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Abstract
Purpose: This paper presents the application of artificial neural networks for mechanical properties prediction 
of structuralal steels after quenching and tempering processes.
Design/methodology/approach: On the basis of input parameters, which are chemical composition, parameters 
of mechanical and heat treatment and dimensions of elements, steels’ mechanical properties : yield stress, tensile 
strength stress, elongation, area reduction, impact strength and hardness are predicted.
Findings: Results obtained in the given ranges of input parameters indicates on very good ability of artificial 
neural networks to values prediction of described mechanical properties for steels after quenching and tempering 
processes. The uniform distribution of descriptive vectors in all, training, validation and testing sets, indicates 
on good ability of the networks to results generalisation.
Practical implications: Artificial neural networks, created during modelling, allows easy prediction of steels 
properties and allows the better selection of both chemical composition and the processing parameters of 
investigated materials. It’s possible to obtain steels, which are qualitatively better, cheaper and more optimised 
under customers needs.
Originality/value: The prediction possibility of the material mechanical properties is valuable for manufacturers 
and constructors. It allows the preservation of customers quality requirements and brings also measurable 
financial advantages
Keywords: Artificial intelligence methods; Computational material science and mechanics; Artificial neural 
networks; Mechanical properties

Reference to this paper should be given in the following way: 
L.A. Dobrzański, R. Honysz, Application of artificial neural networks in modelling of quenched and tempered 
structural steels mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 
40/1 (2010) 50-57. 

1. Introduction 
 
The  material mechanical properties prediction possibility is 

valuable for manufacturers and design engineers. That is why 
over one year ago, in [1] modelling results of normalised 
structural steels mechanical properties with use of artificial neural 
networks were published. Now authors would like to present the 
continuation of modelling investigation. This paper describes the 
investigation results of quenched and tempered structural steels 
mechanical properties. To preserve the possibility of results 
comparison the applied modelling methodology was identical 
with the methodology used in [1]. 

 
 

2. Investigated material 
 
Structural non-alloy and alloy steels were chosen for 

investigations. They are used in manufacturing of steel 
constructions, devices and machines elements of the typical 
destination. Mechanical properties of over 135 various structural 
non-alloy and alloy steel species were examined. Examples of 
those steels are showed in Table 1. Examined material was 
delivered in a form of round and square rods. Steels were 
manufactured as quenched and tempered wish various processing 
parameters. Ranges of chemical elements, temperatures, times, 
kinds of coolants for heat treatment and geometrical parameters 
are presented in Table 2. 

 
 

3. Modelling methodology 
 
For properties simulation of structural steels after quenching 

and tempering processes, the data set, consisting of over 17000 
vectors was used. This data was obtained during investigation of 
steel produced in the „Batory” steel plant in Chorzów, Poland 
[23] after casting, mechanical and heat treatment. The intelligent 
processing of data was applied with the use of artificial neural 
networks for prediction of mechanical properties of steel 
materials. For every studied mechanical property the separate 
neural net was created.  

Predicted mechanical parameters were: [1-9,16,17,19] 
yield stress Re, 
tensile strength Rm, 
relative elongation A5, 
relative area reduction Z  
impact resistance KV, 
Brinell hardness HB. 
Input values, which are used for parameter prediction are: 
chemical composition  
type of mechanical treatment, 
heat treatment parameters (temperature, time and cooling 
medium), 
element shape and size 

 
The ranges of chemical composition, temperatures, times, 

kinds of cooling mediums for quenching and tempering processes 
and geometrical parameters are presented in Table 2. 

The set of all descriptive vectors was spited on three subsets. 
The first set, which was containing the half of all vectors was 
used for modification of neurons weights in training stage 

(training set). One fourth of the vectors were used for valuation of 
prediction errors by training process (validation set). Remaining 
vectors were used for the independent examination of prediction 
correctness, when the training process was finished.  

Networks were trained with use of the back propagation and 
conjugate gradient methods [13,15,18]. 

For the verification of networks usability in the aim of 
parameters prediction the following quality valuation parameters 
were used: 

average absolute error – difference between measured and 
predicted output values of the output variable 
standard deviation ratio – standard deviation of errors for the 
output variable. 
Pearson correlation – the standard Pearson-R correlation 
coefficient between measured and predicted output values of 
the output variable 
The kind of the problem was determined as the standard, 

which means, that every vector is independent from another 
vector. The assignment of vectors to training, validation or testing 
set was random. The search for the optimal network was restricted 
to architectures such as: [7,9,11-13,21] 

linear networks 
radial basis function network (RBF) 
generalised regression neural network (GRNN) 
multi-layer perceptron (MLP) 
All computations were made which use of Statistica Neural 

Network by Statsoft, the most technologically advanced and best 
performing neural networks application on the market. It offers 
numerous selections of network types and training algorithms and 
is useful not only for neural network experts [24]. 
 
 
4. Modelling results 

 
To make all results comparable with results of investigation 

results presented in [1] the modelling methodology was identical. 
Separate neural networks for every parameter, whose value has to 
be predicted were build. As in [1] the best results were obtained for  
multi-layer perceptrons with one or two hidden neuron layers. The 
types of the neural network for individual properties among with 
the numbers of used neurons and the parameters of the quality 
valuation for all three sets are introduced in the Table 3 and Table 4. 

For all trained neural networks the Pearson correlation 
coefficient has reached the value above 90% and comparatively low 
values of the standard deviation ratio. This indicates very good 
representation of modelled mechanical properties. Neural network 
parameters and modelling results obtained for quenched and 
tempered structural steels are similar to results coming from 
modelling of normalised steels [1].  

For graphical representation of networks quality comparative 
graphs among predicted and measured values obtained for testing 
set are shown on Figures 1-2. For every estimated parameter the 
vectors distribution is comparable for all three subsets. This speaks 
for correctness of the prediction process. Significant differences in 
vectors distribution among groups would mark the possibility of 
excessive matching to training vectors, and the bad quality of the 
network.  

To analyse the influence of individual input parameters on 
estimated parameter surfaces graphs were prepared. Examples are 
introduced on Figures 3-8. Figure 9 shows two architectures of 
artificial neural networks obtained during investigation. 
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Table 1.  
Examples of steels selected for examination 

Non-alloy steels Alloy steels 

Steels to general 
purposes [25] 

Steels to 
toughening [26] 

Steels on pressure 
devices [27] 

Steels to 
toughening [28] 

Spring 
steels [29] 

Steels to 
nitrogenising [30] 

Steels with elevated 
properties [31] 

C45 C22E P265GH 21CrMoV5-11 45SiCrV6 30NiCr11 20Mn5 
C55 C35R P295GH 25CrMo4 46Mn7 31CrMoV9 21Mn6 
C60 C40E P310GH 30NiCrMo9-5 52CrMoV4 34CrAlMo5 21CrMoV5-7 

S235JRG2 C45C P275N 34Cr4 54SiCr6 34CrAlNi7 34CrMo4 
S355J2G3 C50R P355NH 40NiCrMo2-2 58CrV4 40NiCr6 40Mn4 

20Mn5 C60E P460N 50CrMo4 64Mn3 41CrAlMo7 40NiCrMo6 
 
Table 2.  
Ranges of chemical elements, temperature, time, kinds of cooling mediums for heat treatment and geometrical parameters of examined steels 

.range Size Shape Chemical Composition [%] Mechanical 
treatment 

 [mm]  C Mn Si P S Cr Ni Mo W V Ti Cu Al  
min 20 0.07 0.26 0.14 0 0 0 0 0 0 0 0 0 0 

max 220 

- round 
- square 
- rectangle 0.60 1.57 1.20 0.28 0.30 2.19 2.08 1.10 0.12 0.30 0.15 0.35 1.02 

- rolling 
- forging 

Quenching Tempering 
range 

Temperature [°C] Time [min] Cooling medium Temperature [°C] Time [min] Cooling medium 

min 760 30 480 12 

max 980 150 

- oil 
- polymer 
- water 740 120 

- air 
- oil 
- water 

 
Table 3. 
Parameters of computed neural networks for steels after quenching, tempering and forging processes

Training set Validation set Testing set 

Variable Network architecture Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 
Re MLP 22:29-9-1:1 28.872 0.1991 0.9800 30.623 0.1999 0.9801 26.443 0.2011 0.9801 
Rm MLP 22:26-16-13-1:1 23.718 0.1968 0.9804 23.523 0.1983 0.9802 23.608 0.1996 0.9800 
A5 MLP 17:19-7-1:1 1.278 0.3636 0.9317 1.324 0.3477 0.9377 1.265 0.3674 0.9301 
Z MLP 22:26-13-10-1:1 1.572 0.3270 0.9452 1.677 0.3417 0.9401 1.704 0.3307 0.9442 

KV MLP 12:14-7-1:1 11.387 0.3572 0.9340 10.014 0.3885 0.9215 10.653 0.3552 0.9358 
HB MLP 18:22-7-1:1 9.476 0.2780 0.9606 8.283 0.2796 0.9609 9.806 0.2785 0.9605 

 
Table 4. 
Parameters of computed neural networks for steels after quenching, tempering and rolling processes

Training set Validation set Testing set 

Variable Network architecture Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 
Re MLP 21:23-26-13-1:1 30.275 0.1918 0.9814 35.240 0.1959 0.9806 35.114 0.1841 0.9829 
Rm MLP 21:23-7-1:1 23.238 0.1632 0.9865 26.718 0.1546 0.9879 25.483 0.1693 0.9855 
A5 MLP 19:21-17-11-1:1 0.946 0.3809 0.9245 1.029 0.3890 0.9212 0.976 0.3894 0.9215 
Z MLP 17:19-13-1:1 1.511 0.3486 0.9372 1.641 0.3841 0.9237 1.415 0.3544 0.9351 

KV MLP 17:19-9-1:1 4.542 0.2006 0.9797 4.062 0.2285 0.9773 4.915 0.2071 0.9783 
HB MLP 13:13-8-1:1 7.032 0.2085 0.9781 8.840 0.1924 0.9813 8.293 0.1956 0.9806 

 

  

  

  
 
Fig. 1. Comparative graph of a) yield stress Re, b) tensile strength Rm, c) relative elongation A5, d) relative area reduction Z, e) impact 
strength KV, f) Brinell hardness HB, calculated with use of artificial neural networks (testing set) and determined experimentally for steels 
after quenching, tempering and forging processes 

a) b) 

c) d) 

e) f) 
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Fig. 1. Comparative graph of a) yield stress Re, b) tensile strength Rm, c) relative elongation A5, d) relative area reduction Z, e) impact 
strength KV, f) Brinell hardness HB, calculated with use of artificial neural networks (testing set) and determined experimentally for steels 
after quenching, tempering and forging processes 

a) b) 

c) d) 

e) f) 
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Fig. 2. Comparative graph of a) yield stress Re, b) tensile strength Rm, c) relative elongation A5, d) relative area reduction Z, e) impact 
strength KV, f) Brinell hardness HB, calculated with use of artificial neural networks (testing set) and determined experimentally for steels 
after quenching, tempering and rolling processes 
 

a) 

f) e) 

d) c) 

b) 

 

 
 

Fig. 3. Influence of quenching and tempering temperatures on yield 
stress Re, (shape:square, size: 115mm, quenching parameters: 
120min/oil, tempering parameters: 90min/air, 0.42%C, 0.76%Mn, 
0.26%Si, 0.005%P, 0.009%S, 1.01%Cr, 0,17%Ni, 0.17%Mo, 0%W, 
0.006%V, 0%Ti, 0.16%Cu, 0%Al) 
 

 
 

Fig. 4. Influence of vanadium and tungsten concentration on relative 
area reduction Z, (shape:round, size: 40mm, quenching parameters: 
880 C/30min/oil, tempering parameters: 550 C/45min/air, 0.44%C, 
0.6%Mn, 0.24%Si, 0.01%P, 0.001%S, 0.92%Cr, 1.37%Ni, 
0.23%Mo, 0%Ti, 0.19%Cu, 0.05%Al) 

 
 

Fig. 5. Influence of sulphur and phosphorus concentration on 
relative elongation A5, (shape:round, diameter:160mm, quenching 
parameters: 890 C/150min/water, tempering parameters: 610 C/ 
210min/air, 036%C, 0.56%Mn 0.22%Si, 0.97%Cr, 0.94Ni, 
0.17%Mo, 0%W, 0%V, 0.011%Ti, 0.17%Cu, 0.024%Al) 
 

 
 

Fig. 6. Influence of quenching and tempering temperatures on impact 
resistance, (shape:round, diameter: 130mm, quenching parameters: 
50min/water, tempering parameters: 14min/oil, 0.39%C, 0.41%Mn, 
0.31%Si, 0.015%P, 0.011%S, 0.72%Cr, 1.46%Ni, 0.39%Mo, 
0.01%W, 0.002%V, 0.03%Ti, 0.13%Cu, 0.07%Al) 

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


55

Analysis and modelling

Application of artificial neural networks in modelling of quenched and tempered structural steels mechanical properties

  

  

  
 
Fig. 2. Comparative graph of a) yield stress Re, b) tensile strength Rm, c) relative elongation A5, d) relative area reduction Z, e) impact 
strength KV, f) Brinell hardness HB, calculated with use of artificial neural networks (testing set) and determined experimentally for steels 
after quenching, tempering and rolling processes 
 

a) 

f) e) 

d) c) 

b) 

 

 
 

Fig. 3. Influence of quenching and tempering temperatures on yield 
stress Re, (shape:square, size: 115mm, quenching parameters: 
120min/oil, tempering parameters: 90min/air, 0.42%C, 0.76%Mn, 
0.26%Si, 0.005%P, 0.009%S, 1.01%Cr, 0,17%Ni, 0.17%Mo, 0%W, 
0.006%V, 0%Ti, 0.16%Cu, 0%Al) 
 

 
 

Fig. 4. Influence of vanadium and tungsten concentration on relative 
area reduction Z, (shape:round, size: 40mm, quenching parameters: 
880 C/30min/oil, tempering parameters: 550 C/45min/air, 0.44%C, 
0.6%Mn, 0.24%Si, 0.01%P, 0.001%S, 0.92%Cr, 1.37%Ni, 
0.23%Mo, 0%Ti, 0.19%Cu, 0.05%Al) 

 
 

Fig. 5. Influence of sulphur and phosphorus concentration on 
relative elongation A5, (shape:round, diameter:160mm, quenching 
parameters: 890 C/150min/water, tempering parameters: 610 C/ 
210min/air, 036%C, 0.56%Mn 0.22%Si, 0.97%Cr, 0.94Ni, 
0.17%Mo, 0%W, 0%V, 0.011%Ti, 0.17%Cu, 0.024%Al) 
 

 
 

Fig. 6. Influence of quenching and tempering temperatures on impact 
resistance, (shape:round, diameter: 130mm, quenching parameters: 
50min/water, tempering parameters: 14min/oil, 0.39%C, 0.41%Mn, 
0.31%Si, 0.015%P, 0.011%S, 0.72%Cr, 1.46%Ni, 0.39%Mo, 
0.01%W, 0.002%V, 0.03%Ti, 0.13%Cu, 0.07%Al) 
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Fig. 7. Influence of carbon and manganese concentration on 
strength stress Rm, (shape:round, diameter: 60mm, quenching 
parameters: 900 C/50min/water, tempering parameters: 630 C/ 
14min/oil, 0.17%Si, 0.01%P, 0.01%S, 1.38%Cr, 0.09Ni, 
0.02%Mo, 0.001%W, 0.01%V, 0.04%Ti, 0.21%Cu, 0.04%Al) 
 

 
 

Fig. 8. Influence of nickel and chromium concentration on Brinell 
hardness HB, (shape:round, diameter: 110mm, quenching 
parameters: 840 C/120min/water, tempering parameters: 630 C/ 
180min/air, 0.48%C, 0.53%Ni, 0.22%Si, 0.018%P, 0.011%S, 
0.18%Mo, 0%W, 0%V, 0%Ti, 0.19%Cu, 0.01%Al) 

a) b) 

 
Fig. 9. Architectures of artificial neural networks developed for 
prediction of steels mechanical parameters a) tensile strength KV, 
four-layer perceptron 22:26-16-13-1:1, b) relative elongation A5, 
three-layer perceptron 17:19-7-1:1 

 
 

5. Conclusions 
 

Results obtained in given ranges of input data indicates on 
very good ability of artificial neural networks to prediction 
possibility of quenched and normalised steels mechanical 
properties . The Pearson correlation coefficient over 90% and low 
deviation ratio inform about the correct execution of the training and  
small differences in the relation between computed and 
experimentally measured values. The uniform distribution of vectors 
in all sets indicates about the good ability of the networks to 
results generalisation.  

On special attention deserving small differences among values 
obtained in training and testing sets. A large divergence among 
these sets in the practice will made the network useless  

Results obtained for quenched and tempered structural steels 
are comparable with results obtained for normalised steels. 
Comparable values of quality valuation parameters confirm the 
ability of correct properties prediction for both types of heat 
treatment. 

Obtained results have confirmed the correctness of the artificial 
neural networks usage as the simulating tool. It makes possible to 
apply this networks in the area of material engineering for the 
prediction of structural steel mechanical properties. Applied with 
success for quenched and tempered, as well as for normalised 
constructional steels gives the chance on the effective usage for 
several steel grades or even for different types of engineer materials.  

The virtual samples of quenched/tempered and normalised 
steels, created with use of described networks will be an immense 
aid in the Materials Science Virtual Laboratory developed for 
design engineers and also for students, whose will investigate and 
discover this group of engineers materials [1,5-7].  

5.	�Conclusions
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Fig. 9. Architectures of artificial neural networks developed for 
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four-layer perceptron 22:26-16-13-1:1, b) relative elongation A5, 
three-layer perceptron 17:19-7-1:1 
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Comparable values of quality valuation parameters confirm the 
ability of correct properties prediction for both types of heat 
treatment. 
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apply this networks in the area of material engineering for the 
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