JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Vol. 39, No. 3 Mar. 2009

Article ID: 0253-2778(2009)03-0225-04

On bondage number of toroidal graphs

CAO Yong-chang¹, XU Jun-ming¹, XU Xi-rong²

- (1. Department of Mathematics, University of Science and Technology of China, Hefei 230026, China;
- 2. Department of Computer Science and Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract: The bondage number b(G) of a nonempty graph G is the cardinality of a smallest edge set whose removal from G results in a graph with the domination number greater than the domination number $\gamma(G)$ of G. Fischermann M, Rautenbach D, Volkmann L. Remarks on the bondage number of planar graphs. Discrete Math, 2003, 260: 57-67] showed that for a connected planar graph G with girth g(G), $b(G) \le 6$ if $g(G) \ge 4$, $b(G) \le 5$ if $g(G) \ge 5$, $b(G) \le 4$ if $g(G) \ge 6$ and $b(G) \leq 3$ if $g(G) \geq 8$. This result was generalized to a connected toroidal graph that was embeddable on the torus.

Key words: bondage number; domination number; crossing number; planar graph

CLC number: O157. 5

Document code: A

AMS Subject Classification (2000): Primary 05C69; Secondary 05C12

超环面图上的约束数

曹永昌1.徐俊明1.徐喜荣2

(1. 中国科学技术大学数学系,安徽合肥 230026;2. 大连理工大学计算机系,辽宁大连 116024)

摘要:非空图 G 的约束数 b(G)是指使得图 G 的控制数 $\gamma(G)$ 增大而删除的最少的边数, \lceil Fischermann M, Rautenbach D, Volkmann L. Remarks on the bondage number of planar graphs, Discrete Math, 2003, 260: [57-67]已经证明,对于一个围长为 g(G)的平面图 $[G, \infty]$ $g(G) \ge 4$ 则 $g(G) \le 6$,如果 $g(G) \ge 5$ 则 $g(G) \le 5$,如果 $g(G) \ge 6$ 则 $b(G) \le 4$,如果 $g(G) \ge 8$ 则 $b(G) \le 3$. 我们把这个结果推广到连通的超环面图中.

关键词:约束数;控制数;交叉数;平面图

Introduction 0

For terminology and notation on graph theory not given here, the reader is referred to Ref. [9]. Let G = (V, E) be a finite, undirected and simple graph. For $u \in V(G)$ let $N_G(u)$ be the neighborhood of u, that is, $N_G(u) = \{v \in V(G):$

 $uv \in E(G)$, and $N_G(X) = \bigcup_{u \in X} N_G(u)$ for a set $X \subseteq V(G)$. We denote the degree of u by $d_G(u) =$ $|N_G(u)|$, the minimum and the maximum degree of G by $\delta(G)$ and $\Delta(G)$. For a subset $A \subseteq V(G)$, let G[A] be the subgraph induced by A. We denote the distance between the vertices x and y in the graph G by $d_G(x,y)$. The girth g(G) of G is

Received: 2008-01-21; **Revised**: 2008-06-12

Foundation item: Supported by NNSF of China (10671191).

Biography: CAO Yong-chang, male, born in 1983, PhD candidate, Research field; graphs and combinatorics. E-mail; yccao@mail. ustc. edu. cn

Corresponding author: XU Jun-ming, Prof. E-mail: xujm@ustc. edu. cn

the length of a shortest cycle in G. If G has no cycles we define $g(G) = \infty$. A set $D \subseteq V(G)$ is called a dominating set if $D \bigcup N(D) = V(G)$. The domination number, denoted by $\gamma(G)$, is the minimum cardinality of all dominating sets in G. The bondage number of a nonempty graph G, denoted by b(G), is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than $\gamma(G)$.

The first result on bondage number was obtained in Ref. [1]. Ref. [3] conjectured that $b(G) \leq \Delta(G) + 1$ for any nontrivial planar graph G. Ref. [7] confirmed this conjecture for $\Delta(G) \geqslant 7$ by proving that $b(G) \leq \min\{8, \Delta(G) + 2\}$, and proved that $b(G) \leq 7$ for any connected planar graph without vertices of degree five. Ref. [4] generalized the latter result, and showed that the conjecture is valid for all connected planar graphs with $g(G) \geqslant 4$ and $\Delta(G) \geqslant 5$ as well as all planar graphs with $g(G) \geqslant 5$ unless they are 3-regular. In particular, they proved that for a connected planar graph G,

$$b(G) \leqslant \begin{cases} 6, & \text{if } g(G) \geqslant 4; \\ 5, & \text{if } g(G) \geqslant 5; \\ 4, & \text{if } g(G) \geqslant 6; \\ 3, & \text{if } g(G) \geqslant 8. \end{cases}$$
 (1)

Recently, Ref. [6] has generalized the result in Eq. (1) to a connected graph with small crossing number. In this paper, we generalize the result in Eq. (1) to a connected toroidal graph which can be embedded on the torus, that is,

$$b(G) \leqslant \begin{cases} 6, & \text{if } g(G) \geqslant 4 \text{ and } G \text{ is not 4-regular;} \\ 5, & \text{if } g(G) \geqslant 5; \\ 4, & \text{if } g(G) \geqslant 6 \text{ and } G \text{ is not 3-regular;} \\ 3, & \text{if } g(G) \geqslant 8. \end{cases}$$

In the next section, we recall some results to be used in our discussions. The proofs of our main results are given in Section 2.

1 Preliminary results

In the first place, let us recall the concept of embedding a graph into a surface. Let S be a given surface. We say a graph G to be embeddable on S

if G can be drawn on S such that its edges intersect only at their end-vertices. It is well known that a graph G is embeddable on the sphere if and only if it is embeddable on the plane. A graph G is called a planar graph if G is embeddable on the plane or the sphere. There exist many graphs, such as K_5 and $K_{3,3}$, which are not embeddable on the plane or the sphere. To avoid crossings of edges when we draw a graph G in the sphere, we could change the surface by adding overpasses, called handles, to the sphere. The torus is the surface obtained by adding one handle to a sphere. A graph is called a toroidal graph if it can be embedded on the torus. For example, K_5 and $K_{3,3}$ both are toroidal A more complicated example, the cartesian product $C_m \times C_n$ of two cycles C_m and C_n is a toroidal graph.

We use $\omega(G)$ to denote the number of components in a graph G. An edge e of G is a cut-edge if $\omega(G-e)>_{\omega}(G)$. Use c(G) to denote the number of cut-edges in G.

As we know, see, for example, Theorem 4.22 in Ref. [2], if G is a toroidal graph with n(G) vertices, m(G) edges, $\omega(G)$ components and $\phi(G)$ regions, then

$$\phi(G) = m(G) - n(G) + \omega(G) - 1.$$
 (2)

The following lemma is an analogy of Ref. [4] for a planar graph.

Lemma 1.1 If G is a toroidal graph with $3 \le g(G) < \infty$, then

$$m(G) \leqslant \frac{g(G)n(G) - c(G)}{g(G) - 2}.$$

Proof Every noncut-edge is on a common boundary of two regions and every cut-edge is on a boundary of exactly one region, so we have that $g(G)\phi(G) \leqslant 2m(G) - c(G)$. Then, by Eq. (2) we have

$$g(G)(m(G) - n(G) + \omega(G) - 1) \leqslant 2m(G) - \varepsilon(G)$$
.
Thus

$$(g(G)-2)m(G) \leqslant g(G)(n(G)-\omega(G)+1)-\varepsilon(G).$$

It follows that

$$m(G) \leqslant \frac{g(G)(n(G) - \omega(G) + 1) - \varepsilon(G)}{g(G) - 2} \leqslant$$

$$\frac{g(G)n(G) - c(G)}{g(G) - 2}$$

as required.

Let G be a toroidal graph and let $n_i(G)$ denote the number of vertices of degree i in G. We use g, Δ , m, n and n_i to denote g(G), $\Delta(G)$, m(G), n(G) and $n_i(G)$, respectively. Then

$$n = n_1 + n_2 + \dots + n_{\Delta},$$

$$2m = n_1 + 2n_2 + \dots + \Delta n_{\Delta}.$$
(3)

Noting that $c(G) \geqslant n_1$, from Lemma 1.1 we have

$$m \leqslant \frac{gn - n_1}{g - 2}.\tag{4}$$

And the function $f(g) = \frac{gn - n_1}{g - 2}$ is descending on $\lceil 4, +\infty \rangle$. Substituting Eq. (3) into Eq. (4) yields

$$2g\sum_{i=1}^{\Delta}n_{i}-2n_{1}\geqslant (g-2)\sum_{i=1}^{\Delta}in_{i}.$$

Thus.

$$gn_1 + 4n_2 + (6-g)n_3 \geqslant \sum_{i=4}^{\Delta} (g(i-2) - 2i)n_i.$$
 (5)

Let $\tau_i = n_i + n_{i+1} + \cdots + n_{\Delta}$ for $i = 1, 2, \cdots, \Delta$.

Lemma 1.2^[1,8] If G is a nontrivial graph, then $b(G) \leq d_G(u) + d_G(v) - 1$ for any two distinct vertices u and v with $d_G(u,v) \leq 2$ in G.

2 Bondage number of toroidal graphs

In this section, we present our main results.

Theorem 2.1 Let G be a connected toroidal graph. If G is not 4-regular and $g(G) \geqslant 4$, then $b(G) \leqslant 6$.

Proof By Lemma 1.2, we only need to show that $d_G(u) + d_G(v) \le 7$ for some pair of distinct vertices u and v with $d_G(u,v) \le 2$ in G. Suppose to the contrary that $d_G(u) + d_G(v) \ge 8$ for any two distinct vertices u and v with $d_G(u,v) \le 2$ in G with $g(G) \ge 4$. Then $d_G(v) \ge 7$ if $d_G(u) = 1$, $d_G(v) \ge 6$ if $d_G(u) = 2$ and $d_G(v) \ge 5$ if $d_G(u) = 3$. Thus,

$$\tau_{5} \geqslant n_{1} + 2n_{2} + 3n_{3},$$

$$\tau_{6} \geqslant n_{1} + 2n_{2},$$

$$\tau_{7} \geqslant n_{1}.$$
(6)

Substituting g=4 and Eq. (6) into Eq. (5) yields

$$2n_1 + 2n_2 + n_3 \geqslant n_5 + 2n_6 + 3n_7 + \sum_{8}^{\Delta} (i - 4)n_i =$$

$$\tau_5 + \tau_6 + \tau_7 + \sum_{9}^{\Delta} (i - 7)n_i \geqslant$$

$$3n_1+4n_2+3n_3+\sum_{8}^{\Delta}(i-7)n_i,$$

that is,

$$0 \geqslant n_1 + 2n_2 + 2n_3 + \sum_{8}^{\Delta} (i-7)n_i$$
.

This inequality holds if and only if $n_i = 0$ ($i \neq 4$), a contradiction, and so the theorem follows.

Theorem 2. 2 Let G be a connected toroidal graph. If $g(G) \geqslant 5$, then $b(G) \leqslant 5$.

Proof By Lemma 1.2, we only need to show that $d_G(u) + d_G(v) \le 6$ for some pair of distinct vertices u and v with $d_G(u,v) \le 2$ in G. Suppose to the contrary that $d_G(u) + d_G(v) \ge 7$ for any two distinct vertices u and v with $d_G(u,v) \le 2$ in G with $g(G) \ge 5$. Then $d_G(v) \ge 6$ if $d_G(u) = 1$, $d_G(v) \ge 5$ if $d_G(u) = 2$ and $d_G(v) \ge 4$ if $d_G(u) = 3$. Thus,

$$\begin{array}{c}
\tau_4 \geqslant n_1 + 2n_2 + 3n_3, \\
\tau_5 \geqslant n_1 + 2n_2, \\
\tau_6 \geqslant n_1.
\end{array}$$
(7)

Substituting g=5 and Eq. (7) into Eq. (5) yields $5n_1 + 4n_2 + 3n_3 \geqslant$

$$2n_4 + 5n_5 + 8n_6 + \sum_{7}^{\Delta} (3i - 10)n_i =$$

$$2\tau_4 + 3\tau_5 + 3\tau_6 + \sum_{7}^{\Delta} (3i - 18)n_i \geqslant$$

$$8n_1 + 10n_2 + 6n_3 + \sum_{7}^{\Delta} (3i - 18)n_i,$$

that is,

$$0 \geqslant 3n_1 + 6n_2 + 5n_3 + \sum_{i=1}^{\Delta} (3i - 18)n_i$$
,

which is impossible, a contradiction, and so the theorem follows.

Theorem 2.3 Let G be a connected toroidal graph. If $g(G) \geqslant 6$ and G is not 3-regular, then $b(G) \leqslant 4$.

Proof By Lemma 1.2, we only need to show that $d_G(u) + d_G(v) \le 5$ for some pair of distinct vertices u and v with $d_G(u,v) \le 2$ in G. Suppose to the contrary that $d_G(u) + d_G(v) \ge 6$ for any two

distinct vertices u and v with $d_G(u,v) \le 2$ in G with $g(G) \ge 6$. Then $d_G(v) \ge 5$ if $d_G(u) = 1$ and $d_G(v) \ge 4$ if $d_G(u) = 2$. Thus,

$$\tau_4 \geqslant n_1 + 2n_2, \ \tau_5 \geqslant n_1.$$
 (8)

Substituting g=6 and Eq. (8) into Eq. (5) yields

$$3n_1 + 2n_2 \geqslant 2n_4 + 4n_5 + \sum_{6}^{\Delta} (2i - 6)n_i =$$
 $2\tau_4 + 2\tau_5 + \sum_{6}^{\Delta} (2i - 10)n_i \geqslant$
 $4n_1 + 4n_2 + \sum_{6}^{\Delta} (2i - 10)n_i$,

that is,

$$0 \geqslant n_1 + 2n_2 + \sum_{i=1}^{\Delta} (2i - 10)n_i$$
.

This inequality holds if and only if $n_i = 0 (i \neq 3)$, a contradiction to the hypothesis that G is not a 3-regular graph. The theorem follows.

Theorem 2.4 Let G be a connected toroidal graph. If $g(G) \ge 8$, then $b(G) \le 3$.

Proof By Lemma 1.2, we only need to show that $d_G(u) + d_G(v) \le 4$ for some pair of distinct vertices u and v with $d_G(u,v) \le 2$ in G. Suppose to the contrary that $d_G(u) + d_G(v) \ge 5$ for any two distinct vertices u and v with $d_G(u,v) \le 2$ in G with $g(G) \ge 8$. Then $d_G(v) \ge 4$ if $d_G(u) = 1$ and $d_G(v) \ge 3$ if $d_G(u) = 2$. Thus,

$$\tau_3 \geqslant n_1 + 2n_2, \ \tau_4 \geqslant n_1.$$

Substituting g=8 and Eq. (9) into Eq. (5) yields

$$4n_1 + 2n_2 \geqslant n_3 + 4n_4 + \sum_{5}^{\Delta} (3i - 8)n_i =$$

$$\tau_3 + 3\tau_4 + \sum_{5}^{\Delta} (3i - 12)n_i \geqslant$$

$$4n_1+2n_2+\sum_{i=1}^{\Delta}(3i-12)n_i$$
,

that is,

$$0 \geqslant \sum_{i=1}^{\Delta} (3i - 12) n_i, \tag{10}$$

which is impossible, a contradiction, and so the theorem follows. \Box

References

- [1] Bauer D, Harary F, Nieminen J, et al. Domination alteration sets in graphs[J]. Discrete Math, 1983, 47: 153-161.
- [2] Chartrand G, Lesniak L. Graphs and Digraphs[M]. Belmont, California; Wadsworth, 1986.
- [3] Dunbar J E, Haynes T W, Teschner U, et al. Bondage, insensitivity, and reinforcement [C]// Domination in Graphs: Advanced Topics. New York: Marcel Dekker, 1998: 471-489.
- [4] Fischermann M, Rautenbach D, Volkmann L. Remarks on the bondage number of planar graphs[J]. Discrete Math, 2003, 260: 57-67.
- [5] Hartnell B L, Rall D F. Bounds on the bondage number of a graph[J]. Discrete Math, 1994, 128: 173-177.
- [6] Huang Jia, Xu Jun-ming. The bondage numbers of graphs with small crossing numbers[J]. Discrete Math, 2007, 307: 1 881-1 897.
- [7] Kang Li-ying, Yuan Jin-jiang. Bondage number of planar graphs [J]. Discrete Math, 2000, 222: 191-198.
- [8] Teschner U. New results about the bondage number of a graph[J]. Discrete Math, 1997, 171: 249-259.
- [9] Xu Jun-ming. Theory and Application of Graphs[M].
 Dordrecht/Boston/London: Kluwer Academic
 Publishers, 2003.