内蒙古大青山地区早前寒武纪变质岩的 锆石 Hf 同位素组成和稀土模式

董春艳^{1,2)},刘敦一^{1,2)},万渝生^{1,2)},徐仲元³⁾,王伟^{1,2)},颉颃强^{1,2)}

1)中国地质科学院地质研究所,北京,100037;2)北京离子探针中心,北京,100037;
 3)吉林大学地球科学学院,长春,130061

内容提要:本文报道了內蒙古大青山地区早前寒武纪变质岩石的锆石 Hf 同位素和稀土组成。两个古元古代晚 期(1.9~2.1 Ga)变质碎屑沉积岩样品中碎屑锆石的 $[n(^{176} \text{ Hf})/n(^{177} \text{ Hf})]_c, t_{DM1}(\text{Hf}) 和 t_{DM2}(\text{Hf})分别为 0.281079$ ~0.281502,2548~3000 Ma,2612~3153 Ma 和 0.280916~0.281451,2533~2717 Ma,2600~3404 Ma; 一个古元古 $代早期(2.37 Ga)变质辉长岩样品中岩浆锆石的<math>\epsilon_{Hf}(t)$ 和 $t_{DM1}(\text{Hf})$ 分别为 1.50~6.68 和 2449~2647 Ma,表明大青 山及邻区在新太古代晚期一古元古代早期存在强烈的构造岩浆热事件,既有地幔添加又有壳内再循环作用。三个 样品的边部变质锆石 $\epsilon_{Hf}(t), t_{DM1}(\text{Hf})$ 和 $t_{DM2}(\text{Hf})$ 分别为-9.49~3.91,2201~2686 Ma,2285~2887 Ma; -7.29~ -2.42,2350~2540 Ma,2499~2740 Ma 和 -5.46~-0.53,2319~2507 Ma,2443~2687 Ma,Th/U 比值普遍小于 0.1。与核部锆石相比,边部变质锆石 $t_{DM2}(\text{Hf})$ 变小,Th/U 比值和稀土含量降低,但稀土模式十分类似。研究表明, 变质锆石增生边的形成及其 Hf 同位素、稀土和 U—Th 组成受核部锆石和变质作用的双重制约。变质增生边的形 成至少部分与核部锆石溶解以后的再结晶有关,变质流体起了重要作用。

关键词: 锆石; Hf 同位素; 稀土模式; 早前寒武纪; 大青山

随着多接收等离子体质谱仪(MC-ICPMS)、Q-ICPMS 和激光剥蚀系统的应用,锆石 Hf 同位素和 稀土组成原位分析技术为岩石成因和壳幔演化研究 提供了越来越多的重要信息(Amelin et al., 1999; Rubatto, 2002; Kinny et al., 2003; Hawkesworth et al., 2006)。锆石极强的稳定性和高 Lu-Hf 同位 素封闭温度使其 Hf 同位素组成较少受到后期地质 事件的影响,而极低的 Lu 含量使我们能够获得其 形成时准确的 Hf 同位素组成。这些特性使得锆石 Hf 同位素常用于高级变质岩原岩性质与成因的研 究,成为目前探讨地壳演化和示踪岩石源区性质的 重要工具。另一方面,锆石稀土组成研究也可为岩 石成因提供重要信息(Hoskin et al., 2003; Zheng et al., 2006, 2007; Dong et al., 2007)。将锆石 Hf 同位素、稀土组成与 U-Pb 定年相结合探讨地壳 形成和再造成为新的研究趋势(Hawkesworth et al., 2006; Wu et al., 2007; Zheng et al., 2006, 2007)。本文报道了内蒙古大青山地区早前寒武纪 变质岩石的锆石 Hf 同位素和稀土组成。研究表明 变质锆石的 Hf 同位素和稀土组成特征受原有锆石 和变质流体的双重制约。

1 地质背景和样品特征

大青山地区是西部孔兹岩带(Zhao et al., 2005)典型代表之一,已有长期的研究历史(金巍等, 1991;卢良兆等,1996)。基于野外地质和部分同位 素年代学资料,该区前寒武纪变质基底被划分为桑 干岩群(又称为兴和岩群,麻粒岩系)、下乌拉山岩群 (片麻岩系)、上乌拉山岩群(孔兹岩系)及侵位其中 的变质深成岩(图1)(徐仲元等,2005,2007;杨振升 等[●],杨振升等,2006b)。桑干岩群被进一步划分为 中色麻粒岩岩组和浅色麻粒岩岩组,由基性和中酸 性麻粒岩组成。下乌拉山岩群被进一步划分为深色 片麻岩岩组和浅色片麻岩岩组,由不同类型片麻岩 组成,其中浅色片麻岩岩组中很可能存在遭受强烈 变质变形和深熔作用改造的 TTG(奥长花岗岩、英 云闪长岩、花岗闪长岩),但其分布范围还不清楚(董 春艳[●])。上乌拉山岩群由变泥砂质岩石、大理岩、 钙硅酸盐岩和少量变质基性岩组成,为高角闪岩 相一麻粒岩相变质,其岩石组合和变质作用与印度

注:本文为中国地质科学院地质研究所基本科研业务费资助项目(编号 J0901)和国土资源部重点项目(编号 1212010711815)的成果。 收稿日期:2009-03-14;改回日期:2009-05-05;责任编辑:章雨旭。

作者简介:董春艳,女,1976年生。博士。主要从事变质岩和同位素年代学研究。电话:010-68999759;Email:dongchunyan@sina.com。

南部的孔兹岩系相似(Chacko et al., 1992)。根据 SHRIMP U-Pb 锆石同位素定年,变质岩系的形成 时代为新太古代和古元古代(董春艳[®])。其总体特 征可与孔兹岩带东段集宁地区对比(Guo et al., 2002, 2005; Wan et al., 2006; Zhao et al., 2008)。本文对大青山地区早前寒武纪变质岩石 3 个样品进行了锆石 Hf 同位素和稀土元素分析。采 样位置见图 1。

1.1 石英岩(NM0619,40°51′55″,110°04′38″)

样品采自忽鸡沟南部,属上乌拉山岩群孔兹岩 系榴云片麻岩岩组。石英岩出露宽度>150 m,但 还不清楚如此之大厚度是否与构造加厚有关。石英 岩纯度很高,石英含量大于 99%。石英岩经历了强 烈的重结晶作用,外观上像石英脉。

1.2 黑云二长片麻岩(NM0605,40°44′08″,

109°38′06″)

样品采自哈德门沟下乌拉山岩群片麻岩系。由 于变质和深熔作用改造,脉体(条带)发育而不均一, 但所取样品避开了浅色脉体。主要组成矿物为斜长 石、微斜长石、石英和黑云母。

1.3 变质辉长岩(NM0618,40°53′21″,110°04′26″)

样品采自包固公路北部下城湾南 2 km。它们 以包体形式位于原划分为下乌拉山岩群条带状长英 质岩石中。根据野外地质特征,条带状长英质岩石 很可能为 TTG 变质变形和深熔作用改造产物。辉 长岩侵入 TTG,并与 TTG 岩石一道遭受变质变形 改造。新鲜岩石呈暗灰色,片麻状构造。主要矿物 为斜长石、角闪石、单斜辉石和黑云母。

2 分析方法

Hf 同位素和稀土元素测试在中国科学院地质 与地球物理研究所 Neptune 多接收电感耦合等离 子体质谱仪(MC-ICPMS)、Agilent 7500a 型四极杆

Fig. 1 Geological map of the Early Precambrian in Daqing Mountains, Inner Mongolia 据徐仲元等(2005)修改,插图据 Zhao et al. (2005)简化。图中给出了本文样品位置 Modified after Xu et al. (2005). Inset is simplified after Zhao et al. (2005). Sample locations are shown

表 1 大青山早前寒武纪变质岩石的锆石 Hf 同位素组成

Table 1 Hf isotope composition of zircons from Early Precambrian metamorphic

rocks in the Daqing Moumtains, Inner Mongolia

44	1				$ [n^{(176)}]$	Hf) ¬		ε _{Hf} (<i>t</i>)			
日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	分析	年龄	$\frac{n(^{176} \text{ Yb})}{n(^{177} \text{ Hf})}$	$\frac{n(^{176} \text{Lu})}{n(^{177} \text{Hf})}$	$\left\lfloor n^{(177} \mathrm{Hf}\right) \right\rfloor_{\mathrm{c}}$		$\varepsilon_{\rm Hf}(0)$	VIII He	误差	t _{DM1} (Hf)	$t_{\rm DM2}$ (Hf)	$f_{ m Lu/Hf}$
号	点			// ***/	测值	误差(2σ)		测值	(2 0)			
	02R	1900	0.021765	0.000992	0.281439	0.000012	-47.14	-6.04	0.42	2535	2716	-0.97
	08R	1900	0.028751	0.001248	0.281463	0.000012	-46.29	-5.51	0.42	2519	2690	-0.96
	09R	1900	0.04504	0.001704	0.281419	0.000015	-47.85	-7.66	0.53	2611	2796	-0.95
	16R	1900	0.030133	0.001339	0.281472	0.000016	-45.97	-5.31	0.57	2513	2680	-0.96
	18R	1900	0.020935	0.000949	0.281374	0.000013	-49.44	-8.29	0.46	2621	2828	-0.97
	21R	1900	0.022573	0.001006	0.281401	0.000015	-48.48	-7.40	0.53	2588	2784	-0.97
	23R	1900	0.025652	0.001199	0.281691	0.000028	-38.23	2.65	0.99	2201	2285	-0.96
	24R	1900	0.024274	0.001109	0.281385	0.000016	-49.05	-8.10	0.57	2617	2818	-0.97
	25R	1900	0.031766	0.00138	0.281404	0.000017	-48.38	-7.78	0.60	2609	2802	-0.96
	27R	1900	0.051622	0.00186	0.281373	0.000017	-49.47	-9.49	0.60	2686	2887	-0.94
	12R	1900	0.023331	0.000918	0.281381	0.000014	-49.19	3.91	0.50	2609	2813	-0.97
石	01C	2437	0.016958	0.000704	0.281366	0.000016	-49.72	3.79	0.57	2615	2668	-0.98
英	03C	2476	0.02956	0.001183	0.28138	0.000015	-49.23	4.37	0.53	2629	2671	-0.96
岩	04C	2481	0.015205	0.000665	0.281079	0.000015	-59.87	-5.35	0.53	2999	3153	-0.98
NM-	05C	2498	0.012662	0.000536	0.281323	0.000013	-51.24	3.93	0.46	2662	2711	-0.98
0619	06C	2406	0.016761	0.000729	0.281308	0.000015	-51.77	0.99	0.53	2695	2780	-0.98
	07C	2503	0.009402	0.00039	0.281239	0.000014	-54.21	1.30	0.50	2764	2844	-0.99
	10C	2483	0.038059	0.001419	0.281351	0.000014	-50.25	3.09	0.50	2685	2740	-0.96
	11C	2469	0.044503	0.001626	0.281372	0.000016	-49.51	3.18	0.57	2671	2724	-0.95
	13C	2488	0.022546	0.000964	0.28137	0.000015	-49.58	4.65	0.53	2627	2667	-0.97
	14C	2437	0.012888	0.000507	0.281339	0.000015	-50.68	3.16	0.53	2638	2699	-0.98
	15C	2412	0.013547	0.000562	0.281186	0.000017	-56.09	-2.94	0.60	2848	2979	-0.98
	17C	2417	0. 030801	0.001342	0.281402	0.000014	-48.45	3. 57	0.50	2609	2662	-0.96
	19C	2503	0. 00848	0.000352	0. 28137	0.000013	-49.58	6.03	0.46	2586	2612	-0.99
	20C	2506	0. 026357	0.001093	0. 281222	0.000017	-54.81	-0.43	0.60	2838	2932	-0.97
	22C	2250	0.057854	0.002473	0.281502	0.000017	-44 91	1 72	0.60	2547	2617	-0.93
	26C	2335	0.028237	0.001023	0. 281415	0.000017	-47.99	2.73	0.60	2570	2637	-0.97
	02CC	2456	0.030858	0.001295	0.281321	0.000015	-51 31	1 64	0.53	2717	2789	-0.96
	04CC	2349	0.022723	0.001200	0.281392	0.000013	-48,80	2 25	0.46	2600	2672	-0.97
	0600	2582	0.015186	0.00063	0.280916	0.000015	-65.64	-8 80	0.53	3215	3404	-0.98
	1100	2201	0.018949	0.000814	0.28139	0.000019	-18 87	-0.83	0.68	2590	2703	-0.98
	1200	2/01	0.065006	0.002687	0.281451	0.000017	-46.72	4 74	0.00	2635	2667	-0.92
	01CR	2226	0.018957	0.000852	0.281372	0.000017	-49 51	-0.97	0.00	2617	2730	-0.97
	05CR	2/81	0.021330	0.000032	0.281372	0.000012	-49.40	4 76	0.46	2617	2656	-0.97
黑	07CP	2435	0.019756	0.000913	0.281362	0.000013	-40.86	2.26	0.46	2631	2687	-0.07
궄	OPCR	2455	0.019730	0.000810	0.201302	0.000013	49.00	5.50	0.40	2031	2600	-0.09
<u> </u>	OOCR	2400	0.019388	0.000819	0.281403	0.000018	40.34	0.02	0.04	2570	2000	0.90
长	10CR	2130	0.010718	0.000768	0.20143	0.000018	-47.40	-0.95	0.04	2002	2000	-0.98
片	10CK	2432	0.011948	0.000334	0.201391	0.000013	40.04	4.02	0.55	2071	2013	-0.98
麻	13CR	2432	0.019223	0.000827	0.281411	0.000014	-48.13	5.08	0.50	2562	2600	-0.98
岩	14CR	2446	0.017649	0.000772	0.281406	0.000014	-48.31	5.31	0.50	2565	2600	-0.98
NM-	18CR	2423	0.019295	0.000838	0.281386	0.000014	-49.01	3.97	0.50	2597	2647	-0.97
0605	ZUCK	2299	0.020936	0.000891	0.281398	0.000016	-48.59	1.53	0.57	2584	2007	-0.97
	16R	1853	0.015881	0.000695	0.281445	0.000015	-46.93	-6.49	0.53	2507	2701	-0.98
	19R	1853	0.01471	0.000651	0.28145	0.000015	-46.75	-6.26	0.53	2498	2689	-0.98
	03R	1853	0.02698	0.001241	0.281495	0.000013	-45.16	-5.40	0.46	2474	2647	-0.96
	15R	1853	0.011673	0.000641	0.28152	0.000022	-44.28	-3.76	0.78	2402	2565	-0.98
	17R	1853	0.01747	0.00082	0.281427	0.000015	-47.56	-7.29	0.53	2540	2740	-0.98
	21R	1853	0.0065	0.000367	0.281444	0.000016	-46.96	-6.12	0.57	2488	2682	-0.99
	22R	1853	0.011892	0.000563	0.281555	0.000027	-43.04	-2.42	0.96	2350	2499	-0.98

	1.+-	+	
- 1	737	÷	
۰.		A X	- I

$ \begin{array}{c} \frac{4}{4} \\ \frac{3}{4} $	$f_{Lu/Hf}$ -0.98 -0.98 -0.99 -0.99 -0.99 -0.98 -0.97
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} f_{Lu/Hf} \\ \hline \\ -0.98 \\ -0.98 \\ -0.99 \\ -0.99 \\ -0.98 \\ -0.97 \end{array} $
$=\frac{5}{2}$ $=\frac{1}{2}$ $=\frac{1}$	$ \begin{array}{c} -0.98 \\ -0.98 \\ -0.99 \\ -0.99 \\ -0.98 \\ -0.97 \end{array} $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{r} -0.98 \\ -0.98 \\ -0.99 \\ -0.99 \\ -0.98 \\ -0.97 \\ \end{array} $
03R 1900 0.014259 0.000654 0.281443 0.000025 -46.99 -5.46 0.88 2507 2687 11R 1900 0.007729 0.000348 0.281475 0.000019 -45.86 -3.93 0.68 2444 2612 13R 1900 0.010944 0.000479 0.281541 0.000016 -43.52 -1.74 0.57 2363 2506	$ \begin{array}{c c} -0.98 \\ -0.99 \\ -0.99 \\ -0.98 \\ -0.97 \end{array} $
11R 1900 0.007729 0.000348 0.281475 0.000019 -45.86 -3.93 0.68 2444 2612 13R 1900 0.010944 0.000479 0.281541 0.000016 -43.52 -1.74 0.57 2363 2506	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
13R 1900 0.010944 0.000479 0.281541 0.000016 -43.52 -1.74 0.57 2363 2506	-0.99 -0.98 -0.97
	-0.98 -0.97
15R 1900 0.014215 0.000693 0.281516 0.00002 -44.4 -2.91 0.7 2410 2561	-0.97
16R 1900 0.025725 0.001054 0.281503 0.000022 -44.88 -3.85 0.77 2452 2610	2 ·
18R 1900 0.01123 0.000505 0.281446 0.000016 -46.88 -5.15 0.57 2493 2669	-0.98
26R 1900 0.051018 0.001997 0.281624 0.000021 -40.6 -0.76 0.76 2343 2454.3	-0.94
01C 2371 0.021867 0.000893 0.281376 0.000013 -49.36 2.37 0.47 2614 2683	-0.97
02C 2371 0.014913 0.000618 0.281371 0.000014 -49.54 2.62 0.5 2602 2671	-0.98
变 04C 2371 0.026955 0.001145 0.281463 0.00002 一46.3 5.03 0.71 2513 2554	-0.97
质 05C 2371 0.011114 0.000468 0.281376 0.000014 -49.38 3.03 0.48 2586 2652	-0.99
辉 06C 2371 0.023654 0.000959 0.281409 0.000015 -48.22 3.41 0.52 2574 2632	-0.97
K 09C 2371 0.01684 0.000701 0.281363 0.000016 -49.82 2.21 0.56 2619 2693	-0.98
岩 10C 2371 0.014859 0.00062 0.281373 0.000014 -49.47 2.69 0.48 2600 2668	-0.98
NM- 12C 2371 0.015578 0.000648 0.281366 0.000013 -49.73 2.38 0.48 2612 2684	-0.98
0618 14C 2371 0.020177 0.000842 0.281416 0.000014 -47.95 3.86 0.5 2556 2609	-0.97
17C 2371 0.013571 0.000582 0.281387 0.000015 -48.99 3.24 0.54 2579 2641	-0.98
19C 2371 0.01755 0.000724 0.281378 0.000017 -49.3 2.7 0.61 2600 2668	-0.98
20C 2371 0.02691 0.001065 0.281505 0.000041 -44.8 6.68 1.47 2449 2471	-0.97
21C 2371 0.019066 0.000782 0.281424 0.00002 -47.67 4.25 0.71 2541 2592	-0.98
22C 2371 0.019334 0.000812 0.281348 0.000017 -50.35 1.5 0.59 2647 2729	-0.98
23C 2371 0.014974 0.000637 0.281363 0.000015 -49.84 2.29 0.53 2615 2687	-0.98
24C 2371 0.015575 0.000656 0.281383 0.000017 -49.11 3 0.6 2588 2652	-0.98
25C 2371 0.014164 0.000625 0.281398 0.000015 -48.59 3.57 0.55 2566 2624	-0.98
27C 2371 0.011343 0.000505 0.281339 0.000014 -50.66 1.68 0.51 2637 2716	-0.98
28C 2371 0.013779 0.000586 0.281372 0.000015 -49.5 2.72 0.54 2599 2667	0

注:表中第三列给出了锆石年龄(单位为 Ma),第六列_{[n}(¹⁷⁶ Hf)/n(¹⁷⁷ Hf)_]。为校正后的n(¹⁷⁶ Hf)/n(¹⁷⁷ Hf),第九列使用年龄见第三 列;样品 NM0619 中, C和 R 分别为核部碎屑锆石和边部变质锆石,样品 NM0605 中, CC、CR 和 R 分别为碎屑锆石中的"核部锆石" 和"边部锆石"及边部变质锆石,样品 NM0618 中, C和 R 分别为核部岩浆锆石和边部变质锆石。

电感耦合等离子体质谱仪(Q-ICPMS)和 193 nm 激 光取样系统上进行的。分析方法见 Wu et al. (2006)、柳小明等(2007)和谢烈文等(2008)。采用 静态信号采集模式,背景采集时间 30 s,激光能量密 度为 15 J/cm², 束斑直径为 60µm, 剥蚀速率 6 Hz。 剥蚀物质由高纯度 He 气运载,由两根管子分别输 送至 MC-ICPMS 进行 Lu-Hf 同位素分析和 Q-ICPMS 进行包括 REE 在内的微量元素分析(可同 时进行 U-Pb 定年),所以锆石稀土组成与 Lu-Hf 同 位素分析位置相同。分送两台仪器的剥蚀物质比例 为4(微量元素分析,未定年,因为已完成SHRIMP 定年):6(Lu-Hf 同位素分析)。标准锆石 91500 $\left[(n(^{176} \text{Hf})/n(^{177} \text{Hf}) = 0.282306) \right]$ (Woodhead et al., 2004) 门的¹⁸⁰ Hf的信号强度约为5V 左右。计 算参数如下:¹⁷⁶Lu的衰变常数为1.865×10⁻¹¹a⁻¹ (Scherer et al., 2001), 球粒陨石的 *n*(¹⁷⁶Hf)/ $n(^{177}$ Hf) 和 $n(^{176}$ Hf) $/n(^{177}$ Hf) 比 值 分 别 为 0.0332 和 0.282772(Blichert-Toft et al., 1997),现今亏损 地幔的 n(¹⁷⁶ Hf)/n(¹⁷⁷ Hf) 为 0.28325 (Nowell et al., 1998)。按照 Zheng et al. (2005, 2006)的方 法,以变质岩中锆石的核、边不同年龄分别计算了初 始 Hf 同位素比值。Hf 同位素单阶段模式年龄 tpm (Hf)以亏损地幔为参考计算,两阶段模式年龄 t_{DM2} (Hf)依据大陆地壳平均组成计算。对于微量元素 分析,实验前对 Q-ICPMS 仪器进行了 P/A 校正,同 时用调谐液对仪器参数进行调节,使氧化物产率 (CeO/Ce)小于 0.5%,二价离子产率(Ce²⁺/Ce⁺)小 于3%。数据采集模式为 Time-resolved Analysis, 选用一个质量峰采集一点的跳峰方式,单点停留时 间设定为6ms(REE)。每测定5个未知样品点测 定一个标准锆石 91500 和一个标准玻璃 NIST SRM 610。每个分析点的气体背景采集时间为 20 s,信号 采集时间为 40 s。样品校正后的同位素比值误差计 算中,除了考虑样品和外标锆石 91500 同位素比值 在测定过程中产生的误差外,91500 同位素比值的 推荐值的误差也考虑在内,其相对标准偏差设定为 2%。元素浓度采用 GLITTER(ver 4.0)程序进行 计算,以 NIST SRM 610 作外标,以 Si 作为内标。

3 锆石特征、Hf 同位素和稀土组成

3.1 石英岩(NM0619)

锆石多为长柱状,阴极发光下显示清楚的核-边结构。大多数核部碎屑锆石具有震荡或板状环带 (图 2a, b),为岩浆成因。一些核部锆石的边缘阴极 发光下显示弱的发光性,可能是流体作用下重结晶 的结果。边部锆石阴极发光下无环带结构,为变质 成因。17 个核部碎屑锆石分析,U、Th 含量和 Th/ U 比值分别为 80×10⁻⁶~702×10⁻⁶、62×10⁻⁶~ 503×10⁻⁶和 0.47~1.14,年龄为 2.25~2.51 Ga。 11个边部变质锆石数据点分析,U、Th含量和Th/ U比值分别为 796×10⁻⁶~3559×10⁻⁶、29×10⁻⁶ ~193×10⁻⁶和 0.02~0.10。大部分变质锆石存在 强烈 Pb 丢失,2 个接近谐和线的数据点 $n(^{207}$ Pb)/ n(206 Pb)年龄为约 1.9 Ga。共对 21 颗锆石做了 27 个 Hf 同位素和稀土元素分析。16 个核部碎屑锆石 分析, $\lceil n(^{176}\,\mathrm{Hf})/n(^{177}\,\mathrm{Hf})\rceil_{c}, t_{\mathrm{DM1}}$ (Hf)和 t_{DM2} (Hf) 变化范围分别为 0.281079~0.281502、2548~3000 Ma、2612~3153 Ma; 11 个边部变质锆石分析, $\varepsilon_{\rm Hf}(t)(t$ 为边部变质锆石加权平均年龄)、 $t_{\rm DM1}({\rm Hf})$ 和 t_{DM2}(Hf)变化范围分别为-9.49~3.91(平均值 为-5.37)、2201~2686 Ma(平均值为 2555Ma)和 2285~2887 Ma(平均值为 2736Ma)(表 1,图 3)。 16个核部碎屑锆石分析,稀土总量为293×10⁻⁶~ 3235×10⁻⁶(表 2)。稀土模式为左倾型,大多数锆 石具明显正 Ce 异常和负 Eu 异常(表 2,图 4a), 特征与岩浆锆石类似(Rubatto,2002;吴元保等,

图 2 大青山地区早前寒武纪变质岩的锆石阴极发光图

Fig. 2 Cathodoluminescence image of zircons from Early Precambrian metamorphic rocks in the

Daqing Moumtains, Inner Mongolia

(a)、(b) 石英岩(NM0619);(c)、(d) 黑云二长片麻岩(NM0605);(e)、(f) 变质辉长岩(NM0618)。图中圆圈(60 μm)为
 锆石 Hf 同位素和稀土分析位置,编号与表1和2中的一致。括号中给出了 ε_{Hf}(t)值

(a),(b) Quartzite (NM0619); (c),(d) Biotite two-feldspar gneiss (NM0605); (e),(f) Meta-gabbro (NM0618). Circles (60 μ m) show positions of Hf isotope and REE analyses, with their identification numbers as in Tables 1 and 2. $\epsilon_{Hf}(t)$ values are given in brackets

表 2 大青山地区早前寒武纪变质岩石的锆石 REE 组成

Table 2 REE composition of zircons from Early Precambrian metamorphic rocks in the Daqing

Mountains, Inner Mongolia

样品号	测 点 号	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	εree	$\left(\frac{La}{Yb}\right)_n$	$\frac{Eu}{Eu^*}$	$\frac{Ce}{Ce^*}$
	01C	30.59	111	7.06	30	7.62	1.63	19	5.52	61	22	100	21	210	41	667	0.0960	0.40	2
	02R	0.78	7	0.32	2	0.85	0.21	7	3.40	54	25	139	35	404	87	766	0.0013	0.19	3
	03C	0.55	25	0.31	4	6.31	0.39	29	9.60	112	41	181	38	363	68	878	0.0010	0.07	15
	04C	1.72	27	0.68	4	3.25	0.84	11	3.48	42	17	80	19	193	40	443	0.0059	0.39	6
	05C	0.80	26	1.18	8	6.68	3.32	16	5.8	64	23	105	24	241	48	573	0.0022	0.95	5
	06C	45.18	138	15.30	68	19.36	4.00	33	8.90	84	25	103	22	233	48	847	0.1277	0.49	1
	07C	0.06	16	0.09	1	1.95	0.46	9	2.99	34	13	58	12	120	24	293	0.0003	0.28	44
	08R	30.77	93	11.77	55	16.63	2.21	27	8.43	100	40	207	52	586	124	1354	0.0346	0.32	1
	09R	24.38	124	25.10	157	110.28	71.84	184	53.98	474	125	466	98	957	174	3045	0.0168	1.55	1
	10C	22.78	174	26.02	168	122.38	77.51	222	63.33	557	144	522	99	888	149	3235	0.0169	1.44	2
	11C	16.44	146	11.04	65	42.96	19.25	90	27.04	258	77	294	58	530	92	1727	0.0204	0.93	3
石	12R	16.31	87	8.11	41	21.61	9.68	43	12.51	121	36	143	29	278	52	898	0.0386	0.96	2
英	13C	1.80	87	3.34	18	5.71	0.66	13	4.30	55	24	122	29	307	61	732	0.0039	0.23	7
岩	14C	0.53	23	0.85	6	6.10	1.72	16	4.64	48	16	68	15	143	27	376	0.0024	0.51	7
NM-	15C	0.11	7	0.18	2	3.51	0.18	12	3.97	44	16	72	15	149	29	354	0.0005	0.08	10
0619	16R	18.68	86	10.81	55	17.67	2.96	27	8.87	103	38	192	49	546	120	1275	0.0225	0.42	1
	17C	7.48	58	5.64	30	12.75	2.45	29	9.63	106	40	194	46	495	104	1140	0.0100	0.38	2
	18R	0.51	5	0.20	2	1.24	0.34		3.56	54	25	143	37	411	88	778	0.0008	0.28	4
	19C	0.14	25	0.14	2	2.85	0.39	11	3.36	35	13	56	12	116	23	300	0.0008	0.19	40
	20C	2.44	20	1.02	8	7.53	1.21	29	8.96	100	36	156	31	294	57	752	0.0055	0.22	3
	21R	0.11	5	0.04	0	1.22	0.25	7	3.69	56	26	139	36	395	85	754	0.0002	0.21	18
	22C	5.23	63	1.94	15	14.35	4.69	51	15.93	182	68	316	69	680	137	1623	0.0051	0.48	5
	23R	7.21	28	3.56	18	5.46	3.40	16	6.26 c.5c	85	36	197	50	581	130	1167	0.0082	1.04	
	24K	5.26	37	2.99		9.24	4.70		0.50	190	30	148	38	420	91	906	0.0082	1.04	
	25K	4.84	120	11 54	51	29.80	12.04	22	12.90	123	42	191	43	450	93	1190	0.0071	0.91	
	20C	40.00	150	11.04 90 71	102	10.00	71 04	41 924	12.00	691	49	586	00 112	1006	170	2560	0.0940	0.15	
	01CP	24.00	16 70	20.71	2 26	133.21	0.26	0.04	2 50	40	101 91	112	20	226	70	642	0.0138	1.20	10
	01CK	1 27	10.79	1 04	6 60	2.33 5.26	1 11	9.04	5.09	49 01	21	113	41	320	00	045	0.0007	0.15	5
	02CC	0.06	14 07	0.03	0.03	1 17	0.36	8 01	3 76	54	25	142	3.8	1/8	95	830	0.0020	0.33	81
		192 70	565 1	75 06	3/3 8	77 86	6 90	73 5	13 45	110	36	150	35	365	75	2128	0.3477	0.27	1
	05CR	0.03	20 36	0.04	0 81	2 82	0.27	14 92	6 02	78	32	157	36	360	72	780	0.0001	0.10	121
	06CC	1 50	18 66	0.77	5 22	4 06	0.43	15 08	5 30	63	23	105	22	213	41	518	0.0046	0.15	4
	07CR	0.98	32.68	0.46	3. 20	4.49	0.44	25.31	9.97	135	56	283	66	704	144	1466	0.0009	0.10	12
黑	08CR	1.33	71.17	0.85	5.82	7.99	0.83	32.97	11.45	150	58	278	61	615	123	1417	0.0014	0.14	16
云	09CR	1.50	25.1	1.39	7.26	4.23	1.33	9.65	3.33	39	17	86	23	264	58	541	0.0037	0.62	4
	10CR	0.09	16.07	0.10	0.79	1.06	0.31	4.98	1.91	26	11	63	17	190	42	374	0.0003	0.35	37
长	11CC	0.11	26.26	0.36	4.39	5.51	1.87	21.96	6.46	68	24	105	22	213	42	541	0.0003	0.46	20
片	12CC	0.46	76.91	0.55	6.29	13.81	1.27	62.11	22.98	270	103	468	97	930	178	2230	0.0003	0.11	33
麻	13CR	0.07	32.80	0.10	1.23	3.09	0.40	15.67	6.20	76	30	141	31	316	64	718	0.0001	0.14	80
岩	14CR	0.02	21.28	0.03	0.59	1.96	0.24	12.34	5.23	66	27	132	30	304	63	664	0.0000	0.11	170
NM-	15R	0.24	6.35	0.27	1.26	1.23	0.56	4.40	1.51	25	11	67	18	238	62	437	0.0007	0.66	5
0605	16R	0.06	21.76	0.05	0.62	1.74	0.26	8.46	3.79	47	20	102	25	263	53	547	0.0002	0.17	91
	17R	0.82	17.33	0.59	3.52	2.36	0.63	7.93	2.82	36	16	86	23	264	57	518	0.0020	0.41	6
	18CR	0.20	25.53	0.14	1.50	3.40	0.30	16.95	6.17	79	31	151	34	334	68	751	0.0004	0.10	36
	19R	0.14	21.62	0.12	1.12	1.78	0.32	8.82	3.38	42	18	89	22	237	50	495	0.0004	0.20	38
	20CR	0.08	39.35	0.17	1.96	3.91	0.50	18.93	6.93	84	33	156	34	331	66	776	0.0002	0.15	60
	21R	0.07	4.31	0.08	0.43	0.49	0.16	2.47	0.84	13	6	35	10	118	32	223	0.0004	0.37	12
	22R	0.53	9.95	0.30	2.03	1.10	0.45	3.78	1.35	20	9	48	12	146	35	289	0.0024	0.61	6

_	-11	_	
5		5	
0	ж.	0	

																		(续表	2)
样品号	测点号	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	ε _{REE}	$\left(\frac{La}{Yb}\right)_n$	$\frac{Eu}{Eu^{*}}$	$\frac{Ce}{Ce^*}$
	01C	0.1	30	0.39	6.18	8.84	1.23	32	9.47	101	36	153	31	302	59	770	0.0002	0.20	22
	02C	0.73	28	0.5	4.47	4.71	0.69	16	5.01	55	20	88	18	182	36	459	0.0026	0.22	11
	03R	0.25	17	0.38	2.96	2.24	0.68	8	2.58	32	13	68	17	181	40	385	0.0009	0.44	11
	04C	0.94	54	1.68	13.4	14.84	3.26	49	15.36	169	63	292	64	650	131	1521	0.0010	0.34	8
	05C	0.92	30	0.4	2.83	3.13	0.52	12	3.89	43	16	75	16	163	32	399	0.0037	0.23	12
	06C	0.4	36	0.92	11.6	12.71	1.73	41	11.49	118	41	175	35	331	62	878	0.0008	0.21	10
	07R	0.92	25	1.25	9.8	7.83	1.4	19	5.56	59	22	100	23	239	52	566	0.0025	0.34	5
	08C	4.42	65	8.23	51.31	32.4	5.59	49	12.95	111	34	136	28	265	53	856	0.0110	0.43	2
	09C	0.85	28	0.84	8.48	9.06	1.48	28	8.08	83	29	125	25	236	46	629	0.0024	0.26	7
	10C	0.02	18	0.07	1.07	1.54	0.31	7	2.49	28	11	52	12	125	26	284	0.0001	0.25	72
गोऽ	11R	2.2	34	3.88	24.45	14.19	2.36	16	3.87	32	9	40	9	95	21	307	0.0153	0.48	2
受 医	12C	0.08	21	0.22	3.36	4.63	0.8	20	5.6	59	21	92	19	184	36	467	0.0003	0.22	26
灰紫	13R	6.43	72	10.41	62.94	31.53	6.5	38	8.96	73	20	81	17	167	34	629	0.0254	0.58	2
库	14C	9.82	48	3.67	21.01	10.51	1.51	28	8.22	84	30	129	26	242	47	689	0.0267	0.26	2
云	15R	1.34	19	2.14	13.98	7.19	1.7	12	3.07	34	13	65	17	201	48	438	0.0044	0.56	2
石 NM	16R	14.7	171	24.89	137.6	72.41	14.58	80	19.08	153	41	161	33	311	61	1294	0.0311	0.59	2
0619	17C	0.3	23	0.45	4.43	4.94	0.75	16	4.66	51	18	80	17	169	34	424	0.0012	0.24	13
0010	18R	5.27	63	7.73	42.83	23.72	4.83	28	7.17	60	17	73	16	164	35	548	0.0212	0.58	2
	19C	2.03	39	2.3	15.55	11.76	1.69	27	7.77	77	27	116	24	227	45	623	0.0059	0.28	4
	20C	4.13	63	5.28	35.31	24.47	4.06	49	13.34	129	42	178	36	324	63	971	0.0084	0.36	3
	21C	0.17	31	0.45	6.11	7.25	1.09	26	7.19	77	28	120	25	237	47	613	0.0005	0.22	19
	22C	0.52	28	0.75	8.05	8.64	1.32	29	8.34	87	31	136	28	260	51	678	0.0013	0.23	9
	23C	3.87	36	1.48	9.9	7.29	1	20	6.1	65	23	105	22	210	42	553	0.0121	0.24	4
	24C	2.02	44	3.17	21.58	14.27	2.34	29	7.68	77	26	114	23	221	44	629	0.0060	0.35	3
	25C	0.1	21	0.35	2.77	2.98	0.55	11	3.71	42	16	76	16	166	35	393	0.0004	0.26	17
	26R	104	1051	176	1034	567	90.1	587	117	798	186	668	127	1136	217	6858	0.0603	0.48	2
	27C	0.31	16	0.22	1.8	1.9	0.32	7	2.1	26	10	50	12	124	28	280	0.0016	0.24	14
	28C	20.07	67	5.29	24.81	12.1	2.25	20	5.86	56	19	84	17	171	35	539	0.0773	0.44	2

注:分析点位置与 Hf 同位素的相同;单位为 10⁻⁶;样品 NM0619 中,C 和 R 分别为核部碎屑锆石和边部变质锆石,样品 NM0605 中, CC、CR 和 R 分别为碎屑锆石中的"核部锆石"和"边部锆石"及边部变质锆石,样品 NM0618 中,C 和 R 分别为核部岩浆锆石和边部变质锆石。

Moumtains, Inner Mongolia

2004)。部分锆石的 Ce、Eu 异常不明显。总体上, 稀土总量越高,Ce、Eu 异常越不明显。考虑到岩石 类型为石英岩,碎屑锆石稀土组成大的变化可能表 明它们来自不同物源区。11 个边部变质锆石分析, 其稀土组成与核部碎屑锆石类似,也存在大的变化 (表 2,图 4a)。

3.2 黑云二长片麻岩(NM0605)

锆石颗粒呈短柱状或扁平状,存在明显的核一边结构。很多核部碎屑锆石存在"核一幔一边"结构,其"核部锆石"具有震荡岩浆环带(图 2c, d),而 "幔部锆石"和"边部锆石"很可能是变质或深熔成因 (Vavra et al., 1999; Corfu et al., 2003),其年龄 为碎屑沉积物源区重要构造热事件的年龄记录。 "锆石幔部"太窄,未能测年。7个"锆石核部"分析, U、Th含量和 Th/U 比值分别为 $60 \times 10^{-6} \sim 540 \times$ $10^{-6} \ 57 \times 10^{-6} \sim 538 \times 10^{-6}$ 和 0.34~1.13。由于 铅丢失, $n(^{207} \text{Pb})/n(^{206} \text{Pb})$ 年龄存在变化,范围为 2.20~2.58 Ga。11个"锆石边部"分析, U、Th含 量和 Th/U 比值分别为 310×10⁻⁶~1036×10⁻⁶、 14×10⁻⁶~72×10⁻⁶和 0.02~0.10。它们也存在 铅丢失, n(²⁰⁷ Pb)/n(²⁰⁶ Pb)年龄变化范围为 1.78~ 2.48 Ga, 其中7个铅丢失弱的数据点 n(²⁰⁷Pb)/ n(²⁰⁶ Pb)加权平均年龄为 2.44±0.01 Ga。一些核 部碎屑锆石在阴极发光下显示板状结构(图 2d 中的 颗粒 7)。三个分析点 U、Th 含量和 Th/U 比值分 别为 $240 \times 10^{-6} \sim 448 \times 10^{-6}$, $139 \times 10^{-6} \sim 190 \times$ 10⁻⁶和 0.38~0.60, n(²⁰⁷ Pb)/n(²⁰⁶ Pb)年龄变化范 围为 2.13~2.40 Ga,这些碎屑锆石来自不同物源 区。5个边部变质锆石分析,U、Th 含量和 Th/U 比值分别为 554×10⁻⁶~1036×10⁻⁶、21×10⁻⁶~ 72×10⁻⁶和 0.02~0.10。其中 3 个数据点给出 $n(^{207} Pb)/n(^{206} Pb)$ 加权平均年龄为 1.85±0.01 Ga,被解释为古元古代晚期变质深熔作用年龄记 录。共在 20 颗锆石上进行了 22 个 Hf 同位素和稀 土元素分析。由于锆石较小,未在同一颗锆石上分 别作核部和边部锆石分析。5个碎屑锆石的"核部 锆石"分析,除数据点 06CC 妚 「n(¹⁷⁶ Hf)/n(¹⁷⁷ Hf) _{]c}、t_{DM1}(Hf)和 t_{DM2}(Hf)分别为 0.280916、3215 Ma 和 3404 Ma),其余数据 「n(176 Hf)/n(177 Hf)]c、tDM1 (Hf)和 tDM2 (Hf)变化范 围分别为 0.281321~0.281451、2589~2717 Ma(平 均值为 2635Ma)和 2667~2789 Ma(平均值为 2708 Ma); 10 个碎屑锆石的"边部锆石"分析, $[n(^{176} \text{Hf})/n(^{177} \text{Hf})]_{c}, t_{DM1}(\text{Hf})$ 和 $t_{DM2}(\text{Hf})$ 变化范 围分别为 0.281362~0.28143、2533~2631Ma(平 均值为 2585Ma) 和 2600~2730 Ma(平均值为 2645Ma); 所有核部碎屑锆石的 「n(176 Hf)/n(177 Hf)]。、t_{DM2}(Hf)和 t_{DM2}(Hf)变化范 围分别为 0.280916~0.281451、2533~2717 Ma、 2600~3404 Ma。7 个边部变质锆石分析, ε_{Hf}(t)(t =1.85 Ga,变质锆石加权平均年龄)、t_{DM1}(Hf)和 t_{DM2}(Hf)变化范围分别为-7.29~-2.42(平均值 为-5.39)、2350~2540Ma(平均值为2466Ma)和 2499~2740 Ma(平均值为 2646Ma)(表 1,图 3)。 碎屑锆石的"核部锆石"和"边部锆石"的稀土组成类 似,为左倾型,具强正 Ce 异常和负 Eu 异常(表 2,图 4b)。边部变质锆石与核部碎屑锆石的稀土模式也 类似,但是,前者比后者稀土总量明显偏低,变化范 围分别为 223×10⁻⁶~830×10⁻⁶和 374×10⁻⁶~ 2230×10⁻⁶(表 2,图 4b),其中 12CC 比其它数据点 稀土总量明显偏高。数据点 04CC 可能打在包裹体上,轻稀土含量明显偏高(图 4b)。

3.3 变质辉长岩(NM0618)

锆石呈柱状,阴极发光下具核一边结构,大多数 锆石核部呈板状或震荡环带结构(图 2e、f)。一些核 部锆石包有长石、磷灰石和石英包裹体。19个核部 锆石数据点 U、Th 含量和 Th/U 值分别为 72× 10^{-6} ~545×10⁻⁶、64×10⁻⁶~809×10⁻⁶和 0.91~ 1.53, n(²⁰⁷ Pb)/n(²⁰⁶ Pb) 加权平均年龄为 2.37 ± 0.02 Ga。边部锆石结构较均一(图 2e、f),几乎没有 包裹体,宽度较窄。8个数据点 U、Th 含量和 Th/ U 值分别为 $261 \times 10^{-6} \sim 1476 \times 10^{-6}$ 、 $18 \times 10^{-6} \sim$ 338×10^{-6} 和 0.01~0.58。 $n(^{207}\text{Pb})/n(^{206}\text{Pb})$ 年龄 变化范围较大,其中4个年龄较小的数据点给出 n(²⁰⁷Pb)/n(²⁰⁶Pb)加权平均年龄为1.90±0.01 Ga。 共在 25 颗锆石上进行了 27 个 Hf 同位素和稀土元 素分析。19个核部岩浆锆石分析, $\epsilon_{\rm HF}(t)(t=2.37)$ Ga,岩浆锆石加权平均年龄)和 tpm (Hf)变化范围 分别为 1.50~6.68 和 2449~2647 Ma,大的 ε_{Hf}(t) 正值表明岩浆来自亏损地幔;8个边部变质锆石分 析,ε_{Hf}(t)(t=1.90 Ga,变质锆石加权平均年龄)、 t_{DM1} (Hf)和 t_{DM2} (Hf)分别为一5.15~1.5、2319~ 2507 Ma和 2443~2687 Ma(表 1,图 3)。19个核部 岩浆锆石分析,稀土模式为左倾型,大多具明显正 Ce 异常和负 Eu 异常(表 2,图 4c)。

稀土总量变化范围和平均值分别为 280×10⁻⁶ ~1521×10⁻⁶和 633×10⁻⁶。随着稀土含量增高, 锆石负 Ce 异常逐渐减弱。锆石稀土组成的有序变 化,反映了基性岩浆作用过程岩浆组成和物化条件 的变化。8 个边部变质锆石分析,稀土模式与岩浆 锆石无明显区别。稀土总量变化范围和平均值分别 为 307×10⁻⁶~1294×10⁻⁶和 595×10⁻⁶(数据点 26 除外),与岩浆锆石稀土总量类似。在仅有的 2 颗锆 石的成对分析中,一对分析显示变质锆石比岩浆锆 石稀土总量明显偏低(数据点 03R 和 04C),另一对 分析变质锆石比岩浆锆石轻稀土含量高(数据点 17C 和 18R),但前者稀土模式异常,可能受到矿物 包裹体的影响,就像数据点 26R 一样。

4 讨论

变质碎屑沉积岩(NM0619,NM0605)的碎屑锆 石 Hf 同位素组成存在较大变化, [n(¹⁷⁶ Hf)/n(¹⁷⁷ Hf)]_c,t_{DM1}(Hf)和 t_{DM2}(Hf)分别为 0.281079~0.281502、2548~3000 Ma、2612~3153

Ma和 0.280916~0.281451、2533~2717 Ma、2600 ~3404 Ma(表 1,图 3)。结合碎屑锆石年龄的变 化,碎屑物质很可能来自不同的物源区。变质辉长

图 4 大青山地区早前寒武纪变质岩锆石稀土模式	
Fig. 4 REE pattern of zircons from early Precambria	n
rocks in the Daqing Mountains, Inner Mongolia	
(a) 石英岩(NM0619);(b) 黑云二长片麻岩(NM0605);	
(c)变质辉长岩(NM0618)	
(a) Quartzite (NM0619); (b) Biotite two-feldspar	

gneiss (NM0605); (c) Meta-gabbro (NM0618)

岩(NM0618)岩浆锆石具正的 $\epsilon_{\rm Hf}(t)$ 值(1.50~ 6.68), t_{DM1}(Hf)为 2449~2647 Ma(表 1,图 3)。这 些表明大青山及邻区在新太古代晚期一古元古代早 期存在强烈的构造岩浆热事件,既有地幔添加又有 壳内再循环作用。与核部锆石相比,边部变质锆石 「n(176 Hf)/n(177 Hf)」。有一定增大。这由同一颗锆 石的核、边比较也可以看出。例如,NM0619-03 和 NM0619-02 分别为同一锆石的核部和边部,其 $\lceil n(^{176} \text{Hf})/n(^{177} \text{Hf}) \rceil_{c}$ 分别为 0.281380 和 0.281439,表明变质作用过程中岩石和/或组成岩石 的矿物 Lu-Hf 同位素组成发生了变化,边部锆石主 要为变质增生成因,而不仅仅是核部锆石重结晶作 用的结果。石榴子石十分富集重稀土,变质作用过 程中石榴子石的形成会强烈影响岩石中包括锆石在 内的其它矿物 Hf 同位素组成(Zheng et al., 2005, 2006; Dong et al., 2007)。但是,本文的 3 个岩石 样品中都无石榴子石存在,特别是,石英岩几乎全由 石英组成,所以变质锆石 Hf 同位素组成变化可能 主要与岩石体系 Hf 同位素组成变化有关。但是, 对于石英岩等碎屑沉积岩,碎屑锆石年龄不同,而碎

Fig. 5 REE pattern of zircons from early Precambrian rocks in the Daqing Mountains, Inner Mongolia (a)石英岩(NM0619); (b)变质辉长岩(NM0618)。图中括号内年龄分别为锆石 n(²⁰⁷Pb)/n(²⁰⁶Pb)年龄和 t_{DM}(Hf)模式年龄

(a) Quartzite (NM0619); (b) Meta-gabbro (NM0618). $n(^{207}\text{Pb})/n(^{206}\text{Pb})$ age

and t_{DM} (Hf) of zircons are given in bracket

屑锆石边部变质增生边的 Hf 可来自其它碎屑锆石 的溶解和搬运。这也可造成核部碎屑锆石和边部增 生边锆石 Hf 同位素组成出现差异(Wu et al., 2007)。

不同岩石样品的锆石 REE 特征类似,均显示重 稀土富集、轻稀土亏损,这在很大程度上是锆石晶体 结构控制的原因。为了清楚反映变质作用过程中错 石稀土组成变化,图5给出了在同一锆石颗粒上成 对做过边部变质锆石和核部锆石分析的稀土模式。 边部变质锆石与其核部锆石稀土模式十分类似,表 明前者稀土组成受到后者的强烈控制。这些变质错 石并非为核部锆石重结晶作用的产物,而是变质作 用过程中形成的变质增生边。结合一些核部锆石显 示出被流体溶蚀破坏的结构特征,推测形成变质错 石增生边的锆和稀土可能主要来自被其包裹的核部 锆石本身,而不是较远距离的其他地方。但这需要 Hf 同位素等资料的进一步证实。与核部锆石相比, 边部变质锆石稀土含量普遍降低。变质辉长岩 (NM0605)岩浆锆石和变质锆石稀土组成对比研究 也显示了同样的变化规律(图 4b)。这表明变质错 石增生边形成时有稀土物质带出岩石体系之外。边 部变质锆石相对于核部锆石 Hf 同位素和 U-Th 组成发生变化也说明了这一点。与核部锆石相比, 边部变质锆石 Th/U 比值明显降低(普遍<0.1)。 一些核部锆石呈港湾状被溶蚀,变质流体对变质锆 石增生边的形成和 Hf 同位素、稀土和 U-Th 组成 变化起了重要作用。变质流体具有高 U 低 Th、贫 稀土和高 $n(^{176} \text{Hf})/n(^{177} \text{Hf})$ 比值的组成特征。

5 结论

锆石 Hf 同位素研究表明,大青山及邻区在新 太古代晚期一古元古代早期存在强烈的构造岩浆热 事件,既有地幔添加又有壳内再循环作用,变质作用 过程中岩石体系的 Lu-Hf 同位素是开放的。边部 变质锆石与核部锆石具类似的稀土模式,但稀土总 量普遍降低。形成变质锆石增生边的锆和稀土主要 来自被其包裹的核部锆石本身。变质流体对变质锆 石增生边形成和 Hf 同位素、稀土和 U—Th 组成变 化起了重要作用。锆石的生长过程可能包含了溶解 以后的再结晶。

致谢:Hf 同位素和稀土分析得到吴福元研究员、谢烈文老师、杨岳衡老师、张艳斌老师的帮助。 吴元保教授提出宝贵意见。深表谢意。

注释 / Notes

- 杨振升,徐仲元,刘正宏,黄道玲. 2006a. 1:25 万区域地质调查报告(包头幅).(内部发行).
- ❷ 董春艳. 2008. 内蒙古大青山地区孔兹岩系及地壳演化──锆石 SHRIMP 年代学和地球化学制约. 博士后报告, 1~131.

参考文献 / References

- 金巍,李树勋,刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变 质岩系特征和变质动力学. 岩石学报,11(4):27~36.
- 柳小明,高山,第五春荣,袁洪林,胡兆初. 2007. 单颗粒锆石的 20 μm 小斑束原位微区 LA - ICP - MS U - Pb 年龄和微量元素 的同时测定. 科学通报,52(2):228~235.
- 卢良兆,徐学纯,刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春:长春出版社.
- 吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对 U Pb 年龄 解释的制约. 科学通报, 49(16):1589~1604.
- 谢烈文, 张艳斌, 张辉煌, 孙金凤, 吴福元. 2008. 锆石/斜锆石 U Pb 和 Lu Hf 同位素以及微量元素成分的同时原位测定. 科 学通报, 53(2):220~228.
- 徐仲元,刘正宏,胡风翔,杨振升.2005.内蒙古大青山地区孔兹岩 系中钙硅酸盐岩的组成和地球化学特征.吉林大学学报(地球科 学版),35(6):681~689.
- 徐仲元,刘正宏,杨振升,吴新伟,陈晓峰.2007.内蒙古中部大青 山一乌拉山地区孔兹岩系的变质地层结构及动力学意义.地质 通报,26(5);526~536.
- 杨振升,徐仲元,刘正宏,黄道玲.2006b.内蒙古中部大青山—乌拉 山地区早前寒武系研究的重要进展及对高级变质区开展地层工 作的几点建议.地质通报,25(4):427~433.
- Amelin Y, Lee D C, Halliday A N, Pidgeon R T. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 399: 252~255.
- Blichert Toft J, Albarede F. 1997. The Lu Hf geochemistry of chondrites and the evolution of the mantle crust system. Earth Planetary Science Letters, 148:243~258.
- Chacko T, RavindraKumar G R, Meen J K, Rogers J W. 1992. Geochemistry of high grade supracrustal rocks from the Kerala khondalite belt and adjacent massifc harnockites, South India. Precambrian Research, 55: 469~489.
- Corfu F, Hanchar J M, Hoakin P W O, Kinny P. 2003. Atlas of zorcon textures. In: Hanchar J M, Honskin P W O. eds. Zircon. Washington: Mineralogical Society of America, 469 ~ 500.
- Dong Chunyan, Liu Dunyi, Li Junjian, Wan Yusheng, Zhou Hongying, Li Chengdong, Yang Yueheng, Xie Liewen. 2007. Palaeoproterozoic Khondalite Belt in the western North China Craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul Helan mountain area. Chinese Science Bulletin, 52(21): 2984 ~2994.
- Guo Jinghui, Sun Min, Chen Fukun, Zhai Mingguo. 2005. Sm Nd and SHRIMP U Pb zircon geochronology of high pressure granulites in the Sanggan area, North China Craton: timing of Palaeoproterozoic continental collision. Journal of Asian Earth Sciences, 24:629~642.
- Guo Jinghui, Zhai Mingguo, Xu Ronghua. 2002. Timing of granulite facies metamorphism occurring widely in the Sanggan

area, North China: Zircon U Pb geochronology. Science in China (Series D:Earth Sciences), 32, 10~18.

- Hawkesworth C J, Kemp A I S. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226: 144~162.
- Hoskin P W O, Schaltegger U, 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. In: Hanchar J M, Hoskin P W O, eds. Zircon. Washington: Mineralogical Society of America, 53: 27~62.
- Kinny P D, Maas R. 2003. Lu Hf and Sm Nd isotope systems in zircon. In: Hanchar J M, Hoskin P W O, eds. Zircon. Washington: Mineralogical Society of America, 53: 327~341.
- Nowell G M, Kempton P D, Noble S R, Fitton J G, Saunders A D, Mahoney J J, Taylor R N. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry: insights into the depleted mantle. Chemical Geology, 149:211~233.
- Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U Pb ages and metamorphism. Chemical Geology, 184: 123~138.
- Scherer E, Munker C, Mezger K. 2001. Calibration of the lutetium hafnium clock. Science, 293:683~687.
- Vavra G, Schmid R, Gebauer D. 1999. Internal morphology, habit and U Th Pb microanalysis of amphibolite to granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contribution to Mineralogy and Petrology, 134: 380~404.
- Wan Yusheng, Song Biao, Liu Dunyi, Simon A W, Wu Jiashan, Shi Yuruo, Yin Xiaoyan, Zhou Hongying. 2006. SHRIMP U Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton. Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149: 249~271.
- Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R. 2004. Zircon Hf isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology, 209:121~135.

Wu Fuyuan, Yang Jinghui, Wilde S A, Liu Xiaoming, Guo Jinghui,

Zhai Mingguo. 2007, Detrital zircon U Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research, $159:155{\sim}177$.

- Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinghui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U Pb geochronology. Chemical Geology, 234: 105~126.
- Wu Yuanbao, Zheng Yongfei, Zhang Shaobing, Zhao Zifu, Wu Fuyuan, Liu Xiaoming. 2007. Zircon U Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting. Journal metamorphic Geological, 25: 991~1009.
- Zhao Guochun, Simon A W, Sun Min, Guo Jinghui, Kr ner A, Li Shanzhong, Lia Xiaoping, Zhang Jian. 2008. SHRIMP U-Pb zircon geochronology of the Huai'an complex: constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-north China Orogen. Ameican Journal of Science, 308: 270~303.
- Zhao Guochun, Sun Min, Wilde S A, Li Shanzhong. 2005, Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 136: 177 \sim 202.
- Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Zhang Shaobing, Xu Ping, Wu Fuyuan. 2005. Metamorphic effect on zircon Lu Hf and U Pb isotope systems in ultrahigh pressure eclogite facies metagranite and metabasite. Earth Planetary Science Letters, 240: 378~400.
- Zheng Yongfei, Zhang Shaobing, Zhao Zifu, Wu Yuanbao, Li Xianhua, Li Zhengxiang, Wu Fuyuan. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 96: 127~150.
- Zheng Yongfei, Zhao Zifu, Wu Yuanbao, Zhang Shaobing, Liu Xiaoming, Wu Fuyuan 2006, Zircon U Pb age, Hf and O isotope constraints on protolith origin of ultrahigh - pressure eclogite and gneiss in the Dabie orogen. Chemical Geology, 231: 135~158.

Hf Isotope Composition and REE Pattern of Zircons from Early Precambrian Metamorphic Rocks in the Daqing Mountains, Inner Mongolia

DONG Chunyan^{1,2)}, LIU Dunyi^{1,2)}, WAN Yusheng^{1,2)}, XU Zhongyuan³⁾,

WANG Wei^{1,2)}, XIE Hangqiang^{1,2)}

1) Beijing SHRIMP Centre, Beijing, 100037;

2) Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037;

3) College of Earth Sciences, Jilin University, Changchun, 130061

Abstract: Abstract: This paper reports Hf isotope and REE composition of zircons from metamorphic rocks in the Daqing Mountains, Inner Mongolia. Detrital zircons from two meta – sedimentary rock samples have $[n(^{176} \text{ Hf})/n(^{177} \text{ Hf})]_c$, t_{DM1} (Hf) and t_{DM2} (Hf) ranging from 0. 281079 ~ 0. 281502, 2548 ~ 3000 Ma and 2612 ~ 3153 Ma and from 0. 280916 ~ 0. 281451, 2533 ~ 2717 Ma and 2600 ~ 3404 Ma, respectively. The $\epsilon_{\text{Hf}}(t)$ and t_{DM1} (Hf) of magmatic zircon from one meta – gabbro sample range from – 5. 45 ~ 6. 68 and 2319 ~ 2647 Ma, respectively. These indicate that late Neoarhcaean – early Palaeoproterozoic tectono – magmatic events occurred in the Daqing Mountains and adjacent areas, with both mantle addition

and crustal recycling. Metamorphic zircon rims commonly show young t_{DM2} (Hf) when comparing with detrital and magmatic zircon cores, suggesting that Lu—Hf compositions of the rocks and minerals were changed during metamorphic processes. Metamorphic zircon rims are similar in REE pattern to adjacent detrital and magmatic cores, but commonly being lower in total REE content. Most of the metamorphic rims are smaller than 0. 1 in Th/U ratio, being quite different from the cores which Th/U ratios are generally higher than 0. 5. It is speculated that metamorphic fluid was high in $n(^{176} \text{ Hf})/n(^{177} \text{ Hf})$ ratio and U and low in Th and REE and played an important role in metamorphic zircon formation.

Key words: Zircon; Hf isotope; REE pattern; Early Precambrian; Daqing Mountains Inner Mongolia

《地质论评》、《地质学报》、《地质学报(英文版)》 网上投稿、审稿、稿件处理状况查询系统开通启事

为了更高效率地办刊,《地质论评》、《地质学报》、《地质 学报(英文版)》开通了网上投稿、审稿、稿件处理状况查询系 统。欢迎各位作者、专家、读者登陆、使用。

《地质论评》的网址为: http://www.geojournals.cn/georev。

本系统中,作者可以网上投稿、查询稿件处理进度,下载 修改稿件的一般要求;专家可以网上审稿。读者可以阅读我 刊近期出版文章的全文、有关我刊的介绍和少量推荐文献。

1 作者网上投稿

(1)作者登陆:如果您已经有了审稿人账户,直接用审稿人帐户以作者身份登陆即可。若尚不是审稿人,请点击 "作者登录",注册"用户名称(必须是您正在使用并经常使用的 email 地址,编辑部将用此邮箱与您联系)"和"用户密码 (可以与您的 email 信箱密码不同)"。以后投稿或查稿时均 用此用户名和密码。注册时必填项必须填写,其他项目可在 不影响您信息安全的条件下选填。

(2)投稿:在您用您的"用户名称"和"密码"登陆相应刊物后即可点击左侧"投稿"后,按提示逐项填写稿件信息,并 "上传稿件全文",上传稿件的文档。点击"下一步",对稿件 信息进行核实,确认无误后点击"完成",即可完成投稿。您 还可阅读"征稿简则"。

2 作者网上查稿

登陆投稿系统,点击"稿件查询",可查看所投稿件的基本信息和目前的处理状态。稿件在我刊的处理可分为若干阶段,其中有些阶段可能被跳过,在有些阶段也有可能被退稿。这些状态请在"稿件状态"栏下及时查询,修改意见或退稿意见可在修改意见栏下查询。有关材料尽可能在"上传/下载修改稿"中传送,也可通过 email 发送。

若稿件在同一状态时间较长,可能有不同的原因,建议 作者发送 email 邮件(尽量不要打电话)向编辑部咨询、提醒, 以免耽搁。

3 专家网上审稿

(1)热忱希望各位专家登陆我刊审稿系统,并注册为我 刊的审稿专家(一般要求副高级以上职称或者具有博士学 位)。

(2)编辑部将为部分专家作简单注册,并将审稿专家登录用的网址、用户名和密码发送至专家的电子邮箱内,审稿 人在邮件中可直接点击链接审稿。

(3)敬请各位专家登录在线投稿审稿系统,输入您注册的"用户名称"和"密码"或编辑部为您注册的"用户名称"和 "密码",点击左侧"审稿登录",进入审稿系统,点击左侧"修 改个人信息"和/或"修改密码"进行相应修改、补充。特别是 您的邮编和地址,请准确填写,以便我们邮寄审稿费。

(4)点击待审稿件,您可下载稿件离线审稿,然后将审稿 意见和对作者原稿的批注再上传回来。也可在线直接审稿。

(5)在审稿人注册并经编辑部认证通过后,审稿人不要 再申请作者帐户,直接用审稿人帐户以作者身份登陆即可。

4 其他

《地质学报》中文版的网址为:http://www.geojournals. cn/dzxb。

《地质学报(英文版)》的网址为: http://www. geojournals.cn/dzxben。

还欢迎您登录:中国地学期刊网 http://www. geojournals.cn。

欢迎您使用本刊的投稿系统,并欢迎给我们的系统提改 进建议,可告知:georeview@cags.net.cn、dizhixuebao@163. com 或 Geoacta@163.com。以便我们进一步完善整个系统。

由于系统尚需完善,且考虑有些读者和专家可能尚不方 便在线审稿、在线投稿,《地质论评》编辑部近期 email 投稿、 审稿 程序仍将同时运行,将您的文稿 email 给我们 (georeview@cags.net.cn)仍是十分欢迎的(请注意,我们收 到您的 email 赐稿时一定会给您一个明确的收妥并进入审稿 程序的答覆,若您未收到明确答覆或只收到自动回覆,请继 续联系。对于较大附件的投稿,最好在投稿 email 之外同时 发送一个不带附件的 email,因为较大附件的邮件常会在途 中丢失)。但为了避免混乱,请只选择网上投稿或 email 投稿 两种方式中的一种方式。

中国地质学会《地质论评》、《地质学报》编辑部