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NEW APPROACH IN THE EVALUATION
OF SOIL STIFFNESS COEFFICIENTS

BY
N. UNGUREANU and MIHAELA IBANESCU

General numerical methods based on the discretization of the contact surface between
structure and soil in finite elements are developed and, by their help, the stiffness matrix
is determined. There are considered the medium model of linear elastic, homogeneous and
isotropic half-space and anisotropic half-space, respectively. In case of rigid structures or
with rigid base, it is essentially for their response evaluation to know the stiffness coeffi-
cients.

1. Introduction

The response of a great category of structures subjected to dynamic loads strongly
depends on soil deformation, or, generally, on support medium deformation. In order
to determine this important influence, the medium (soil) stiffness coefficients must
be evaluated.

Winkler’s model and the elastic, isotropic and homogeneous half-space model are
the most common models adopted in the soil deformation analysis, but the admitted
assumptions are not valid for all actual situations. That is way a relative general
method for soil stiffness coefficients evaluation is developed in the present paper.

2. Principles for Stiffness Coefficients Evaluation

This method uses efficient numerical techniques that can be programmable and
takes into account the size and shape of the contact surface between the structural
system and ground. }

In the analysis, the method of interface finite elements is used. For some bea-
ring support models this method becomes a variant of the boundary finite element
method.
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The contact surface between the foundation and the ground is divided into dis-
junctive domains of rectangular or other shape that are called interface finite ele-
ments. '

Due to the stiffness of the base. in particular of the foundation block, the surface
of the ground after deformation remains still plane and to a general displacement. a
system of pressures on the ground corresponds.

A global stiffness coefficient of the ground, (. can by defined as

]
(1) e %
where P is the global action, equivalent with the sum of the elastic forces acting on
the contact surface and § - the global displacement of the contact surface.

The action. P. is a force or a couple. while ¢ is a linear displacement or an
angular displacement (rotation). For § = 1. the equality between the global stiffness
coeflicient and the pressure over the support surface results,

(2) Cy = Pis=y)-

The flexibility matrix of the support surface is defined according to its discretiza-
tion into interface finite elements. The displacements of the finite element centres
are expressed as functions of pressure resultants acting on each element.

The assumption of uniform pressure on the finite surface yields to enough accurate
results when the domains, the support surface has been discretized in, create a
relative dense grid.

Briefly, it can be expressed that the vector of the domains centres displacements
is proportional to the vector of the resultants of pressures acting on these clements.
This proportionality is stated by the stiffness matrix of the support, in particular of
ground.

A more refined discretization yields to a better approximation of the ground
stiffness matrix. In case of using finite elements of greater size the accuracy of the
method can be improved by adopting polynomial functions for the distribution of
the pressures over the component domains and also by using adequate interpolation
techniques.

The stiffness matrix for the ground enables us to determine the resultants of the
pressures acting on the domains the contact surface was divided in. Knowing these
forces. their resultant can be computed and then, the global elastic coefficient of the
ground, (', is evalnated.

3. Uniform Displacement of the Contact Surface

The contact surface between the building and ground is divided into rectangular
domains (Fig.1). It is presumed that the structural system is translated along the
vertical direction. the ground displacements (settlements) at the contact surface
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being uniform. These displacements are produced by the resultants of the uniform
pressiire acting on them.

The mentioned displacements. denoted

X X
» by w. can be expressed as
.— will & n
s (3) =y biily
. . 'f. . J=1
) n Relations (3). n in number. can be writ-
ten in vectorial form
“P|'
a b T e Y,
Fig. 1.- Division of contact surface into (4) {u.-,} == {b]{[}

finite elements. s
where {w} = {w, wy...w,}T is the vector
of vertical displacements: {Z} = {Z, Z,... Z,}" - the vector of pressure resultants
acting on the finite element surfaces;

bu bz . . . by
1}31 bgg . - . bgﬂ
(5) [b] = s
brll an . . . bnn
the matrix from relation (5) represents the flexibility matrix of the support medium.
The coefficient b;;, (i # j), represents the vertical displacement at the centre of
element ¢, produced by a unit force applied at the centre of the finite element j while
b;; is the displacement at the centre of the finite element i produced by a uniform

load that equals as intensity the inverse of element 7 area.
The vector {Z} can be obtained, namely

(6) {2} = [b]{w} = [Ks]{w}.

where [Kg] is the stiffness matrix of the support (ground). that can be written in an
extended shape

Kn Ky . . . Ky
Ky Ka . . . Koy
(7) K| = ;
(K] .
K—nl JI\‘1112 . . . I\'rm
A vertical uniform translation means w, = wy = ... = w; = ... = wy. so that the

vector {w} has all components equal in value and when this value equals unity, it
results

(8) {Z}u=1 = {7} = [Ks}{1}.
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The components of vector {Z} are Z,, Z..... Zi,.... Z,,, where
9) Zi=Ku+Ka+..+ Ki+..+Kip= Z Ki;.
i=1

If 7 cross all values from 1 to n. all the elements of vector {Z} are obtained.
According to relation (2), the global stiffness coefficient in translation is

(10) Coz = Ps=1) = Plu=1).

Obviously P,=1) is the sum of the resultants of pressures acting on all interface
elements

(11) Coz=Z1+Z2+ .+ Zi+ .+ Zn= ) Zi
i=1

Taking into account (9) the coefficient ',z is obtained by adding the elements of
the stiffness matrix

n n
(12) C=33 Kin
i=1 3=1
For practical applications it is often used the stiffness coefficient of the ground
divided by the area of the contact surface (stiffness coeflicient per unit area)

(13} Cyp = Q ]
where 0 is the area of the contact surface.

From the above obtained results it can be concluded that for the stiffness co-
efficient per unit area, ¢z, or the global stiffness coefficient, C,z, evaluation, the
flexibility matrix of the ground must be determined and then, by inverting it, the
stiffness matrix, N's, can be obtained.

4. The Model of Linear Elastic Isotropic and Homogeneous Half-Space

For the elastic, isotropic and homogencous half-space the procedure is shown
below. The elements of the flexibility matrix are derived starting from Boussinesq
relation

1=y P

[14). w = Ee i

where: P is the normal force to the half-space surface; r - the distance from the force
P point of application to the point where w is determined; Ey - the longitudinal
modulus of elasticity; v — Poisson’s ratio of the support (ground).
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This relation can be directly applied for the calculus of coefficients b;;. (i # j).
The errors are small when the ratio of the interface finite element sides equals the
unity.

For coefficient b;; the relation (14) permits to write the relation

1-1»3 |

rrEo ri;

(15) bij =

where r; is the distance between the geometric centres of the elements ¢ and j. that
can be expressed in terms of the relative coordinates zj; = r; — &; and ¥;; = ¥; — Ui

(Fig. 1). that is

(16) rij =k 4yl

The coefficients b,; can be computed with the following known relation

a b a
(Barg sh—& + arg Sh;) .

where a and b are the sides of the rectangular elements.

A numerical evaluation can be performed
for the vertical displacements. @;. generated
by forces Z; =1 (including for i = j). repre-
senting the resultants of uniformly distribu-
ted pressures p. = 1/Q;, where Q; is the cor-
responding surface to point j.

The surface §; is divided at its turn in
¢ elements of equal surface, w = Q;/c. so
Ve T that the forces corresponding to an element
of surface w will be equal to w/Q;.

According to the division shown in Fig. 2.

1—;;3‘

(17) bi; = o

= &

g at point i(z;,y;), the displacement ;. given
Fig. 2. ["it!ite Plel_neni j and by the uniformly distributed force acting on
point i coordinates. the surface ;, having the resultant Z; = 1.
is
2T FU = 1
(18} Wi(z=1) = 2 VU) Z

1+w \/(T.J + &) + (yi; mk)

In Fig. 2. the geometrical elements involved in relation (18) are represented.

5. The Model of Linear Elastic Anisotropic Half-Space

When the soil is modelled as a linear elastic anisotropic half-space. the vertical
displacements at point i, produced by the uniformly distributed load on the finite
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element j. that has the resultant Z; = 1, is determined as

2
o) m_ o L [Alactip-(F+1y]" |
( W(e=1) =7+ o=\ = - -
Q2 2nV L AC-F*? e \/(.r.;ié’,,'k)2+(yu:t*m)2

where 7 :
A=ZE(1 +mm), C==X(1-1?),
] @

E:-
F:?‘(l‘“lﬁ), L:G'1=G-2=G.

¢ = (1 +1)(1 — v1 — 2v913),
Ep, Ey are the soil longitudinal moduli of elasticity in horizontal and vertical direc-
tion, respectively, vy, vy, v3 — the Poisson’s ratios corresponding to the anisotropy
of three principals directions; Gy, G - the soil shear moduli in the horizontal planes
and '
_ Ey
T

the soil shear modulus in the vertical plane.

(is

6. The Stiffness Coefficient of the Ground for the System
Rotation with Respect to a Principal Horizontal Axis

The rotation of the structural system is produced by a couple located in a vertical
plane. '

The global elastic coefficient, C,,, is evaluated for the rotation (slope) of the
section from the bottom of the system around a principal axis. Let us admit this axis
to be y-axis. The pressures that occur on the contact surface produce a moment with
respect to this axis, that is proportional to the section rotation, the proportionality
coefficient being C,...

The displacements at the centres of the interface finite elements are obtained with
the following relations:

(20) = 80 = Y b2y, (8= 1,200),
i=1
or
(21) 0= Ti z b;ij, [i = 1,2, uy 3’?-).
ok ) |

For § = 1 the system of equation can be put under the following shape:

(22) ] 81230 = 112
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From equation (22) it is obtained

29) Zom = b7 [ 100 = BRI
As [b]7! = [As] and [2]{1} = {«} it results:
(21) {Z}ouy = [Ksl{a}.

By considering the moment of forces {Z},_, with respect to Oy-axis, the global
coefficient, (';. of the ground is obtained, namely

(23) Cop = {‘T}T{Z}8=l =212y + o+ Tnln
and taking into account the previous relations it can be written that:
(26) Cyo = {2} [Ks){=}

(‘onsequently knowing the ground stiffness matrix, the coefficient Cy, can be imme-
diately determined. It is also defined the coefficient c,, that results from the relation

CQ'V"

27) e = 2 = L (a)[Ksl{zh,

where I, is the moment of inertia of the contact surface with respect to Oy-axis.
A similar procedure must be followed in order to determine the same coefficient,
but with respect to Oz-axis.

7. Conclusions

From the previously analysis it results that the global elastic coefficient depends
on the soil nature, on the size and shape of the contact surface between the structure
and the ground. These coefficients don’t have constant values for a certain soil. They
can be better considered as parameters that must be determined for each practical
case.

The experimental test results show that the global coefficients computed for con-
tact surfaces of rectangular shape are very close to those obtained by using other
methods mentioned in literature.

The theoretical and practical procedures, proposed in the present work, have a
more general application but in the same time, the particularities of the structure
and ground can be pointed out.

The experimental tests, especially on machinery foundations, but also on other
rigid elements subjected to low dynamic actions, have values in good accordance
with those obtained by considering for the ground the half-space model.

Recetved, July 25, 2006 “Gh.Asachi” Technical University, Jassy,
Department of Structural Mechanics
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O NOUA METODA DE EVALUARE A COEFICIENTILOR
DE RIGIDITATE Al TERENULUI DE FUNDARE

(Rezumat)

Se dezvoltd metode numerice generale bazate pe discretizarea suprafetei de contact dintre
structura si teren, mn elemente finite de interfatd, cu ajutorul cirora se determina matricea de
compliantd a terenului g1 apoi matricea de rigiditate. Pentru mediul de rezemare se adopta modelul
semispatiului liniar elastic, omogen si izotrop, cat si anizotrop. Aceasta procedurd permite deter-
minarea coeficientilor elastici globali §i specifici, care au un rol esential in evaluarea raspunsului
structurilor rigide sau cu baza rigida.



