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for constrained engineering design problems
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Abstract: A novel swarm intelligence optimization technique for constrained problems was
presented. The algorithm was inspired from colonizing weeds, which is used to mimic the natural
behavior of weeds in colonizing and occupying suitable places for growth and reproduction. It has
the robustness, adaptation and randomness and is simple but effective with an accurate global
search ability. Some applications of the new algorithm on constrained engineering design
optimization via employing a penalty approach suggest that the experimental results from the
proposed algorithm are promising. Also, experimental applications and comparisons show that
the presented algorithm is a potential global search technique for solving complex engineering
design optimization problems. Extensive simulations are conducted along with statistical tests to
yield helpful conclusions regarding the effects of parameter settings on the algorithm’s
performance.,
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0 Introduction

Constrained  optimization  problems are
interesting because they arise from naturally
engineering, science, operation research, etc.
Many practical engineering applications, such as
structural design,

optimization, engineering

automobile cab layout, etc, lead to a paradigm of

global optimization'!,

Due to the nature of these
applications, the feasible solutions usually need to
be constrained in a small subset of the search space
that is delimited by linear and/or nonlinear
constraints. To tackle such problems different
mathematical deterministic as well as stochastic
algorithms have been developed. Deterministic
Feasible

Descent

approaches such as Direction and

Generalized Gradient make  strong
assumptions on the continuity and differentiability
of the Therefore, their

applicability  is

objective  function.

limited since these two
characteristics are rarely satisfied in problems that
arise in real life applications®*. On the other
hand, in recent years there have been an extensive
research conducted for studying different natural
computational methods like genetic algorithms
(GAs), ant colony optimization (ACQO), particle
swarm optimization (PSO), and so on"'~%, which
are bio-inspired from some natural systems in
physics and biology. These numerical optimization
algorithms are categorized with non-gradient based
direct search algorithms. The main advantage of
these algorithms is that they only use the objective
function and constrain values to steer towards the
numerical

solution.  Equipped with

ablhty»

optimal

stochastic searching they have been

successfully applied in many areas and also proved
to be a very effective approach in the global
optimization for tackling constrained optimization
problems.

During the past few years, some new ecology-
inspired computational models are constantly
developed. Recently, a novel global optimization
weed optimization ( IWO )

model, invasive

algorithm, was proposed by Mehrabian and
Lucast* in dynamic and control systems theory,
which is inspired from a common phenomenon in
agriculture; colonization of invasive weeds. The
properties in

traditional GAs and

algorithm has some distinctive

comparison with other
numerical search algorithms like reproduction,
spatial dispersal, and competitive exclusion, but
no genetic operators are employed in the IWO
algorithm, which makes it more dissimilar to GAs.
It is simple but effective in converging to optimal
solution by capturing basic properties, e. g. seeding,
growth and competition, in a weed colony. The
study and application” ™" have demonstrated that
IWO can outperform other numerical stochastic
optimization algorithms.

In this paper, a new population-based
evolutionary algorithm is presented to incorporate
the penalty function into the IWO to solve
With no

penalty factors to choose from, the algorithm is a

constrained optimization problems.

simple but effective optimizing method with
accurate global search ability, thus extending the
invasive weed optimization method to real-world
engineering design applications. The performance
of the proposed algorithm on some well-known
constrained engineering optimization problems is
investigated via employing a penalty function
approach for constraint-handling, and comparisons
with previously reported results are presented.
Extensive simulations are conducted along with
statistical tests to yield wuseful conclusions
regarding the effects of the parameter setting on

the algorithm’s performance.

1 Invasive weed optimization algorithm

1.1 Simulating weed colonizing behavior

To model and simulate the colonizing behavior
of weeds for introducing a novel optimization
algorithm, some basic properties of the process
need to be considered, which are initializing
population, reproduction, spatial dispersal and

competitive exclusion,



% 8

An invasive weed optimization algorithm for constrained engineering design problems 887

1.1.1

A population of initial solutions is dispread

Initializing population

over the d-dimensional search space with random
positions.
1.1.2 Reproduction

Any individual of the population of weed seeds
is allowed to produce seeds according to its own
colony’s fitness, the lowest fitness and the highest
fitness to make sure the increase is linear, as

shown in Fig. 1.

A

max no. of seeds

no. of seeds =
floor <—¢—— ke

min no. of seeds - i

>
>

max fitness

min fitness I plant’s
in the colony

in the colony fitness

Fig. 1 Seed production procedure in a colony of weeds

1. 1.3 Spatial dispersal

The generated seeds are randomly distributed
over the d-dimensional search space by normally
distributed random numbers with a mean equal to
zero; but with a varying variance. This ensures
that seeds will be randomly distributed such that
they abide near to the parent plant. However,
standard deviation (SD), ¢, of the random
function will be reduced from a previously defined
initial value, gy s to a final value, o s in every

generation. In simulations, a nonlinear alteration

has shown satisfactory performance, given
as follows
(itery, — )"
oi — (ltlen£‘x )” (Ginitial ~ Ofinal ) + Ofinal ( 1 )
max

where iter,... 1s the maximum number of
iterations, oy 1s the SD at the present time step
and n is the mnonlinear modulation index.
Obviously, when n is set to 3, SD is linearly
decreased from the maximum to the minimum.
1. 1.4 Competitive exclusion

There is a need for some kind of competition
between plants due to the limiting maximum

number of plants in a colony. After passing some

iterations, the number of plants in a colony will

reach its maximum by fast reproduction.
However, it is hoped that the fitter plants
reproduce better than undesirable plants. When
the maximum number of plants in the colony is
reached, p...,» a mechanism for eliminating the
plants with poor fitness in the generation, is
activated. This mechanism works as follows: when
the maximum number of weeds in a colony is
reached, each weed is allowed to produce seeds.
The produced seeds are then allowed to spread over
the search area. When all seeds have found their
position in the search area, they are ranked
together with their parents’ (as a colony of
weeds ). Next, weeds with lower fitness are

eliminated to reach the maximum allowable
population in a colony. In this way, plants and
their offspring are ranked together and the ones
with better fitness survive and are allowed to
replicate. The population control mechanism also
is applied to their offspring to the end of a given
run, realizing competitive exclusion.
1.2 Invasive weed optimization algorithm

Invasive weeds have shown to be very robust
and adaptive to changes in the environment. Thus,
capturing their properties would lead to a powerful
optimization algorithm, which is a numerical
stochastic, population-based search algorithm. It
attempts to mimic natural behavior of weed
colonizing in opportunity spaces for function
optimization. The procedure of the algorithm can

be summarized as follows:

// Procedure of IWO algorithm
Step 1 A finite number of seeds are spread out over
the search space;
Step 2
produces seeds depending on its fitness;
Step 3
over the search area and grow to new plants;
Step 4

number of iterations of plants is reached; now only the

Every seed grows to flowering plants and
The produced seeds are randomly dispersed
This process continues until the maximum
plants with lower fitness can survive and produce seeds,

others are eliminated.

Step 5  The process continues until the maximum
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number of iterations is reached and hopefully the plant with

the best fitness is closest to the optimal solution.

2 Problem formulations and constraint
handling

Generally there are several types of constraint
handling methods, such as methods that preserve
solution feasibility, penalty-based methods,
methods that clearly distinguish between feasible
and unfeasible solutions, and hybrid methods. As
we all know, the penalty function method has been
the most popular constraint-handling technique due
to its simple principle and easy implementation, A
general engineering optimization problem can be

described as follows

P min f(x) (2
X€ ScR"
s. t. gl(r)go, izl,'-',yn l
S={a1sx55s2,} N R! [ (3
1‘? <II gl‘?’ Z - 1927"'97’1

where m is the number of constraints. Different
inequality and equality constraints can be easily
transformed into the form of Eq. (3). Constraints
define the feasible region, meaning that if the
vector X complies with all constraints g;, then it
belongs to the feasible region. Traditional methods
relying on calculus demand that the functions and
constraints have very particular characteristics;
those based on evolutionary algorithms don’t have
such limitations. For this reason, many constraint
handling strategies have been proposed!®'°~1%),

The most popular approach to constrained
optimization is the application of penalty functions.
In this approach, a constrained problem is transformed
into a non-constrained one, The function under
consideration is transformed as follows
F(x) = f(2) + penalty(x) 4)
The function penalty(x) is a penalty function
denoted by P (x), which has been tackled in
different strategies. Penalty functions with static,
dynamic, annealing and adaptive penalties have
been proposed and successfully applied in different

applications. From the experiments and analysis of

Kurit"', the following penalty function method is
the simplest but has the best performances among
all the methods considered and here it is denoted by

N K

PQOZJ[ ;zj fx s#p

0, otherwise

(©))

where K is a large constant [O(10°)], p is the
number of constraints and s is the number of those
which have been satisfied. K’s only restriction is
that it should be large enough to insure that any
non-feasible individual is graded much more poorly
than any feasible one. Here the algorithm receives
information as to how many constraints have been
satisfied but is not otherwise affected by the
strategy. Notice, however, that in this method the
penalty is not added to f(x) as in Eq. (2) but,
rather, it replaces f(x)
F=k—> K (6
i1 P
when any of the constraints is not met.
In the current study, we employed the penalty
function mentioned above, of which selection is

based on the promising results obtained by using

such  penalty functions with  evolutionary

algorithms.

3 The proposed algorithm for
constrained engineering design

optimization problems using IWO
with penalty function (CDIWO)

The original IWO algorithm is not a natural
constrained optimizer but it does provide a new
paradigm for our development of a robust,
optimization tool for constrained problems. In this
section, we employ the penalty function approach
into the IWO algorithm for constrained design
optimization problems, which is denoted by
CDIWO algorithm. It is a universal method for
constrained optimization problems because of no
penalty factor to choose. The algorithm starts with
in a certain

an initial population of weeds

initialization area, and then reproduction shows us
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the process of colonizing weeds around the point
with best fitness value for a given problem
function. For each individual of weed population,
count the number of constraints which have been
satisfied by evaluating g, (x). When the number of
weeds in the population does not equal the given
maximum number of plant population, the weed
population is sorted in the order of better fitness,
which is a lower objective function value for a
given problem. In the population the first 5

individuals produce 3 seeds, the second 5
individuals produce 2 seeds, the third 5 individuals
produce 1 seed and the other individuals produce no
seeds. The seeds are generated with a normal
(Gaussian ) distribution function with standard
deviation, ¢ and mean, p, where y is the constant
of parent plant initialized by an experiential value
for the given problem. In each iteration, the
standard deviation has been calculated with the
above nonlinear Eq. (1). In this process, the
plants grow towards the optimal point from the
initialization area, in which plants with lower
(worse) fitness are excluded, and only weeds with
higher (better) fitness are allowed to reproduce,
which leads approximately to the optimal point.
The final value of the fitness function is found
when the specified maximum generation is

reached. The CDIWO

algorithm is given as follows:

pseudo code for the

// CDIWO algorithm
Setup initial parameter values listed in Tab. 1;
Generate randomly a population of N, weeds:
wi = (Wil sy Wiz s***yWiq)» 1=1,++, Ny, j=1,+-,dim;
For 1 =1 to itery.
if calculating g (x)<C0, count s in Eq. (5);
Evaluate F(w;) according to Egs. (4~6);
Update ¢; by Eq. (1)
For each individual w; € Ny ;
Compute number of seeds of w;, corresponding to its
fitness, s. t. [ Smax » Smin 3
Generate seeds over the search space with N (0, ¢;)
around the parent plant w; ;
Add the generated seeds into the solution set, Nj;
End;

If No>Pus
Sort the population N, in descending order of smaller
F(wi);
Truncate population of weeds with higher fitness until
No = P s
End If;
Next i, until a stop criterion is satisfied or a maximum

number of iterations achieved

Tab. 1 Notations and definitions of initial parameters
for the CDIWO algorithm

notation definition
No number of initial population of weeds
itermax maximum number of iterations
dim problem dimension
b number of constraints
DPrmax maximum number of plant population
[ Smax s Smin | maximum,/minimum number of seeds
n nonlinear modulation index
Oinitial initial value of standard deviation
Ofinal final value of standard deviation
Linitial initial search area

4 Applications and analysis

4.1 Three engineering design optimization problems
Problem 4. 1

problem consists of the minimization of the weight of

Design of a tension spring. This

the tension/compression spring taken from Ref. [11],
subject to constraints on the minimum deflection,
shear stress, surge frequency, diameter and design
variables. The design variables are the wire diameter,
d(x;), the mean coil diameter, D (x,), and the
number of active coils, N (x5). The problem is
mathematically formulated as

min f (2) = 2, (a5 + 2) xf

3
Xo X3
<0

s. t. a(x)=1— 7178541
o Axy — x5 1 -
g2(x) = 12566 (xy2f —x1) 5108} 1<0
0 () = 1— 140.?4511 <0
X3X3

g (2) = 171;12 —1<o0

where X=(x, 22 ,23)T. The desired ranges of the
design variables are
0.06<Tx <2.0,0.25<x <1.3,
2.0 < x3; <15.0

Problem 4.2 The welded beam design
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problem is taken from Ref. [12], in which a
welded beam is designed for minimum cost subject
to constraints on shear stress r, bending stress in
the beam @, buckling load on the bar P., end
deflection of the beam ¢, and side constraints.
There are four design variables, h (x;), [(x3),
t(x;)s and b Cx,). The

mathematically formulated as
mXinf(:r) =1.10471xx, +

problem can be

0. O48111g Xy ( 14. 0 + X2 )

s. L. g1 (x) = (&) — 136000 < 0
g:(x) = o(x) —30000<C 0
g3 (1) =X — X4 < 0

g (x) = 0.104712% +
0.04811xs2,(14. 0+ a3) —5.0<L 0
g (1) = 0.125— 21 < 0
gs(x) = 6(x) —0.25<0
g7(x) = 6000 —P.(x) <0

where

f<1>—N/<T> + 277 “ +<”>2

o 6000 s _ MR

Sowws T
M = 6000 (14 -+ ) R:N/ffj%%)z
sl (52
o) = TA000 5y = LA 0OEX L

and the desired ranges of the design variables are
0.1<<ax,a, <<2.0, 0. 1<y, 3L 10.0
4.2 Parameters setting
From the
Mehrabian and
population of 10 to 20 weeds, and n is set to 3, the

experiences and analysis of

Lucast™, in a colony with
numbers of seeds are set to 3 and 0, the
convergence and the performance are better.
Parameters of this algorithm are summarized
as Tab. 2.

4.3 Numerical results

In our experiment , the proposed algorithm

Tab. 2 Parameters setup for two problems

initial values of

notation tension spring welded beam
No 20 20
1termax 500 500
dim 3 4
Pmax 10 10
L » Stmin ] [3,0] [3,0]
n 3 3
Ginitial 6.5 6.5
Ofinal 0. 001 0. 001
””””””””””””””””” 01 €[0.05,2.0]  melo.1.2]
x2€[0.25,1.3] x2€[0.1,10]
i 23€[2.0,15.0]  z3€[0.1,10]
x€[0.1,2]

was allowed to perform 50 runs independently for
three problems, and the best solutions are found,
of which computational results are reported in
Tab. 3,

criteria of heuristic search techniques need to be

respectively.  Some of the important
discussed for solving the constrained engineering
design optimization problems. For this purpose,
some statistical results about the mean, standard
deviation (SD), best and worst solutions obtained
in 50 independent runs for each problem are
recorded in Tab. 4.

Tab.3 The best solutions for two problems

obtained from CDIWO

variables tension spring welded beam
x1 0.051 727 8 0.203 1357
x2 0. 357 643 7 3.542 989 1
x3 11.244 539 6 9.033 488 3
4 0. 206 181 2
g1 (x) —8.378 519 1IE—14 —1. 224 444 5E+5
g2 () —1.510 473 9 E—5 —44,918 833 7
g3(x) —380. 693 486 3 —3. 045 500 0OE—3
g1 () —0.727 085 7 —3.423 7119
g5 (x) —0.078 135 7
g6 () —0.2355569
g7 (x) —38.217 289 7
[ 1. 267 463 SE—2 1.733 473 9

These problems have already been solved by

11 and

several researchers, including Parsopoulos
Hu et al. ), etc. In order to compare our method with
those mentioned above in terms of performance on
engineering optimization problems, we have taken

their solutions and listed them in Tab . 4 . There are
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Tab. 4 Statistical results and comparisons

problems CDIWO PSO UPSO GA ACH
tension spring  mean 1273 128 4E—2 4,673 51E—2 2. 294 T8E—2 1.274 20E—2 1,088 285E—2
SD 2.647 231 6E—4 2,145 05E—1 7.205 TIE—3 5.900 00E—5 1,027 939E—3
best 1.267 463 5E—2 1,281 58E—2 1.312 00E—2 1.268 10E—2 9,872 521E—3
worst 1,302 581 4E—2 1.579 98 5. 036 51E—2 1.297 30E—2 1,378 785E—2
 welded beam  mean 1776 1463 196820 2.83721 L792654  N/A
sD 0.081 307 2 1.554 15E—1 6. 829 B0E+1 0.074 713
best 1.733 473 9 1. 765 58 1.921 99 1.728 226
worst 1.892 713 6 2. 844 06 4. 883 60 1. 993 408

including genetic
algorithm (GA)™!, original PSO, united PSO*' and
ant colony algorithm(ACH)™!.

solutions by different methods,

4.4 Discussions
Tab. 3 shows that the “best” feasible solutions

are found by our proposed algorithm, where the

positions are (0. 051 727 8, 0.357 643 7,
11. 244 539 6) on the spring  problem,
(0.203 135 7, 3.542 989 1, 9.033 488 3,

0.206 181 2) on the
respectively. From Tab. 4, it can be seen that the

welded beam problem,

best feasible solutions found by IWO is better than
the best solutions obtained from other methods. It
has the overall best performance with respect to
the mean objective function value of the best
solutions as well as the smaller standard deviation.

To gain a deeper understanding of the

performances of our proposed algorithm on

constrained  engineering  design  optimization
problems, we compare the box plots of five
methods on three problems as shown in Figs. 2~3
respectively. The box-plots provided a clearer and
more detailed overview of all the experimental
data. For the spring problem shown in Fig. 2,
although the box and whisker of IWO is higher
than that of GA, the box plot shows that the IWO
found slightly a better “ best” solution. By
examining the box plot, we can observe that for
other problems, the boxes and whiskers of IWO
are lower than those of other methods. This means
the proposed approach worked very robustly and
effectively on these problems. For the problems,
the box plots show that two methods, IWO and

GA, had very close performances. Also the box

plots show that the average searching quality of
IWO is also better than those of other approaches,
and even the worst solution found by IWO is better
than the best solution obtained from original PSO
and the best solution found by UPSO. Moreover,
the standard deviations of the result by our
in 50

proposed algorithm for two problems

independent runs are very small.

16E-2
14E-2 I
12E-2
10E-2

8E-2

6E-2

4E_2 ......... i
2E-2 N l

CDIWO PSO

UPSO GA ACH

Fig. 2 Box plot for tension spring

5.0F ~ \ —

4.5 b

35 b

25 1 _

200 o L=

1.5 1

UPSO GA

CDIWO PSO
Fig. 3 Box plot for welded beam

Based on the above experimental results and
comparisons, our proposed method proved to be

one of the most promising methods. It can be
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concluded that IWO is of superior searching quality
and robustness for constrained engineering design
optimization problems.

4.5 Effects of parameter setting

original IWO

algorithm has been well tested with different

In unconstrained functions,

classes of benchmark functions. In order to take
full advantage of the CDIWQ, it is necessary to
understand the impact on the performances of the
algorithm with different

proposed parameter

tunings. Hence, the tension spring problem is
investigated as a test benchmark additionally.
Based on Columns 7 in Tab. 2, for each case
with different initial sizes (10, 20, 30, 40, 50, 60)
and different nonlinear modulation indices (1,2,3,
4) shown in Fig.4, 50 independent traits were

CDIWO

statistical results were recorded in Tab.5. The

conducted for algorithm, and the

performance is considered according to the

following two criteria;

0.5
0.4
0.3
0.2

0.1

0

0 500

Fig. 4 Varying SDs. with iter,.x = 500, G = 0. 5,

ot = 0. 01, under many nonlinear modulation index »

Tab.5 Averages for spring problem

initial nonlinear modulation index (1)

weeds 1 2 3 4
10 2.283 1E—2 1.562 2E—2 1.318 2E—2 1.692 2E—2
20 2.031 6E—2 1. 313E—2 1.273 3E—2  1.493 3E—2
30 1.974 3E—2  1.296 8E—2 1.2737E—2 1.275 6E—2
40 2.261 1IE—2 1.276 4dE—2 1.282 6E—2 2.211 7TE—2
50 1.968 7TE—2 1.566 TE—2 1.296 TE—2 1.923 2E—2
60 2.179 8E—2 1.778 4E—2 1.374 2E—2 1.368 8E—2

(I ) The success rate, as represented by the

number of traits required for the colonizing weeds

to hit its feasible regions.

(Il ) The average of the solution obtained
from all runs. In all cases, the solution stopped
when a maximum number of 500 iterations were
reached.

From experiments it can be found that
increasing the iterations leads to a lower mean for
solution; however, basically, it does not increase
the success rate, which is increased by decreasing
population size of weed in a colony. From Tab. 5
and Fig.5, it can be seen that the proposed
algorithm is guaranteed to find feasible solutions in
all cases, but no all optimum. A colony with a

30 weeds has

satisfactory means. Hence, increasing the initial

population of 20 to shown

size of weeds does not essentially lead to
satisfactory results (lower mean or higher success
rate). Rather, it would require a large number of
objective and constraint function evaluations.
Also, it is observed that nonlinear modulation
index has a key control on the performance of the
proposed algorithm. It makes the weed colony
change its behavior in time and softly switch from
a high value of standard deviation to a lower one as
shown in Fig. 4, which results in grouping fitter
plants and elimination of inappropriate plants,
representing transformation from some selection
mechanism. In our simulation, when a suitable
value for the nonlinear modulation index, n, is
found equal to 3, much lower means are obtained

from CDIWO algorithm.

100
ROF 1
&= |
,E 60 H =2
% 40 En=3
§ Onp—4
a0
0

0 20 30 40 50 60
size of population weceds

Fig. 5 Chart of the success rates for spring problem

Choice of the parameters for the implemented
algorithm has guaranteed convergence to a feasible

solution in the search space confirmed by numerical
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experiences. In addition, effects of other Computer-Aided Design, 2002, 34 (12): 939-951.

parameter setting on the behavior of colony, and
the theoretical convergence will be reported by the

authors in another article.

5 Conclusion

This paper has introduced an improved
invasive weed optimization algorithm and reported
for the first time to incorporate the penalty
function into IWO to solve constrained engineering
optimization problems. The algorithm is inspired
from colonizing weeds, and is used to mimic
natural behavior of weeds in colonizing and
occupying suitable places for growth and
reproduction. It has the robustness, adaptation
and randomness of colonizing weeds and is simple
but effective with accurate global search ability.
Simulation results based on some well-known
constrained problems

engineering design

demonstrate the effectiveness, efficiency and

robustness of the proposed algorithm. Also the
comparisons with previously reported results
suggest that the robust characteristics make IWO

ideally suitable as an encouraging solver of

successive approximate sub-problems, when a
successive approximation procedure is to be
adopted in optimizing large and complicated

systems. Extensive simulations are conducted
along with two statistical criteria to yield useful
conclusions regarding the effects of the parameter
settings on the algorithm’s performance. There is
much more work to be done in practice. The aim of
further research is to incorporate suitable local
spatial  dispersal ~models and reproduction
mechanisms of seeds into IWO to further enhance
and balance the exploration and exploitation

abilities so as to achieve better performance.
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