四川平武钨锡铍矿床成矿流体特征

汀少卿^{1,2)},周应华^{1,2)},郭春影^{1,2)},曹烨³⁾,徐浩^{1,2)}

1)中国地质大学地质过程与矿产资源国家重点实验室,北京,100083;

2)中国地质大学岩石圈构造、深部过程及探测技术教育部重点实验室,北京,100083;

3)中国地质大学地球科学与资源学院,北京,100083

内容提要:四川平武新近发现多处规模较大的产于晶洞中的绿柱石、锡石和白钨矿宝石矿。本文对矿石矿物绿 柱石、锡石和白钨矿中的流体包裹体进行了分析,直接获取了成矿期的流体信息,由于绿柱石、锡石的结晶均较早, 故更为接近原始成矿流体的性质。平武钨锡铍宝石矿中流体包裹体有气液两相包裹体、 CO_2 三相包裹体和含子矿物 包裹体三种类型。包裹体完全均一温度最佳取值区间为 260~300℃,盐度范围为 0.53%~8.73 % NaCl_{eq},压力估 算小于 10.5MPa,矿床类型属于浅成中低温热液型。绿柱石中含子矿物包裹体和 CO₂ 三相包裹体共存,二者均一温 度平均值较为相近,显示了不混溶流体包裹体的特征。绿柱石包裹体的完全均一温度和盐度平均值均高于白钨矿 和锡石,绿柱石和白钨矿包裹体液相成分中 F^- 、Cl⁻离子含量高于锡石。绿柱石、白钨矿和锡石三种矿物沉淀的先 后顺序为:绿柱石—→锡石—→白钨矿。

关键词:流体包裹体;成矿流体;钨锡铍矿床;平武;四川

成矿流体研究是矿床学研究的主要课题之一, 其手段主要是研究矿体中透明矿物的包裹体的温 度、压力和成分等。然而正如章雨旭(2006)指出,许 多矿床中,只有脉石矿物可以用于包裹体研究,而矿 石矿物的晶出往往早于这些脉石矿物,所以由这些 脉石矿物得出的流体特征难以代表原始的成矿流 体。四川平武县钨锡铍宝石矿床中,矿石矿物绿柱 石、铝石、白钨矿均可用于流体包裹体研究,由之获 得的流体包裹体特征应当更接近原始的成矿流体。 当前,对锡石的流体包裹体研究也不多,且对平武钨锡 铍宝石矿床尚无成矿流体研究成果发表,故本文对 平武矿床中绿柱石、白钨矿、锡石和石英四种矿物中 的流体包裹体进行了系统的对比研究,探讨了该矿 床的成矿流体特征。

1 成矿地质背景

四川平武钨锡铍宝石矿产于摩天岭东西向复杂 构造带磨子坪上纳米复式向斜核部的次级构造—— 紫柏杉穹窿中。含矿石英脉呈网状脉群产于穹隆构 造的东侧、盘口花岗岩体之间的单斜层中,单斜层由 厚层 状 大 理 岩 组 成,平 均 厚 4.7m,出 露 面 积 0.055km²(图 1)。研究区出露地层为中三叠统"扎 奈山群",该地层构成长轴为北北东向的椭圆形穹隆 构造。紫柏杉花岗岩体侵入穹隆核部,矿床形成与 碱性花岗岩侵入的关系较为密切。矿区断裂构造出 露较少,而张节理发育,为矿液流动和储集提供了良 好的通道和场所。

区内三叠系地层出露比较全,包括下三叠统菠 茨沟组(T₁b)、中三叠统扎奈山组(T₂z),上三叠统 侏倭组(T₃zh)。扎奈山组为一套由变质碎屑岩类 夹碳酸盐岩组成的地层,是雪宝顶地区钨、锡、铍矿 床的主要赋矿层。区内岩浆岩全属燕山旋回的产物 (Cao et al.,2002),燕山早期岩浆活动规模较小,岩 石类型以白云母斜长花岗岩为主,区内云英岩化石 英脉型锡石矿床、白钨矿点的形成与之具有密切的 联系。云英岩化石英脉型锡石矿床、白钨矿点的矿 石矿物为绿柱石、白钨矿、锡石及少量硫化物——黄 铜矿、黄铁矿、方铅矿、闪锌矿等,脉石矿物为石英, 次为白云母、长石、萤石等。矿脉大多数发育明显的

注:本文为国家自然科学基金资助项目(编号 40572063)、国家自然科学基金资助重点项目(编号 40234051)、教育部"跨世纪人才培养计划"和教育部科技研究重点项目(编号 01037)及中国地质大学地质过程与矿产资源国家重点实验室基金资助项目(编号 GPMR0529)的成果。

收稿日期:2006-02-22;改回日期:2006-11-16;责任编辑:章雨旭。

作者简介:江少卿,男,1983年生,在读硕士。主要从事矿床地球化学研究。Email:jiangshaoqing83@163.com。

Fig. 1 Geologic map of ore deposit in Pingwu, Sichuan

 $T_2 z^{1-3}$ 一薄层大理岩; $T_2 z^{1-4}$ 一炭质云英千枚岩; $T_2 z^{1-5}$ 一厚层大理岩; $T_2 z^{1-6}$ 一薄层大理岩夹绢英岩千枚岩; $T_2 z^{1-7}$ 一绿泥石 千枚岩夹黑云千枚岩及薄层大理岩

 $T_2 z^{1-3}$ —thin-layer marble; $T_2 z^{1-4}$ —carbon greisen phyllite; $T_2 z^{1-5}$ —thick-layer marble; $T_2 z^{1-6}$ —thin-layer marble with sericitolite—phyllite interlayer; $T_2 z^{1-7}$ —chlorite phyllite with biotite—phyllite and thin-layer marble interlayers

带状构造。近矿围岩有轻微蚀变,主要有云英岩化、 黄铁矿化和电气石化。

平武钨锡铍宝石矿的主要金属矿物有绿柱石、 白钨矿、锡石、黄铁矿、磁铁矿、赤铁矿、黄铜矿和黑 钨矿等,非金属矿物主要为方解石、石英、绿泥石、石 榴子石、萤石、角闪石,电气石和绿帘石等(图 2)。 矿物学研究表明,绿柱石和锡石常是形成较早的矿 物,白钨矿稍晚。

2 流体包裹体研究

2.1 测试方法

流体包裹体的温度测试是在中国科学院地质与 地球物理研究所 Linkam THMSG 600 型显微冷热 台上完成的,并利用 FLUID INC 公司提供的人工 合成包裹体标样对热台进行温度标定,其冷冻法($-120\sim0$ °C)和加温法($20\sim500$ °C)的测试精度分别约 为 ± 0.2 °C和 ± 2 °C;单个包裹体的激光拉曼探针分 析在国家珠宝玉石监督检验中心 Renishaw-Raman 1000 型拉曼光谱仪上进行,测试条件:电源电压 220V,电流 10A,扫描时间 30s,误差范围 1cm⁻¹,测

图 2 平武绿柱石、白钨矿、锡石共生照片 Fig. 2 Paragenesis photo of beryl, scheelite and cassiterite in Pingwu W—Sn—Be deposite

试范围 $100 \sim 4000 \text{ cm}^{-1}$ 。包裹体气相分析在中国 科学院地质与地球物理研究所 RG202 四极质谱仪 上(Zhu and Wang, 2002)进行,包裹体液相阴阳离 子分析在中国科学院地质与地球物理研究所日本岛 津公司产 HIC-6A 离子色谱仪上进行。

2.2 流体包裹体的岩相学特征

四川平武钨锡铍宝石矿产出的绿柱石、白钨矿、 锡石和石英晶体硕大、色泽鲜艳、晶形完好。样品全 采自于云英岩化的晶洞中,它们的包裹体类型丰富, 原生包裹体多呈负晶形或孤立状分布,且体积较大, 长径多在 10µm 以上,最大可达 200µm。根据相态 的不同,包裹体可划分为以下三种类型:

(Ⅰ)气液两相包裹体(图版 I -a~d),在四种矿物的包裹体中分布最为广泛。主要呈长条型、椭圆型和负晶型以及不规则状,气液比多低于 50%。绿柱石和白钨矿中此类包裹体多呈孤立状分布(图版 I -a、b),锡石中此类包裹体多沿锡石的生长环带分布(图版 I -c、d),石英中此类包裹体出现较少。

(Ⅱ)富 CO₂ 三相包裹体,在四种矿物的包裹体 中也比较常见(图版 I-e、f)。绿柱石和石英中此类 包裹体广泛存在,白钨矿中没有发现此类包裹体存 在,锡石中出现较少但也可见。

(Ⅲ)含子矿物包裹体,在四种矿物的包裹体中 出现量少。包裹体气液比范围为 30%~50%。绿 柱石(图版 [-g)、白钨矿和锡石(图版 [-h)中此类 包裹体均可见,通常呈孤立状分布;石英中没有发现 此类包裹体存在。

四种矿物中不同类型包裹体岩相学特征分别 为:

 (1) 绿柱石中的包裹体大小不一,长径最小为 1µm,最大可达 150µm,多为 10~30µm。以富 CO₂
 三相包裹体为主(Ⅱ类)(图版 I-e),气液两相包裹
 体分布亦较广,偶见含子矿物包裹体(Ⅲ类)。 (2) 白钨矿中的包裹体总体比绿柱石中的小, 包裹体长径一般为 $5 \sim 17 \mu m$,最小不足 $1 \mu m$,最大 可达 $35 \mu m$ 。多呈椭圆形,少部分为矩形。以气液 二相包裹体([类)(图版 [-d)居多,气液比范围为 $20\% \sim 80\%$,也有少量的三相包裹体([]类)。

(3) 锡石中的包裹体数量少(显微镜下 $50 \times 50 \mu m^2$ 的视域范围内偶然出现一个包裹体群体含包 裹体 $5 \sim 50 \Lambda$),体积小(大多数 $1 \sim 5 \mu m$,偶见几十 μm 包裹体),边缘粗黑,以气液两相包裹体(I)为 主(图版 I-c)。包裹体多呈负晶形沿生长环带定向 排列(图版 I-d),在锡石色浅的区域比较容易观察。 相邻色带的颜色深浅不同,呈橙黄—浅黄相间,色带 的宽窄、疏密也不同。

(4) 石英中包裹体较大,最大可达 200μm,多为
 20~40μm。包裹体类型以富 CO₂ 包裹体为主(图 版 [-f),偶见气液两相包裹体。

2.3 流体包裹体均一温度

四种矿物总体的完全均一温度直方图(图 3)具 有特征的单峰分布形态,其完全均一温度范围为 $114 \sim 394$ °C,最佳取值区间为 $260 \sim 300$ °C。四种矿 物包裹体的均一温度(t_h)平均值(表 1)大小顺序依 次为:绿柱石(294°C)>锡石(276°C)>白钨矿 (233°C);四种矿物包裹体的均一温度范围分别为: 绿柱石: $380 \sim 177$ °C、锡石: $300 \sim 255$ °C、白钨矿:300 ~ 255 °C、石英: $394 \sim 114$ °C。结合四种矿物的测温 柱状图(见图 3)可见:绿柱石的均一温度最高,其次 为锡石,白钨矿温度较低,而石英的分布范围最为 广泛。

绿柱石 CO₂ 三相流体包裹体盐度范围为 0.18%~0.74 % NaCl_{ea};白钨矿盐水两相流体包裹

表 1 平武绿柱石、白钨矿、锡石和石英流体包裹体测温结果 Table 1 Results of microthermometry of fluid inclusions

样号	矿物	包裹体 类型	部分均一温度(℃)		完全均一温度(笼合物温度 (°C)	平均盐度(%,	$\rho(\mathrm{CO}_2)$	压力	
			范围(频数)	平均	范围(频数)	平均	范围(频数)	平均	NaCl _{eq})	(g/cm^3)	(MPa)
B1,B3	绿柱石	Ι	_	-	202,205,320 (3)	242.4	_	—	3.28	0.22	1.7
$\mathrm{B1}\!\sim\!8$	绿柱石	П	0.9~32.0(36)	21.6	177~380(40)	294.4	7.6~9.5(33)	8.4	4.13	0.73	5.6
B1,B6	绿柱石	Ш	27.2~30.0(7)	-	332~243(11)	283.4	_	_	_	—	_
W2	白钨矿	Ι	—	-	199~307(9)	229.3	_	—	4.67	0.86	3.2
$W1\!\sim\!6$	白钨矿	П	14.2~31.2(18)	23.9	160~290(34)	232.7	8.8~9.6(15)	9.3	1.45	0.68	10.5
W 3	白钨矿	Ш	28(1)	-	275(1)	-	_	_	_	—	_
$X1\!\sim\!9$	锡石	Ι	—	-	255~300(28)	276.3	_	—	6.84	0.87	—
$\mathbf{X4}$	锡石	П	12.0~18.6(3)	15.6	185~296(11)	-	_	—	_	—	_
W 3	白钨矿	Ш	28(1)	_	275(1)	-	_	—	_	—	_
$Q1\sim 6$	石英	П	28.7~18.7(14)	22.6	114~394(33)	244.2	7.0~9.8(25)	8.6	0.53	0.76	65.5

注:包裹体盐度计算方法据刘斌和沈昆(1999)和卢焕章等(2004),密度及压力利用 Schwartz(1989)和卢焕章等(2004)的图解获得。

图 3 平武绿柱石、白钨矿、锡石和石英均一温度直方图 Fig. 3 Distribution of fluid inclusion homogenization temperatures in berly, scheelite, cassiterite and quartze in Pingwu

体盐度范围为 2.07% ~ 5.86 % NaCl_{eq},白钨矿中 CO₂ 三相流体包裹体盐度范围为 0.41% ~ 2.03% NaCleq;锡石盐水两相流体包裹体盐度范围为 5.21% ~ 8.73 % NaCl_{eq};石英中 CO₂ 三相流体包 裹体盐度范围(图 4)为 0.07% ~ 1.32 % NaCl_{eq}。 绿柱石、白钨矿、锡石和石英形成时体系中的 CO₂ 密度(ρ_{CO_2})平均值分别为 0.78g/cm³、0.79g/cm³、 0.88g/cm³和 0.76 g/cm³。

2.4 包裹体群体成分分析

平武绿柱石、白钨矿和锡石包裹体中气相组成 主要为 H_2O 和 CO_2 ,其次为 CH_4 、 CO_5N_2 、 H_2 。从 表 2 可以看出,成矿流体的气相组成中 CO_2 (H_2O) 占气体总量的 90%以上,对于绿柱石 $n(CO_2)/n$ (H_2O) 值 较高,大于 0.3 且 $n(CO_2)$ 含量为 26.27%,而锡石和白钨矿中比值小于 0.1,这与绿 柱石中 CO_2 包裹体丰富,而白钨矿和锡石中 CO_2 包 裹体较少相一致。结合激光拉曼分析,绿柱石包裹 体的气相成分中分别观测到 $CO_2 \ CH_4 \ N_2$ 和水峰 (丁俊英等,2004)(图 5a,b)。锡石气相成分中出现 CO_2 和 CH_4 峰(图 4c),说明锡石包裹体中 CH_4 含 量也较高。

图 4 平武绿柱石、白钨矿和石英盐度直方图 Fig. 4 Distribution of fluid inclusion salinities in berly, scheelite and quartz in Pingwu

包裹体中液相成分 Na⁺含量(平均 1.06 μ g/g) 远大于 K⁺含量(平均 0.057 μ g/g),可能反映了平武 钨锡铍矿床中主要为循环大气水参与导致 Na⁺含 量比 K⁺离子含量高,反映了成矿流体中后期可能 没有酸性—中酸性岩浆侵入。矿床流体中 F⁻离子 含量较高(平均 0.983 μ g/g),也反映了成矿过程中 有萤石产出。

3 讨论

绿柱石中含子矿物包裹体和 CO₂ 三相包裹体 共存,均一温度平均值分别为 283℃和 294℃,二者 均一温度比较接近,显示了不混溶流体包裹体的特 征(杨立强等,2000; 张静等,2002; 卢焕章等,

表 2 四川平武钨锡铍矿包裹体气、液相分析结果

Table 2	The component o	of gases and	liquid from	inclusions in	beryl,	scheelite and	cassiterite	form Pingwu,	Sichuar
---------	-----------------	--------------	-------------	---------------	--------	---------------	-------------	--------------	---------

样品号	测试 矿物	气相成分(% ,以 mol 为单位)								液相成分(µg/g)						
		${ m H}_2{ m O}$	N_2	$\rm CO_2$	He	Ar	CH_4	$C_2 H_6$	F^-	Cl-	SO_4^{2-}	Na ⁺	K^+	Mg^{2+}	Ca ²⁺	$\overline{n(H_2O)}$
Be1	绿柱石	69.03	4.0930	26.27	0.0940	0.0347	0.4176	0.0574	1.095	1.050	2.046	2.028	—	—	—	0.3805
W1	白钨矿	96.50	1.1972	2.261	0.0004	_	0.0255	0.0160	1.596	1.068	1.635	0.564	_	—	1.281	0.0234
Sn1	锡石	74.82	0.9330	3.756	0.0011	0.0105	0.4630	0.0141	0.258	0.543	0.249	0.609	0.171	0.279	—	0.0502

注:一表示未检测出结果。

图 5 流体包裹体成分的 LRM 谱图

Fig. 5 LRM spectrogram of fluid inclusions (a) 绿柱石中 I 类包裹体气相中的 CO₂ 峰; (b) 绿柱石 II 类包 裹体中 CO₂ 、CH₄ 和 N₂ 峰; (c) 锡石 I 类包裹体中 CO₂ 和 CH₄ 峰

(a) CO_2 in vapor phase of type I (in berly); (b) CO_2 , CH_4 and N_2 in vapor phase of type I (in berly); (c) CH_4 and CO_2 of type I (in cassiterite)

2004; 邓军等, 2005)。绿柱石中出现不混溶流体 包裹体可能由燕山期岩浆的侵入引起(Wilkinson, 2001)。四种矿物全部的包裹体均一温度平均值低于 300°C,白钨矿和锡石中包裹体均一温度的最大 值也都低于 300°C,说明成矿流体主要为中一低温 热液。

结合三种矿物的盐度柱状图(见图 4)可知:绿 柱石的盐度相对白钨矿和石英较高,且分布范围较 广泛,白钨矿次之,石英的盐度最低。可见成矿流体 中矿物沉淀过程中,绿柱石形成较早,同时成矿流体 有低盐度的流体加入(可能为大气降水),后来混入 的流体稀释作用导致流体盐度降低。总体上成矿流 体由低盐度流体组成。流体包裹体的最低捕获压力 小于 10.55MPa,流体包裹体最低捕获压力较低,接 近地表环境。

富 F 熔体中元素分配富集的实验研究也表明, W、Sn 等大离子亲氧元素主要富集在含 F 的花岗岩 岩浆体系中(Keppler and Wyllie,1991; Vallance et al.,2001)。富 F 熔体—溶液体系具有降低熔体 粘度和密度,增大水溶液与硅酸盐熔体之间的相互 溶解度,加快阳离子和挥发份在体系中的扩散速率 和活动性等特征。由于 Cl 的浓度制约了 Sn 等与 Cl 配合的成矿元素的溶液/熔体分配系数,因此早 期的富 Cl 流体相对富 Sn,而进一步的结晶作用使 得残余熔体富 F,降低了 Cl 进入溶液的趋势,出溶 的溶液盐 度降低,使得热液中贫 Sn 而富 W (Barnes, 1979; Fan et al, 2003),因此锡石沉淀可 能比白钨矿要早。

4 结论

流体包裹体显微测温压力计算表明,成矿流体 主要由中低温低盐度的流体组成,成矿压力较低,成 矿环境主要位于上地壳。燕山期高温岩浆的侵入对 围岩的交代作用导致形成部分中高均一温度的包裹 体。绿柱石、锡石和白钨矿三种矿物沉淀的先后顺 序大致为绿柱石—→锡石—→白钨矿。

参 考 文 献 / References

- 邓军,高帮飞,王庆飞,杨立强. 2005. 成矿流体系统的形成与演化. 地质科技情报,24(1):49~54.
- 丁俊英,倪培,饶冰,周进,朱筱婷. 2004.显微激光拉曼光谱测定单 个包裹体盐度的实验研究.地质论评,50(2):203~209.
- 刘斌,沈昆. 1999. 流体包裹体热力学. 北京: 地质出版社, 44~ 72.
- 卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮. 2004. 流体包裹体. 北京:科学出版社,21~33,180~224.
- 杨立强,邓军,翟裕生,2000.构造一流体一成矿系统及其动力学, 地学前缘,7(1),178.

- 张静,陈衍景,舒桂明,张复新,李超. 2002. 陕西西南部秦岭梁花 岗岩体的矿物成分研究和相关问题讨论. 中国科学(D辑),32 (2):113~119.
- 章雨旭. 2006. 地质学研究中常见逻辑方面的问题分析. 高校地质 学报,12(1):147~152.
- Barnes H L. 1979. Geochemistry of Hydrothermal Ore Deposits. New York: JohnWiley & Sons, 186: 404~ 460.
- Cao Zhimin, Li Youguo, Ren Jianguo, Li Baohua, Xu Shijin, Wang Rucheng, Shoji T, Kaneda H, Kabayashi S. 2002. Geologic and geochemical features of the volatile-rich ore fluid and its tracing and dating in the Xuebaoding beryl—scheelite vein deposit, China. Science in China (Series D), 45(8):719~729.
- Fan Hongrui, Zhai Mingguo, Xie Yihan, Yang Jinhui. 2003. Oreforming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineralium Deposita, 38: 739~750.
- Keppler H, Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems haplogranite—H2O—HCl and haplogranite—H₂O—HF. Contrib. Mineral. Petrol., 109:139~150.
- Schwartz M O. 1989. Determining phase volumes of mixed CO₂— H₂O inclusions using microthermometric measurements. Mineralium Deposita, 24: 43~47.
- Vallance J, Cathelineau M, Marignac C, Boiron M C, Fourcade S, Martineau F, Fabre C. 2001. Microfracturing and fluid mixing in granites: W—(Sn) ore deposition at Vaulry (NW French Massif Central). Tectonophysics, 336: 43~61.

- Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55: 229~272.
- Zhu Heping, Wang Lijuan. 2002. Determining gaseous composition of fluid inclusions with quadrupole mass spectrometer. Science in China (Ser. D),45(2):97~102.

图版说明 / Explanation of photos

不同类型包裹体的显微镜下照片

- (a) 绿柱石中气液两相包裹体(I类)。
- (b) 白钨矿中两相包裹体(I类)。
- (c) 锡石中定向排列两相包裹体群(I类)。
- (d) 锡石色带中两相包裹体([类)。
- (e) 绿柱石中三相包裹体(Ⅲ类)。
- (f) 石英晶体中三相包裹体(Ⅱ类)。
- (g)绿柱石中含子矿物多相包裹体。
- (h) 白钨矿中含子矿物三相包裹体(Ⅲ类)。
 Photos of fluid inclusions under microscope
- (a) two-phases aqueous fluid inclusion (type $\,{\rm I}$) in beryl.
- (b) two phase aqueous fluid inclusions (type I) in scheelite.
- (c) a group of two-phase fluid inclusions in cassiterite.
- (d) two-phase fluid inclusions distributed in the brown band of cassiterite.
- (e) three phase aqueous fluid inclusion (type $\, \mathrm{I\!I}$) in berly.
- (f) three phase aqueous fluid inclusion (type $\, [\![\,]\,)$ in quartz.
- (g) multi-phase fluid inclusions.
- (h) three phase aqueous fluid inclusion (type III) in scheelite.

Fluid Inclusions of the Pingwu W—Sn—Be Deposit in Sichuan

JIANG Shaoqing^{1,2)}, ZHOU Yinghua^{1,2)}, GUO Chunying^{1,2)}, CAO Ye³⁾, XU Hao^{1,2)}

1) State Key Laboratory of Geological Processes and Mineral Resources, China University

of Geosciences, Beijing, 100083;

 Key Laboratory of Lithosphere Tectonics and Lithoprobing Technology of Ministry of Education, China University of Geosciences, Beijing, 100083;

3) School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083

Abstract

Pingwu, the important beryl, scheelite and cassiterite producer in China, locates at south margin of the South China craton. Fluid inclusion studies show that ore-forming fluids of W—Sn—Be deposit in this area are consistent with three different types, and the fluids are characterized by liquid CO_2 -rich fluid (type I), 3-phase H_2O — CO_2 inclusions (type II) and fluid inclusions containing daughter minerals (type III). The homogenization temperatures of types I and III inclusions coexisting in beryl are very closely which shows fluid immiscibility. The salinity of inclusions ranges from 0.53% to 4.67% NaCl_{eq} and pressure of ore-forming is <10.5MPa, which reflects the minerlization occurred in upper crust. The density and temperature of fluid is very low, which indicates that the beryl daughter minerals formed before saturation of ore-forming fluid and then captured by fluid.

Key words: fluid inclusion; beryl; scheelite; cassiterite; Pingwu; Sichuan

江少卿等:四川平武钨锡铍矿床成矿流体特征

(a)

图版Ⅰ

(h)