚合物分子中的摩尔分 数可达10%以上。采用桥联茂金属/MAO催化体系在常压~5.0 MPa下以甲苯作溶剂,催化乙烯与α-烯烃(如1-己烯)共聚合,得到的聚烯烃弹性体 Tafmer^[2]分子链中α-烯烃的摩尔分数高达9%,密度为 0.85~0.92 g/cm³,分子量分布在1.2~4.0之间。Terunori等^[3]采用氟化亚胺钛配合物/MAO催化乙烯 /1-己烯共聚,共聚物中1-己烯摩尔分数可达22%,分子量分布为1.1左右。

负载型 Ziegler-Natta(Z-N)催化剂催化乙烯/1-己烯共聚合时,虽能得到宽分子量分布的聚烯烃,但 是1-己烯的共聚能力低。Bialek等^[4]采用球磨方式处理 MgCl₂载体,得到的钛系催化剂 MgCl₂(THF)₂/ TiCl₄/Et₂AlCl 催化乙烯与1-己烯共聚合,共聚物中1-己烯的摩尔分数为1.3%,分子量分布为8.1。Fan 等^[5]采用 AlCl₃/MgCl₂和乙醇的加合物与 TiCl₄反应制备 TiCl₄/AlCl₃/MgCl₂/AlEt₃催化体系催化乙烯与 1-己烯共聚合,共聚物中1-己烯摩尔分数显著提高至7.3%,若采用 Al(*i*-Bu)₃作助催化剂可进一步提高 至 10.8%,其中 AlCl₃起着提高1-己烯共聚能力的作用。本文在传统的 Z-N 催化体系中,加入1,3-二氯-2-丙醇给电子体(XROH),并与 TiCl₄结合,产生多种活性中心,使聚烯烃分子量分布变宽(共聚物分子 量分布为16.2);卤代醇还可增强1-己烯与乙烯的共聚能力,在共聚物中1-己烯的摩尔分数可达5.1%。 为聚烯烃催化剂的制备提供新思路。

2009-09-03 收稿, 2009-12-17 修回

国家自然科学基金(20574003)、中石油风险创新基金(07-06D01-04-04-06)、北京市教委重点学科共建项目(XK100100540, XK100100640)及"长江学者和创新团队发展计划教育部创新团队"(IRT0706)资助项目

通讯联系人:黄启谷,博士,教授; E-mail:huangqg@ mail.buct.edu.cn;研究方向:聚烯烃催化剂及高性能聚烯烃的设计与合成

627

1 实验部分

1.1 试剂和仪器

乙烯(聚合级),1-己烯(Acros,98%);高纯 N₂气(99.99%);无水二氯化镁(Acros 公司),三乙基铝 (Al(Et)₃),2.0 mol/L 的己烷溶液(美国 Burris-Druck);1,3-二氯-2-丙醇(XROH)(99%,Acros);四氯化 钛、环氧氯丙烷、磷酸三丁酯、甲苯、正己烷均为分析纯试剂,在常压、N₂气保护下用金属钠回流 48 h,溶 剂现蒸现用。SPECORD S600 型紫外可见分光光度计(德国耶拿分析仪器股份公司)。将 100 mg 催化剂 用浓 H₂SO₄ 溶解后,用庚烷洗涤、萃取,移入容量瓶中稀释至刻度,用 25 mL 石英皿在 λ = 422 nm 处测 定吸光度,与标准曲线比较得到 Ti 含量;马尔文 Mastersizer2000 型粒度分析仪(英国);Hitachi S-4700型 场发射扫描电子显微镜(SEM,日本);INOVA500 型¹³C 核磁共振仪(NMR,美国 Varian 公司),溶剂为氘 代邻二氯甲苯,测试温度 150 ℃;D/MAX-3A 型 X 射线衍射仪(日本理光);Perkin-Elmer DSC-7 型示差 扫描量热仪(DSC,美国),N₂气气氛,升温、降温速率 10 ℃/min,记录第二次升温曲线;PL-GPC 220 型凝 胶渗透色谱(GPC,英国 Polymer Laboratoties 公司),溶剂为1,2,4-三氯苯,测试温度 150 ℃。

1.2 催化剂的制备

在 Schlenk 反应瓶中,依次加入 1.0 g MgCl₂、50 mL 甲苯、1.5 mL 环氧氯丙烷、2.0 mL 磷酸三丁酯 及计算量的 1,3-二氯-2-丙醇,在 60 ℃反应 2 h,得到均匀体系。降温至 – 25 ℃,慢慢滴加 11.5 mL TiCl₄,反应 2 h,得红色透明溶液。慢慢升温至 60 ℃,反应 3 h,滴加 30 mL 正己烷助析出剂直至产生固 体颗粒。用己烷洗涤(25 mL×6),抽干得到 3.83 g 流动性好、呈球形、淡粉红色催化剂 TiCl₄/XROH/ MgCl₂,产率 89.9%。

1.3 乙烯/1-己烯共聚合

70 ℃下,在乙烯气氛下,向干燥洁净并用 N₂气置换 3 ~4 次的 300 mL 的高压釜中依次加入 30 mg 催化剂,80 mL 正己烷,计算量的 1-己烯及助催化剂(Al(Et)₃),充入乙烯至反应压力,迅速升温至 80 ℃,恒压恒温反应 2 h。用 V(乙醇):V(盐酸) = 1:10 的溶液终止反应,过滤,并用乙醇,水洗涤至中 性,50 ℃真空干燥 48 h,称重并计算催化效率。

2 结果与讨论

2.1 催化剂的制备

2.1.1 Ti/Mg 摩尔比的影响 采用 TiCl₄/XROH/MgCl₂/Et₃Al 催化体系催化乙烯与 1-己烯共聚合,Ti 与 Mg 摩尔比对催化剂的载钛量和催化效率的影响如表 1 所示。由表 1 可以看出,n(Ti):n(Mg)从 6:1 增加至 10:1 时,催化效率逐渐增加;当n(Ti):n(Mg) = 10:1 时,催化剂钛的质量分数达到 4.8%,催化效率高达 23.2 kg/g cat;继续增加n(Ti):n(Mg)时,Ti 质量分数基本不变,催化效率也基本不变。这 可能是 Mg²⁺的离子半径(0.065 nm)和 Ti⁴⁺离子半径(0.068 nm)相近,Ti⁴⁺容易嵌入 MgCl₂晶格,在 MgCl₂表面形成稳定的复合物 MgCl₂·TiCl₄。当 $\omega(Ti)$ = 4.8%时,即使加入更多的 TiCl₄,催化剂的载 Ti 量也基本不变。

Tuble 1 Prices of 12 Arg mout rates of catalytic enteriney									
<i>n</i> (Ti): <i>n</i> (Mg)	ω (Ti)/%	Catalytic efficiency/(kg·g ⁻¹ cat)	<i>n</i> (Ti): <i>n</i> (Mg)	ω (Ti)/%	Catalytic efficiency/(kg·g ⁻¹ cat)				
6:1	3.7	12.2	10:1	4.8	23.2				
8:1	4.3	18.5	12:1	4.8	23.1				

表 1 Ti/Mg 摩尔比对催化效率的影响 Table 1 Effects of Ti/Mg molar ratios on catalytic efficiency

Conditions: Catalyst amount 5 mg; P = 0.45 MPa; t = 80 °C; Time = 2 h; $n(\text{XROH})/n(\text{MgCl}_2) = 2.6$; n(Al):n(Ti) = 100:1; solvent: 80 mL hexane; comonomer:1-hexane, c(1-hexane) in feed:0.25 mol/L.

2.1.2 醇加入量的影响 无水 MgCl₂晶体结构比较规整,TiCl₄很难负载,所以必须对无水 MgCl₂载体进 行活化处理,醇是常用的活化处理剂,可与 MgCl₂作用形成醇合物,经溶解-析出后,MgCl₂晶粒减小,具有 较大的比表面积和较多的晶格缺陷,可以负载更多"有效钛"^[6,7]。表 2 列出了活化处理剂 1,3-二氯-2丙醇(XROH)的加入量对共聚反应的影响。从表中可以看出,加入(XROH)后催化体系活性显著提高, 分子量分布变宽,共聚单体共聚率提高。当 n(XROH)/n(MgCl₂) = 2.6 时,催化效率达到最大值 23.2 kg/g cat。但是,继续增大 n(XROH)/n(MgCl₂)比,催化效率反而下降。催化剂中加入 1,3-二氯-2-丙醇,可以得到宽分子量分布的聚烯烃,但与醇的加入量没有太大关系;共聚单体的共聚率随 XROH 的 加入量增加而提高,当 n(XROH)/n(MgCl₂) = 2.6 时,共聚率达到最大值 5.1%,此后再增加醇的加入 量共聚率基本保持不变。当 1,3-二氯-2-丙醇用量过低时,MgCl₂不能全部与 1,3-二氯-2-丙醇形成络合 物,难以溶解;醇用量过大时,过量的醇可直接与 TiCl₄反应,形成钛酯类化合物,降低了 Ti 与 Mg 摩尔 比,减少了催化剂的载钛量,导致催化效率降低。

$n(\text{XROH})/n(\text{MgCl}_2)$	ω (Ti)/%	$CE/(kg \cdot g^{-1} cat)$	$10^{-4} M_{\rm n}$	MMD	$x(1-hexene)^a/\%$
0	2.5	3.2	3.1	5.1	0.31
1.8	3.1	8.2	0.9	15.6	2.1
2.2	3.5	12.5	2.1	16.1	3.0
2.4	4.1	19.3	2.9	15.9	4.2
2.6	4.8	23.2	3.1	16.2	5.1
2.8	4.0	17.1	2.7	16.1	4.9

表 2 XROH 与 MgCl₂的摩尔比对乙烯/1-己烯共聚合的影响 Table 2 Effects of n(XROH):n(MgCl₂) on catalytic efficiency

Conditions: $\omega(\text{Ti}) = 4.8\%$; Catalyst amount 5 mg; P = 0.45 MPa; t = 80 °C; Time = 2 h; n(Ti):n(Mg) = 10:1; n(Al)/n(Ti) = 100; solvent:80 mL hexane; c(1-hexane) in feed:0.25 mol/L; a. determined by ¹³C NMR.

2.2 催化剂的结构与表征

2.2.1 WAXD 分析 未经处理 MgCl₂晶体有 α-MgCl₂及 β-MgCl₂。其中 α-MgCl₂属于立方密堆积层状结构, β-MgCl₂属于六方密堆积层状结构, 但热力学研究表明 β-MgCl₂的结构不如 α-MgCl₂稳定。δ-MgCl₂是 前 2 种晶型的混晶, 其无序性比 α-MgCl₂及 β-MgCl₂大^[8,9], 具有结构缺陷, 晶粒小, 表面积大等特点。

图 1 为未经处理的 MgCl₂(*a*) 及催化剂(*b*)的 WAXD 图。从图中可以看到,谱线 *a* 中在 2 θ 为 15.08°、30.38°、34.98°、50.44°处有尖锐的结晶峰。在 δ -MgCl₂中由于 Cl-Mg-Cl 层间相互移动或旋转,破 坏了堆砌方向的结晶排列,产生了一种无序结构,使 α -MgCl₂中原来的一些尖峰变矮或变宽^[9];谱线 *b* 在 2 θ 为 15°、32°、50.5°处出现宽峰,表明催化剂负载后的 MgCl₂晶型及结晶行为发生了变化。

图 2 催化剂(n(Ti):n(Mg) = 10:1)的 SEM 照片 Fig. 2 SEM image of the catalyst (n(Ti):n(Mg) = 10:1)

2.2.2 SEM 分析 图 2 为采用 MgCl₂为载体,1,3-二氯-2-丙醇为给电子体(XROH)的 Z-N 催化剂的 SEM 照片。图中可见,催化剂颗粒呈球形,粒径在 20~40 μm,分布较均匀;颗粒表面不光滑,存在缺陷。

2.3 乙烯/1-己烯共聚合

采用 TiCl₄/XROH/MgCl₂/Et₃Al 催化体系(n(Ti):n(Mg) = 10:1)催化乙烯与1-己烯共聚合,聚合温

度、Al 与 Ti 摩尔比、1-己烯加入量对共聚合的影响如表 3 所示。

]	Table 3 Copolymerization of ethylene with 1-hexene catalyzed by TiCl ₄ /XROH/MgCl ₂ /Et ₃ Al catalyst											
t∕℃	<i>n</i> (Al)/ <i>n</i> (Ti)	$c(1-hexene)/(mol \cdot L^{-1})(in feed)$	CE/(kg•g ⁻¹ cat)	c(1-hexene)/% (in copoly)	$10^{-4} M_{\rm n}$	MMD						
70	100	0.25	19.5	4.8	3.5	16.5						
80	100	0.25	23.2	5.1	3.1	16.2						
90	100	0.25	13.4	4.3	2.3	18.1						
80	75	0.25	18.1	3.3	3.3	16.8						
80	125	0.25	17.6	3.0	2.4	18.4						
80	100	0	21.8	0	3.2	19.7						
80	100	0.15	19.2	1.94	2.8	17.5						
80	100	0.5	18.7	6.2	2.5	15.8						

	表 3 TiCl ₄ /XROH/MgCl ₂ /Et ₃ Al 催化剂催化乙烯/1-己烯共聚合
Table 3	Copolymerization of ethylene with 1-hexene catalyzed by TiCl ₄ /XROH/MgCl ₂ /Et ₃ Al catalyst

Conditions: $\omega(Ti) = 4.8\%$; Catalyst amount 5 mg; P = 0.45 MPa; Time = 2 h; solvent: V(hexane) = 80 mL.

从表3可看出,催化效率随聚合温度升高先增加后降低,在80℃时达到最大值(23.2 kg/g cat)。温 度升高,反应速率增大,导致催化剂催化效率增加。但聚合温度过高,使乙烯在溶剂中溶解度下降,即乙 烯单体浓度下降;且温度过高还导致催化剂活性中心失活,使催化效率降低。在保持其它条件不变的情 况下,n(Al)/n(Ti) = 75 时,催化效率为18.1 kg/g cat,当其比值增至100 时,催化效率达23.2 kg/g cat, 旧继续增至125时,催化效率反而降至17.6 kg/g cat。因为助催化剂在聚合体系中起着除杂及烷基化作 用,如果助催化剂加入量少,影响催化剂活性中心的数量,催化效率低;助催化剂还起着还原剂和链转移 剂的作用,如果助催化剂加入量过多,Ti³⁺还原为Ti²⁺,不利于乙烯及1-己烯聚合,使催化效率降低;向 助催化剂的链转移更容易,也使催化效率降低。当1-已烯与乙烯共聚时,形成长支链的乙烯链,使共聚 物链变得疏松,乙烯更易靠近活性中心,导致催化活性增加。表3中列出了1-己烯的浓度对催化效率的 影响。从表中可看到,在1-已烯浓度小于0.25 mol/L时,随1-已烯浓度增加,聚合速率增加。当其浓度 为 0. 25 mol/L 时,乙烯/1-己烯共聚合的催化效率最高,此后共聚合速率开始下降。这可能是因为 1-己 烯浓度的增加意味着活性中心附近乙烯浓度的降低;其次,活性中心向1-己烯的链转移能力增强。

2.4 乙烯/1-己烯共聚物的结构与性能

以下表征所用的共聚物均采用 TiCl₄/XROH/MgCl₂/Et₃Al 催化体系(n(Ti):n(Mg) = 10:1)催化乙 烯/1-己烯共聚所得。

2.4.1 DSC 分析 图 3 为共聚物的 DSC 曲线。从图中可看出,随着聚合体系中 1-已烯浓度的增加,乙 烯与 1-己烯共聚物的熔点 (T_{a}) 和结晶温度 (T_{a}) 均降低。1-己烯单体的初始浓度越大,所得共聚物的熔 点和结晶温度越低。这可能是随着1-己烯浓度的增加,1-己烯插入聚乙烯分子链中的数量增加,聚合物 分子链中1-己烯的支链破坏了 PE 的结晶规整性,因而共聚物的熔点和结晶温度均降低。

Fig. 3 DSC curves of ethylene/1-hexene copolymers obtained by catalysis of TiCl₄/XROH/MgCl₂/Et₃Al $c(1-\text{hexene})/(\text{mol}\cdot\text{L}^{-1})(\text{in feed}):a.0; b.0.15; c.0.25; d.0.5$

2.4.2 GPC 分析 图 4 为共聚物和采用同样催化体系得到 PE 均聚物的 GPC 结果。图中可见,采用 TiCl₄/XROH/MgCl₂/Et₃Al 催化剂体系不论是催化乙烯均聚合,还是催化乙烯/1-己烯共聚合所得聚合物 分子量均较高,分子量分布较宽。可能是由于 MgCl₂、TiCl₄,多元卤代醇及其它助剂之间相互发生作用, 产生了多种催化活性中心,导致聚合物分子量分布变宽。

X(1-hexene)/% (in copolymer): a. 0; b. 1. 94; c. 5. 1

Fig. 5 ¹³C NMR spectrum of ethylene/1-hexene copolymer

2.4.3 ¹³C NMR 分析 在 *n*(Al):*n*(Ti) = 100:1,料液中 1-己烯的浓度为 0.25 mol/L,在 80 ℃、80 mL 己烯中 0.45 MPa 反应 2 h 得到的乙烯/1-己烯共聚物的¹³C NMR 谱图,如图 5 所示。各共振峰的命名和 化学位移的归属^[10,11],列于表 4。根据¹³C NMR 图谱中三元序列分布强度,利用 Rnadall^[10]方法计算共 聚物的微观结构、1-己烯在共聚物中的插入量及单体竞聚率结果列于表 5。

Deals no	Carl an true	Mananan aa <i>m</i> aanaa	Chemical shift		De els est	Carbon trino	Manananaa	Chemical shift	
reak no. Carbon type		Monomer sequence	Calculated	Found	геак по.	Carbon type	Monomer sequence	Calculated	Found
1	αα	EHHE	40.18	40.35	10	$\gamma \delta^+$	HEEE	30.47	30.50
2	СН	EHE	38.13	38.26	11	$\delta^{\scriptscriptstyle +}\delta^{\scriptscriptstyle +}$	$(EEE)_n$	29.98	30.20
3	СН	HHE	35.85	36.03	12	$CH_2(3)$	EHE	29.51	29.66
4	αγ	HHEH + EHEH	35.00	35.13	13	$CH_2(3)$	HHE	29.34	29.56
5	$\alpha \delta^+ + \operatorname{CH}_2(4)$	HHEE + HHE	34.90	35.04	14	$CH_2(3)$	HHH	29.18	29.44
6	$\alpha\delta^+$	EHEE	34.54	34.65	15	$\beta\delta^+$	EHEE	27.28	27.36
7	$CH_2(4)$	EHE	34.13	34.25	16	CH ₂ (2)	EHE + HHE + HHH	23.36	22.84
8	СН	HHH	33.47	34.03	17	CH_3	EHE + HHE + HHH	14.12	14.06
9	$\gamma\gamma$	HEEH	30.94	32.17					

表 4	乙烯/1-己烯共聚物的 ¹³ C NMR 归属	
-----	------------------------------------	--

 Table 4
 ¹³C NMR data for ethylene/1-hexene copolymer

表 5 乙烯/1-己烯共聚物组成的序列分布及共聚单体的摩尔分数

Table 5
 Observed triad distributions and comonomer molar fractions and copolymerization parameters

x(1-hexene)/% (in copolymer)	$r_0 \cdot r_E$	[E]	[H]	[EHE]	[EHH]	[HHH]	[HEH]	[HEE]	[EEE]
1.94	1.30	98.06	1.94	1.87	0.10	0.00	0.04	3.64	94.35
5.1	1.06	94.9	5.1	4.71	0.25	0.15	0.23	9.34	85.32
6.2	0.66	93.8	6.2	6.15	0.27	0.16	0.26	10.53	82.65

由图 5、表 4 和表 5 可看出,乙烯/1-己烯共聚物中主要为 EHE、EEE、HEE、EHEE 和 HEEE 序列。共 聚物中被 1 个或 2 个乙烯单元所隔离的序列结构(HEH,HEEH)出现的几率较小;共聚物中几乎不存在 1-己烯单元长序列结构。由此可知,共聚物中绝大多数 1-己烯单元是孤立地均匀地分布在共聚物分子 链中,有利于整个共聚物分子链的性能均匀化。从表 5 结果还可看出,所得共聚物中,二单体的竞聚率 第6期

乘积 $r_0 \cdot r_{\rm F}$ 在1左右,表明这是无规共聚。

参考文献

- 1 Toshiyuki T, Ken Y, Akinori T. US 5218071 [P], 1993
- 2 DuPont Dow. Polytile[J], 1996, 33:76
- 3 Rick F, Makot M, Terunori F. Macromolecules [J], 2005, 38:1546
- 4 Bialk M , Czaja K. Polymer [J] ,2000 ,41 :7899
- 5 Chen Y P, Fan Z Q. Eur Polym J[J], 2006, 42:2441
- 6 Choi J H, Chung J S, Shin H W, Song I K, Lee W Y. Eur Polym J[J], 1996, 32:405
- 7 Chirinos J, fern ndez J, Pérez D, Rajmankina T, Parada A. J Mol Catal A: Chem[J], 2005, 231:123
- 8 HU You-Liang(胡友良). Petrochem Technol Appl(石化技术与应用)[J],2002,20:1
- 9 XIAO Shi-Jing(肖士镜), YU Fu-Sheng(余赋生). Catalysts for Coordination Polymerization of Olefins and Polyolefins (烯烃配位聚合催化剂及聚烯烃)[M],1st Edn(第1版). Beijing(北京):Beijing University of Technology Press(北 京工业大学出版社),2002:78
- 10 Hsieh E T, Randall J C. Macromolecules [J], 1982, 15:1402
- 11 Carman C J, Harrington R A, Wilkes C E. Macromolecules [J], 1977, 10:53

Ethylene/1-Hexene Copolymer with Broadened Molecular Mass Distribution Obtained by Catalysis of TiCl₄/XROH/MgCl₂/Et₃ Al

KONG Yuan^a, WANG Hong-Li^a, YI Jian-Jun^b, ZHANG Ming-Ge^b, HUANG Qi-Gu^{a*}, YANG Wan-Tai^a

(^aState Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber

and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029;

^bLaboratory for Synthetic Resin Research Institution of Petrochemical Technology,

China National Petroleum Corporation, Beijing)

Abstract The synthesis of copolymer with high comonomer incorporation and broadened molecular mass distribution from ethylene with 1-hexene catalyzed by *co*-catalyst TiCl₄/XROH/MgCl₂ and Et₃Al is described. The influences of the catalyst system composition and the polymerization conditions on the behavior of ethylene/1-hexene copolymerization, the structure, molecular mass and molecular mass distribution(MMD) of the obtained copolymer have been discussed in detail. When the copolymerization was performed under the optimum conditions : n (Ti): n(Mg) = 10:1, n(XROH): n(MgCl₂) = 2.6:1, n(Al): n(Ti) = 100:1, P = 0.45 MPa, t = 80 °C, Time = 2 h and the comonomer concentration in feed = 0.25 mol/L, the catalytic activity reached 23.2 kg/g cat. The catalyst particle shape and the structure and properties of the ethylene/1-octene copolymer are characterized with ¹³C NMR, X-ray, SEM, WAXD, DSC and GPC. These results show that the catalytic activity, molecular mass distribution and higher 1-hexene incorporation were considerably improved when the multi-halogen alcohol(XROH) was added into the catalyst system. By adding XROH in the catalyst system made Ti mass fraction of the catalyst increased up to 4.8%; the molar ratio of MMD of the copolymer became broader, ranging from 15 to 20; 1-hexene incorporation within the copolymer chain was higher, up to 5.1%.

Keywords supported Z-N catalyst, multi-group internal donor, copolymer of olefins, broadened molecular mass distribution