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Abstract: W e develop an affine scaling trust region algorithm in association with the nonmonotone interior back2
tracking line technique for solving smooth nonlinear equations subject to bounds on variables. The trust region sub2
p roblem is defined by m inim izing a squared Eudidean norm of linear model with a new affine matrix called m inimum2
scaling. Under a reasonable assump tion of this new affine2scaling matrix, we stress that the m inimum2scaling has

some additional p roperties that allow us to p rove stronger global convergence results without nondegenerate p roperty

than those about the Coleman2L i2scaling. The nonmonotonic criterion is used to speed up the convergence p rogress in

the contours of objective function with large curvature.
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1　 Introduction

In this paper, we p ropose and analyze a trust - region method for the solution of a simp ly constrainted sys2
tem of smooth nonlinear equations

F ( x) = 0, x ∈Ω. (1. 1)

Here, the function F: Rn = U → Rn
is defined on the open set U containing the feasible setΩ = [ l, u ] =

{ x ∈ Rn
| li ≤ xi ≤ ui , i = 1, ⋯, n } . The bound li ∈ R ∪ { - ∞} and ui ∈ R ∪ { + ∞} are assumed

to satisfy li < ui , i = 1, ⋯, n , (otherwise the variable xi = li = ui could be elim inated).

Recently, Bellavia et al in [ 1 ] further extended the ideas and p resented an affine scaling trust - region

app roach for solving the bound2constrained smooth nonlinear system s (1. 1). More recently, Zhu in [ 3 ] p ro2
posed the affine scaling trust region Newton methods which switch to strict interior feasibility by line search

backtracking technique. In this paper, we introduce another more general affine scaling interior point p rojec2
tive, called the m inimum 2scaling, to generate the affine scaling trust region methods which switch to strict in2
terior feasibility by line search backtracking technique with some reasonable conditions. W e stress that under a



reasonable assump tion of this new affine2scaling matrix, the m inimum 2scaling has some additional p roperties

that allow us to p rove stronger global convergence results without nondegenerate p roperty than for the Coleman

- L i2scaling. The nonmonotone idea also motivates the study of trust region methods in association with nonm2

onotone backtracking line search technique for app roximating zeros of the smooth equations(1. 1) in [ 4 ].

The paper is organized as follows: we derive our affine2scaling trust - region method with nonmonotone in2

terior backtracking technique for the solution of (1. 1) in Section 2. The global convergence p roperties of this

method is investigated in Section 3.

2　A lgorithm s

In this section, we p ropose and analyze a trust - region method for the solution of p roblem (1. 1). Bel2

lavia et al in [ 1 ] p resented the affine scaling trust - region app roach scheme. Note that (1. 1) is closely relat2
ed to the box constrained op tim ization p roblem

m in f ( x) , s. t. x ∈Ω, (2. 1)

where f: U → R, f ( x) = ‖F ( x) ‖2
/2 . Throughout the paper, ‖·‖ denotes the Euclidean norm. Obvious2

ly, (1. 1) and (2. 1) are equivalent if (1. 1) possesses a solution.

Now we exp loit the relation between the two p roblem s (1. 1) and (2. 1) and follow an idea by Coleman

and L i
[ 5 ]

who observed that the first order op timality conditions of (2. 1) are equivalent to the nonlinear sys2
tem of equations

D ( x) ý f ( x) = 0, x ∈Ω, (2. 2)

with a suitable scaling matrix

D ( x) = diag ( d1 ( x) , ⋯, dn ( x) ) . (2. 3)

O riginally, Coleman and L i [ 5 ] consider only one particular choice of the scaling matrixD ( x) . In this work,

we allow the scaling matrix taken from a rather general class, defined by the m inimum 2scaling

d
m in
i ( x) =

def 1 　　if li = - ∞ and ui = + ∞

m in{ xi - li +γm ax{ 0, - gi } , ui - xi +γmax{ 0, gi } } 　 o therw ise
(2. 4)

whereγ > 0 is a given constant, g ( x) = ý f ( x) , and gi is the ith component of g ( x) ( cf. [ 2 ] ). The scaling

matrix may be used to p rove suitable global and local convergence results. Nevertheless, we stress that the

m inimum2scaling has some additional p roperties that allow us to p rove global convergence results without non2

degenerate p roperty. But the following assump tion is needed in [ 2 ].

A ssum ption 1　The scaling matrixD ( x) =
def

d iag{ d
m in
i ( x) } satisfies (2. 4) and is bounded onΩ . Fur2

thermore, there exists a constantα > 0 such that

α d
m in
i ( x) ≤

xi - li if gi > 0 and li > - ∞

ui - xi if gi < 0 and ui > + ∞
, (2. 5)

for all i = 1, ⋯, n and all x ∈ in t (Ω ) .

Note that the conditions hold automatically ifΩ itself is bounded, i. e. , if all lower and upper bounds li

and ui are finite. This assump tion is quite realistic in many cases since otherwise one may rep lace infinite

bounds by sufficiently large bounds. Furthermore, if the scalarαk given in (2. 8) of step 3 denotes the step

size along the direction pk to the boundary on the variables l≤ xk +αk pk ≤ u, and the A ssump tion 1 holds, it
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is clear that xk +1 = xk +αk pk ∈ in t (Ω ) . Moreover, it also ensures the nondegenerate p roperty of the system

(1. 1) at any lim it point.

In order to construct a suitable method for the solution of p roblem (1. 1) , we follow an interior - point

trust - region app roach for (2. 1) sim ilar to those in [ 3 ]. The basic idea is based on the following ellip tical

trust region subp roblem at the k th iteration

m in m k ( p) = g
T
k p +

1
2

p
T ( F

′
k

T
F
′
k ) p

s. t. { p ∈ Rn
| ‖D ( xk ) - 1 /2

p‖≤Δk } , (2. 6)

whereΔk > 0 denotes the trust - region radius. To get a feasible solution and relax the accep tability conditions

on the trial step pk , we suggest to use the nonmonotone technique instead of the monotone technique.

Next, we describe an affine scaling trust region algorithm with nonmonotone line search technique for sol2

ving the bound - constrained system (1. 1).

A lgor ithm 2. 1

In itia liza tion step　Choose parametersβ∈ (0,
1
2

) , ω ∈ (0, 1) , 0 <η1 <η2 < 1, 0 <γ1 < 1 <

γ2 , ε > 0 and positive integer C as nonmonotonic parameter. Letm (0) = 0 . Select an initial trust region ra2

diusΔ0 > 0 and a maximal trust region radiusΔmax ≥Δ0 . Give a starting strict feasibility interior point x0 ∈

in t (Ω ) Α Rn
. Set k = 0, and go to the main step.

M a in step

(1) If ‖D
1 /2
k gk ‖ = ‖D

1 /2
k ( F

′
k ) T

Fk ‖≤ε, stop with the app roximate solution xk .

(2) Compute pk by solving the trust region subp roblem (2. 6).

(3) Chooseαk = 1,ω,ω2
, ⋯ until the following inequality is satisfied

f ( xk +αk pk ) ≤ f ( xl ( k) ) +αkβ g
T
k pk , (2. 7)

w ith　xk +αk pk ∈Ω, (2. 8)

where f ( xl ( k) ) = max
0≤ j≤ m ( k)

{ f ( xk - j ) } , with the nonmonotone index function 0 ≤m ( k) ≤m in{m ( k - 1) + 1,

C} , k ≥ 1 . Set

xk +1 = xk +αk pk. (2. 9)

　　 (4) Calculate

ra redk (α k pk ) = f ( xl ( k) ) - f ( xk +α k pk ) ,

p redk (αk pk ) = - m k (α k pk ) = f ( xk ) - f ( xk +αk pk ) ,

ρk =
def

ρk (αk pk ) =
raredk (αk pk )

p redk (αk pk )
. (2. 10)

　　 (5) Update the trust - region radius according to the following rules:

Δk +1 =

γ1Δk , ρk <η1

Δk , ρk ∈ [η1 ,η2 )

γ2Δk , ρk ≥η2

　.

　　 (6) Take the nonmonotone control parameterm ( k + 1) = m in{m ( k) + 1, C} . Then set k ← k + 1 and

go to step 1.

3　第 6期　　　　　　　　　　　孙冬梅 , 朱德通 : 有界约束非线性方程组的仿射尺度内点信赖域方法



3　Global convergence analysis

In our analysis, the level set of f is denoted by

L ( x0 ) = { x ∈ Rn
| f ( x) ≤ f ( x0 ) , l ≤ x ≤ u }.

The following assump tion is used in our convergence analysis.

A ssum ption 2　The sequence { xk } generated by the algorithm is contained in a compact setL ( x0 ) on

Rn and there exist some positive constantsχD ,χg ,χF > 0, ‖D ( x) ‖≤χD , ‖g ( x) ‖≤χg , Π x ∈L ( x0 )

such that ‖D
1 /2
k ( F

′
k ) T ( F

′
k ) D

1 /2
k ‖≤χF , Π k .

First, we state some lemmas, which are essentially the same as that in [ 2 ] and [ 3 ] , that ensures the

global convergence of the trust region algorithm.

L emma 3. 1　Suppose that A ssump tions (1) and (2) hold, and let pk be a solution to the subp roblem

(2. 6). Then there exists a constantτ > 0 such that

p redk ( pk ) ≥τ‖D
1 /2
k gk ‖

2
m in{Δk , 1}. (3. 1)

　　L emma 3. 2　A t the iteration, let pk be generated in trust region subp roblem (2. 6) , then

g
T
k pk ≤ - τ‖D

1 /2
k gk ‖

2
m in{Δk , 1} , (3. 2)

where the constantτ is given in (3. 1).

　　Proof of this lemma is sim ilar to that in [ 3 ].

　　L emma 3. 3　Suppose that A ssump tion 2 holds, and assume that the gradient of f is such that

‖ý f ( x) - ý f ( y) ‖2 ≤γ‖x - y‖2 , x, y ∈ Rn
, (3. 3)

whereγ is the L ip schitz constant. Letβ∈ (0, 1) and pk be p roposed by the subp roblem (2. 6). If ‖D
1 /2
k gk ‖

≠ 0, then A lgorithm 2. 1 will p roduce an iterate xk +1 = xk +αk pk in a finite number of backtracking step s in

(2. 7).

Proof of this lemma is sim ilar to that in [ 3 ]. The following lemma establishes the necessary and sufficient

conditions concerning the pairλk , pk when pk solves the subp roblem (2. 6).

L emma 3. 4　 pk is a solution to the subp roblem (1. 8) if and only if pk is a solution to the following e2
quations of the form s

[D
1 /2
k F

′T
k F

′
k D

1 /2
k +λk I ]D

- 1 /2
k pk = - D

1 /2
k gk , (3. 4)

λk (‖D
- 1 /2
k pk ‖ - Δk ) = 0, λk ≥ 0, (3. 5)

and [D
1 /2
k F

′T
k F

′
k D

1 /2
k +λk I ] is positive sem idefinite.

Theorem 3. 1　A ssume that A ssump tions 1 and 2 hold. Let { xk } < Rn be a sequence generated by the

algorithm. Then

lim
k→∞

inf‖D
1 /2
k gk ‖ = 0. (3. 6)

　　Proof　According to the accep tance rule in step 3, we have

f ( xl ( k) ) - f ( xk +αk pk ) ≥ - αkβ g
T
k pk = - αkβ(D

1 /2
k gk ) T (D

- 1 /2
k pk ) . (3. 7)

Taking into account that m ( k + 1) ≤ m ( k) + 1, and f ( xk +1 ) ≤ f ( xl ( k) ) , we have f ( xl ( k +1) ) ≤

max
0≤ j≤ m ( k) +1

{ f ( xk +1 - j ) } = f ( xl ( k) ) . This means that the sequence { f ( xl ( k) ) } is nonincreasing for all k and

hence { f ( xl ( k) ) } is convergent.

By (2. 7) and (3. 2) , for all k > C, we get
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f ( xl ( k) ) ≤ max
0≤ j≤ m ( l ( k) - 1)

{ f ( xl ( k) - j- 1 ) } +αl ( k) - 1β ý f
T
l( k) - 1 pl ( k) - 1 ≤ (3. 8)

max
0≤ j≤ m ( l ( k) - 1)

{ f ( xl ( k) - j- 1 ) } - αl ( k) - 1βτ‖D
1 /2
l ( k) - 1 gl ( k) - 1 ‖

2
m in{Δl ( k) - 1 , 1}.

If the conclusion of the theorem is not true, there exists someε > 0 such that

‖D
1 /2
k gk ‖≥ε, k = 1, 2, ⋯. (3. 9)

A s { f ( xl ( k) ) } is convergent, it follows from (3. 9) that

lim
k→∞

αl ( k) - 1Δl ( k) - 1 = 0

which imp lies that either

lim
k→∞

αl ( k) - 1 = 0 (3. 10)

or

lim
k→∞

infΔl ( k) - 1 = 0. (3. 11)

By the updating formula ofΔk , we haveγC +1
1 Δl ( k) - 1 ≤Δk ≤γC +1

2 Δl ( k) - 1 which means that from (3. 11)

lim
k→∞

infΔk = 0. (3. 12)

A ssume thatαk given in step 3 is the step size to the boundary of box constraints along pk . W e have

αk =
def

m in{max{
li - xk, i

pk, i

,
ui - xk, i

pk, i

} , i = 1, 2, ⋯, n}.

Combined with (3. 12) , it means that

pk, i → 0, fo r a ll i.

Hence, we get that there exists a subsetκ< K such that

lim
k→∞, k∈ K

αk = 0

and hence, without loss of generality, assume x3 , i = li for some i. Since { ( F
′T
k F

′
k ) pk } converges to zero,λk I

is a positive sem idefinite diagonal matrix, and x3 is nondegenerate with D
1 /2
3 g3 = 0 since A ssump tion 1 holds,

for any iwith ( v3 ) i = 0, and using (3. 4) , we have that ( pk ) i and ( gk ) i have the same sign for k sufficiently

large. Hence, ifαk is defined by some ( v3 ) j = 0 and hence ( g3 ) j ≠0, thenαk =
| ( vk ) j |

| ( pk ) j |
for k sufficiently

large.

Taking norm in the equation (3. 4) , we can obtain

λkΔk =λk ‖Dk pk ‖≥ ‖D
1 /2
k gk ‖ - ‖D

1 /2
k F

′T
k F

′
k D

1 /2
k ‖·‖D

- 1 /2
k pk ‖. (3. 13)

D ividing (3. 13) byΔk and noticing ‖Dk pk ‖ ≤Δk , we get

λk ≥
‖D

1 /2
k gk ‖
Δk

- ‖D
1 /2
k F

′T
k F

′
k D

1 /2
k ‖. (3. 14)

It is clear that from (3. 14) and ‖D
1 /2
k g ( xk ) ‖ ≠ 0, lim

k → ∞
λk = + ∞, asΔk → 0. U singαk =

| ( vk ) j |

| ( pk ) j |
,

(3. 4) , the assump tions of the boundedness of { gk + F
′T
k F

′
k pk } and {λk } converging to + ∞, we conclude that

lim
k → ∞

αk = + ∞ , (3. 15)

whereαk given is the step size to the boundary of box constraints along pk .

Sim ilar to the p roof in [ 3 ] , we can also p rove that if

Δk ≤
τε2 (1 - β)

γχD

, (3. 16)
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thenαk = 1 must satisfy the accep ted condition (2. 7) in step 3, that is,

f ( xk + pk ) ≤ f ( xl ( k) ) +β g
T
k pk.

　　From the above, we see that if (3. 15) holds, then the step size will be determ ined by (2. 7). So, for

large k, αk = 1 . Since A ssump tion 1 holds, it is clear that xk +1 = xk + pk ∈ in t (Ω ) .

Furthermore, for someξk ∈ [ 0, 1 ], we have

aredk ( pk ) = f ( xk ) - f ( xk + pk ) = - pý f ( xk +ξk pk ) T
pk =

p redk ( pk ) + [ ý f ( xk ) - ý f ( xk +ξk pk ) ]
T

pk +
1
2

p
T
k ( F

′
k ) T ( F

′
k ) pk. (3. 17)

Because f ( x) is L ip schitz continuously differentiable with constantγ, we obtain that

| [ ý f ( xk ) - ý f ( xk +ξk pk ) ]
T

pk | ≤γχD ‖D
- 1 /2
k pk ‖

2 ≤γχDΔ
2
k.

U sing A ssump tion 2, (3. 17) imp lies that

| aredk ( pk ) - p redk ( pk ) | ≤ (γχD +
1
2
χF )Δ2

k.

Since Lemma 3. 1 holds, we readily obtain that for large k , p red ( pk ) ≥τε2Δk , if setting

ρ̂k =
aredk ( fk )

p redk ( fk )
, (3. 18)

then {ρ̂k - 1} converges to zero, asΔk → 0 . ρk ≥ρ̂k ≥η2 imp lies that {Δk } is not decreased for sufficiently

large k and hence bounded away from zero. Thus {Δk } cannot converge to zero, contradicting (3. 12).

From the above, we conclude that (3. 11) is not true. So, (3. 10) must hold. Sim ilar to the p roof of the2

orem in [ 4 ] , we have that if (3. 10) holds, then

lim
k→∞

αk = 0.

Now, assume thatαk given in step 3 is the step size to the boundary of box constraints along pk . From

αk =
def

m in{m ax{
li - xk, i

pk, i

,
ui - xk, i

pk, i

} , i = 1, 2, ⋯, n}

and A ssump tion 1

α d
m in
i ( x) ≤

xi - li , if gi > 0, and li > - ∞,

ui - xi , if gi < 0, and ui > + ∞,

we get

0 <α≤αk ,

and then

αk →\ 0, (3. 19)

whereαk given is the step size to the boundary of box constraints along pk .

Furthermore, the accep tance rule (2. 7) means that, for large k ,

f ( xk +
αk

ω
pk ) - fk ≥ f ( xk +

αk

ω
pk ) - f ( xl ( k) ) >β

αk

ω
g

T
k pk.

Since

f ( xk +
αk

ω
pk ) - fk =

αk

ω
g

T
k pk + o (

αk

ω
‖pk ‖)

and A ssump tion 1 holds, we have, for large k , ‖pk ‖≤χDΔk , and
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0 < (1 - β)
αk

ω
g

T
k pk + o (

αk

ω
‖pk ‖) ≤ - τε2 (1 - β)

αk

ω
Δk + o (

αk

ω
‖pk ‖) < 0, (3. 20)

and hence the conclusion of the theorem is true. □

Theorem 3. 1 indicates that at least one lim it point of { xk } is a stationary point. Next, we extend this the2
orem to a stronger result. The p roof is essentially sim ilar to that in [ 3 ].

Theorem 3. 2　A ssume that A ssump tions 1 and 2 hold, Let { xk } be a sequence generated by the p ro2
posed algorithm. Then

lim
k→+∞

‖D
1 /2
k gk ‖ = 0. (3. 21)

　　Since the length of the paper is lim ited, we will study the local convergent rate and numerical experiments

in our further research.
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有界约束非线性方程组的仿射尺度内点信赖域方法

孙冬梅 , 朱德通
(上海师范大学 数理信息学院 , 上海 200234)

摘要 : 提供了仿射信赖域策略结合非单调线搜索算法解有界约束非线性方程组. 基于简单有界约束的非线性优化问题

构建信赖域子问题 ,但所用的最小仿射尺度比 Coleman和 L i所用的仿射尺度更为一般. 在合理的条件下 ,文中提供的最

小仿射尺度 ,在没有严格互补假设条件下 ,可给出更强的全局收敛性结果. 引入非单调技术能克服高度非线性的病态

问题.

关键词 : 有界约束 ;信赖域 ;仿射尺度 ;非单调线搜索技术
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