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On the fluctuation spectra with respect to
complex functions of the three-state Markov
processes
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Abstract: Explicit formulae for the autocorrelation functions and the fluctuation spectra
with respect to complex functions of the irreducible three-state Markov processes were
investigated. By the theory of cubic and quintic equations, the necessary and sufficient
condition for the fluctuation spectra with respect to complex functions to be nonmonotonic
on [0, +00) was presented when there existed coinciding eigenvalues for the transition rate
matrix, and the sufficient conditions for the fluctuation spectra with respect to complex
functions to be nonmonotonic on [0, +00) were given when there existed distinct nonzero
eigenvalues.
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0 Introduction

We address the simplest nonequilibrium problem — the three-state cyclic Markovian model

(which can be traced back to the so-called Onsager triangle) with a generally violated detailed
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balance. This basic model, apart from a fundamental significance, has numerous applications,
in particular, in biophysics.

As indicated in Refs. [1— 3], if a Markov process is reversible, then the fluctuation spectra
are monotonic over [0, +00). As pointed in Refs. [4 — 6], the irreversibility of the underlying
Markov process is equivalent to the existence of some nonmontonic fluctuation spectrum, and
there exist irreversible processes such that the fluctuation spectra with respect to real functions
are all monotonic. In some literatures (see, e. g. ,Ref. [7]),the steady distribution of a system
driven by an irreversible Markov process is sometimes referred to as a nonequilibrium steady
state (briefly, NESS).

In Ref. [8], explicit formulae for the autocorrelation functions and the fluctuation spectra
with respect to real functions of the irreducible three-state Markov processes are investigated,
and the necessary and sufficient conditions for the fluctuation spectra with respect to real
functions to be nonmontonic on [0, +00) are given. In this paper, we discuss the similar

problems but with respect to complex functions.

1 Main results

We adopt the same notations as Ref. [8]. Throughout this paper & = {&; : t € R} always
denotes an irreducible three-state Markov process, with its stationary distribution written as

p = (u1, pe2, u3) and the transition rate matrix written as

where a1 = as+ag, by = b1 +bs, c3 =c1+co, p1+pa+ps =1, p; >0, a4, b;, ¢; 20,i=1,2,3,
and a1bacs, by +c1, ag+co, azg+bs > 0 (i. e. irreducible). Let o« = a1 +bo+cs, 8 = ki + ko + k3,
where k; is the algebraic cofactor of the (i,i) entry of the matrix . Then the eigen-equation of
Q is A(A2 4+ a) + 3) = 0. Denote by —\1, —\y the nonzero eigenvalues of Q. Let A = o2 — 48.

For a complex function Z(z) = ¢(x) + it)(x) on the state space S = {1, 2, 3}, where ¢(z)
and v (x) are real functions, i = v/—1. Denote the autocorrelation function and the fluctuation
spectrum of {Z(&)} by Bz(t), Sz(w) respectively, which are defined as

By(t) = E[(2(&) - n(2))(Z(&) - m(2))], if t € R,

- 1 .
Bz(t):Bz(—t), iftER_, Sz(w): ﬁje_Mth(t)dt,
where E is the expectation operator with respect to {&}, u(Z) = E[Z(&;)] independent of time
t because of stationarity, Z(x) denotes the conjugation of Z(x).
Let Z(1) = (1) +i(1), Z2(2) = ¢(2) +iv(2), Z(3) = ¢(3) + iy(3), and denote
Z(1), (i), ¥(i) by Zi, @i, 1; respectively, i = 1, 2, 3, and y; = Z;—Zi1, (Za = Z1),i =1, 2, 3.
Let

_p1az +p2by o pobs+pzea  pger + pias
v = 5 ,0 = 5 , K= 3 .
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s = (P12 — ath1) + (Y203 — @atha) + (Y3101 — 173).

Denote E = y[y1|* +8|ya|* + rlys|?, F = papelys|* + papslys|® + pspalys|®. By the stationarity,

it is clear that the probability flux is

piaz — poby = pobs — pzco = pscy — pyas.

Let v = “1“%“2}”. The main results of this paper are the following.

Theorem 1 When ¢ > 0, the autocorrelation function of {Z(&;)} belongs to one of the
following three cases.
(1) If A # 0, then

E — (2us)i— F)o
A1 — Ao

E—(2us)i— F)\

By (t) =
z(t) JA—

exp (—A1t) +

exp (—Aat);
(2) If A =0 and the process {&;} is irreversible, then
Bz (t) = Fexp (—A\it) — [E — (2vs)i — FAj]texp (—\t);
(3) If A =0 and the process {&;} is reversible, then
Bz(t) = Fexp (—\1t).

Theorem 2 The fluctuation spectrum of {Z(&;)} belongs to one of the following three
cases.
(1) If A # 0, then
_ 1w’E+ (2avs)w+ B(aF — E)
T wit(a2-28)w2+32 7
(2) If A =0 and the process {&;} is irreversible, then

Sz(o.))

2 ” _
Sy(w) = %w E+ (QOEwsz)i —;)f(aF E);

(3) If A =0 and the process {&;} is reversible, then

520) = Ty e
When A = 0 and the process {&;} is reversible, due to o > 0,F > 0, hence Sz(w) is
decreasing on [0, +00), which means that the fluctuation spectra of {Z(&;)} are monotonic on
[0, +00) for any complex function Z(x).
When A = 0 and the process {£;} is irreversible, we obtain the following conclusion.
Theorem 3 If A = 0 and the process {&;} is irreversible, then the fluctuation spectrum
of {Z(&)} is nonmonotonic on [0, +00) if and only if
(1) vs > 0; or
(2) vs =0, 2aF —3E < 0; or
(3) vs <0, Ay 20, and A <0,
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where Ay = 3a%12s% — BE(2aF — 3E),

A =90%%5% — (9afvs)E(aF — E) — \/3[3a212s2 — BE(2aF — 3E)]3.

When A # 0, we obtain the following result.

Theorem 4 If A # 0, and if one of the following conditions holds
(1) vs > 0;
(2) vs =0, BE — (a® — 28)(aF — E) > 0;
(3) vs =0, BE — (a* —2B)(aF — E) =0, aF — E <0,
then the fluctuation spectrum of {Z (&)} is nonmonotonic on [0, +00).

Remark 1 When A # 0, the numerator of S%(w) is a quintic function, so it is compli-
cated to find the necessary and sufficient condition of existing at least a positive real solution
for S%(w) = 0.

2 Proofs of the theorems

Lemma 1 The unique stationary distribution (i. e. invariant probability distribution,
limiting probabilities) of the process is y; = k; /8,1 = 1,2, 3.

The proof is given in many Refs. [7,9,10] and is omitted here.

Denote by {P(t), t > 0} the transition probability matrix. Its (i,j) entry is written as
Pij(t).

Lemma 2 If A #0, then

Pii(t) = m + N [(a1 — p2Ae — p3A2) exp (=Ait) — (a1 — padi — A1) exp (—Aat)],
Pra(t) = po + y—-[(—az + o) exp (= it) = (=2 + proda) exp (=Aot)],
Pi3(t) = ps + )\1 i " [(—as + psA2) exp (—A1t) — (—ag + psA1) exp (—Aqt)],
Py (t) = p1 + N [(=b1 + p1A2) exp (=A1t) — (=b1 + p1 A1) exp (=Aat)],
Poy(t) = po + N i " [(be — iAo — pusAe) exp (=Ait) — (by — 1 A1 — p3A1) exp (—Aqt)],
Pa3(t) = ps + N i /\2 [(=bs + psAz) exp (—A1t) — (=bs + psA1) exp (= Ast)],
P (t) = pa + N [(—c1 4 paAg) exp (=Aut) = (—c1 + paAs) exp (= Aqgt)],
Pao(t) = po + N [(—c2 4 p2Az) exp (=A1t) = (—c2 + paA1) exp (= Ast)],
Pa(t) = ps + SV [(c3 = paAa — pade) exp (=Ait) — (c3 — pa A1 — pa1) exp (—Aat)],

where —\1, —\o are the nonzero eigenvalues of the transition rate matrix Q.

Lemma 3 If A =0 and the process {&} is irreversible, then

Pui(t) = pa + [(p2 + p3) (1 + At) — axt] exp (= At),
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Pio(t) = po + [—p2(1 4+ At) + at] exp (—At),
Pi3(t) = pg + [—p3(1 4+ At) + ast] exp (—At),
P (t) = pr + [—pa (1 + AL) + byt exp (= A1),
Paa(t) = p2 + (11 + p3) (1 4 At) — bat] exp (=At),
Pos(t) = pz + [—ps(1 + At) + bst] exp (—At),
P31 (t) = p1 + [ (1 4+ At) + crt] exp (—At),
Pss(t) = po + [—p2(1 + At) + cat] exp (—At),
P33(t) = pg + [(1 + p2) (1 + At) — cst] exp (—At).

Lemma 4 If A =0 and the process {{;} is reversible, then

—(z+y) @ Y
Q= z —(y+2) y
z x —(z+x)

In addition, the converse is also true.
Proofs of Lemma 2, Lemma 3 and Lemma 4 are given in Ref. [8] and are omitted here.
Denote the cubic function f(r) = az®+bx?+cx+d with a # 0, then f'(x) = 3ax®+2bx+c.
Let Ay = 4(b* — 3ac). When A > 0, there exist two real numbers z; = *b*‘éﬁ,xg =
=btvb¥—3ac W, such that x; < z3 and f'(x;) =0, (i = 1, 2). Clearly, one has

_20% + 27a*d — 9abe — 24/ (b% — 3ac)?

f(w2) 2742

Denote f(z2) by A’. It is not hard to show the following Lemmas.
Lemma 5 For the cubic function f(z) = ax3+bx?+cx +d, (a > 0), there exists at least
2o > 0 such that f(zp) =0, if and only if

(1) d < 0; or
(2) d=0, Ay >0 and \/A] > b; or
(3)d >0, A, >0, A <0and /A, > 20,

where A = b? — 4ac.

Lemma 6 For the quintic functiong(z) = asx® +asr* + a3z + asx? + a1z + ag, (a5 > 0),
the sufficient conditions of existing positive real roots for g(x) are one of the following five
conditions holds.

(
(2) ap =0, a1 <0;
(3)ap =0, a; =0, ay <0;
(4)ap =0, a1 =0, ap =0, A Oand\/E>a4;
(5) ap =0, a1 =0, ag >0, AL O,B’SOand\/Ai’5>2a47
2
1

2a3+27a2a5—9asasa3—2 a?—3asas)3
where A = a3 — 4asas, AL = 4(a3 — 3asa3), B' = —* 52 5247:2 (af 2k

=
=
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Proof of Theorem 1 We only prove the first part. The others can be shown similarly

by Lemma 3 and Lemma 4, respectively. When t > 0, by the definition of autocorrelation,

By(t) = E[(Z(&) — u(2))(Z(&) — n(2))] = Z 14 Z; Pij(t) Z; —
1,7=1
In Bz(t), by Lemma 2, the coefficient of 5——exp{—A1t} is

p1Z1(ay — pode — psie)Zy + p1Z1(—az + pade)Zo + p1Z1(—as + psi2)Zs
+ 12 Z2(=b1 4 p1A2) Z1 + p2Za(by — pida — pshe) Za + paZa(—=bs + pish2) Zs
+ p3Z3(—c1 + pid2) Z1 + p3Zs(—ca + pade) Za + p3Zs(cs — pide — pare)Zs
= pa(ar — pada — pade) (91 +47) + p2(be — e — p3ho) (93 + ¥3)

+ pa(cs — i Aa — p2a) (93 + ¥3)

+ (102 + Y12) (=27 + 21 p2A2) — 2v(P192 — at)1)i

+ (p2ep3 + ¥21h3) (=20 + 2uapisAa) — 2v(p2ths — 3tha)i

+ (P31 + P3th1) (=26 + 2uzpA2) — 2v(path1 — p193)i.

In the above expression, the coefficient of Ay is

— pa 2 + u3) (@1 +97) — papn + 1) (95 + 93) — pa(un + p2) (93 + 93)
+ 2p1p2 (P12 + 1v2) + 2ups (203 + Yaths) + 2uspn (P31 + Ysih1)
= —mpizl(p1 = p2)* + (V1 — ¥2)°] = popsl(p2 — 03)* + (Y2 — 13)?]
— papa[(os — p1)* + (s — 91)*] = *M1#2|y1|2 - u2u3|y2|2 - u3u1ly3|2 = —F;

the constant term is

pray(pf +7) + paba (3 + ¥3) + pses(93 + ¥3)

—27(p1902 + Y11h2) — 20(p2ip3 + Y2t3) — 26(p3p1 + Y311)

= 2v[(p19h2 — p2v01) + (203 — w3P2) + (p3th1 — 1)l
= (v+R) (@] +97) + (6 +7)(93 +¥3) + (5 + 0) (95 + ¥5)

= 29(p192 + Y1P2) — 26(p2p3 + Yovis) — 26(p3p1 + Y3yn) — (2vs)i
=[(p1 — @2)® + (b1 — ¥2)*] + 8[(02 — ©3)* + (2 — ¥3)?]

+5[(p3 — 1)* + (5 — ¥1)?] — (2ws)i

—’Y‘yl| +6\y2| +n\y3| (2vs)i=E — (2vs)i.

Thus the coefficient of )\ exp{—Mt} is E — (2vs)i — F)q, and similarly the coefficient of
m exp{—Aqt} is E (21/3)1 — F 1. This ends the proof.

Proof of Theorem 2 We only prove the first case, and the others can be shown similarly
by (2) and (3) of Theorem 1. In fact we only prove the case A < 0. When A > 0, the proof is
similar. Without loss of generality, let —\; = —p+1ig and —\s = —p —iq be a pair of conjugate
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complex eigenvalues of the matrix Q. By the definition of fluctuation spectrum,

+00 0
Sy(w) = % UO exp{—iwt} By (t) dt + J_ exp{—iwt} B (1) dt] = %(11 +I),

where
“+o0
I = J exp{—iwt}Bz(t) dt
0
Foo E — (2us)i— F)g E— (2us)i— F)\
= —iwt -\t —MXot)| dt
Jo exp{ 1w}[ N exp (—Ait) + S exp ( 2)]
E— (2us)i+ F(—p—iq) (t>
= (2vs)i +_ (=p—iq) J exp{—i(w — q)t} exp{—pt} dt
—2iq 0
E — (2us)i+ F(—p+iq) [T .
B PEL LR exp{ifo + a1t} exp{—pi} i
0
E—(2us)i+F(-p—iq) p—(w—q)i FE—-2us)i+F(—p+iq) p—(w+ )i
- i ' 2 3 T i ’ 2 27
—2iq (w=q)?+p 2iq (w+aq?+p
similarly,

0
I, = J exp{—iwt}Bz(t)dt

oo E+ (2us)i— F)y — E+ (2us)i— F) —
= J exp{iwt}[ + (7]/5)17 2 exp (=At) + + LVS)L L exp (=Xat)| dt
0 A1 — A2 Ao — A1
_E+Qus)i+ F(—p+iq) p+(w—q)i | E+Qus)i+ F(—p—iq) p+ (w+q)i
2ig (w—q)? +p? —2ig (w+q)?+p*

Note that p> +¢> =08, p = S, we obtain

_ lw2E + 2avs)w + f(aF — E)

Sz(w) n w4 (@ —20)w? + 32

This ends the proof.
Proof of Theorem 3 Since
2[Bw? + (Bavs)w? + B(2aF — 3E)w — (afvs)]
m(w? + B)? ’

Sy(w) = -

it can be shown directly by Lemma 5.

Proof of Theorem 4 Since

, _ 2
) = e w2 1 )

+ (avs)(a? = 20)w? — BBE — (a® - 20)(aF — E)lw — (avsf?)},

3 {Buw® + (Bavs)w* + 23(aF — E)w?

it can be also shown directly by Lemma 6.
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3

Applications
Example 1
—4a 4a O
Q= 0 —-a a |, (a>0).
a 0 —a

Clearly, A = 0 and the process {&:} is irreversible. For the complex function Z(1) = 1 +
i, Z(2) = -1—-1, Z(3) = 1 -1, it is easy to show vs > 0. By Theorem 3, the fluctuation

spectrum with respect to the above complex function is nonmonotonic on [0, +00). However,the

fluctuation spectrum with respect to the complex function Z(1) =1—1i, Z(2) = -1—1, Z(3) =

1 +1i, is monotonic on [0, +00), since vs < 0, Ag < 0.

Example 2

Q= a —3a 2a , (a>0).

Clearly, A # 0. For the complex function Z(1) =141, Z(2) = -1 —1i, Z(3) =1 — 1, it is easy

to show vs > 0. By Theorem 4, the fluctuation spectrum with respect to the above complex

function is nonmonotonic on [0, +00).
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