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Higher dimensional cosmological implications of a decay law for the cosmological constant term are ana-
lyzed. Three independent cosmological models are explored mainly:

1) – In the first model, the effective cosmological constant was chosen to decay with times like Λe f f ective =
Ca−2 + D(b

/
aI)

2 where aIis an arbitrary scale factor characterizing the isotropic epoch which proceeds the
graceful exit period. Further, the extra-dimensional scale factor decays classically like b(t) ≈ ax(t), x is a real
negative number.

2) – In the second model, we adopt in addition to Λe f f ective = Ca−2 + D(b
/

aI)
2the phenomenological law

b(t) = a(t)exp(−Qt) as we expect that at the origin of time, there is no distinction between the visible and extra
dimensions; Qis a real number.

3) – In the third model, we study a Λ−decaying extra-dimensional cosmology with a static traversable wormhole
in which the four-dimensional Friedmann-Robertson-Walker spacetime is subject to the conventional perfect
fluid while the extra-dimensional part is endowed by an exotic fluid violating strong energy condition and where
the cosmological constant in (3+n+1) is assumed to decays like Λ(a) = 3Ca−2.
The three models are discussed and explored in some details where many interesting points are revealed.
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I. Introduction

Recent advances in theoretical physics studies and cosmo-
logical observations produce a large deposit for modified the-
ories of gravity and a large set of observational data from
which an exceptional detailed knowledge of the universe can
be extracted and explored. Further, a cosmic concordance
has emerged from several different and independent observa-
tions of the dynamics of galaxies [1], cluster of galaxies [2]
and of Type Ia supernovae (SNeIa) [3] with redshift z > 0.35
and the CMB [4] pointing that the Universe is accelerating
with time approaching de Sitter (dS) regime. Further, the
universe is dominated by a mysterious form of dark energy
(DE) characterized by a negative equation of state param-
eter (EoSP) w = p

/
ρ < 0, which accounts for about 70%

of the total energy content and 30% of dark matter. On the
other hands recent findings of BOOMERANG experiments
[5] strongly suggests that the cosmos is spatially flat. The ex-
istence of a considerable amount of DE represents one of the
most profound and difficult problem in modern cosmology.
The evolution of the EoSP in terms of the redshift leads to the
conclusion that the universe had undergone a phase of decel-
eration before passing to the current accelerated expansion
[6]. Two main theoretical problems appear: the reason of the
late dominance of dark energy over matter and the fine tun-
ing problem, i.e. the tiny amount of dark energy density dur-
ing the radiation epoch compared to the radiation and matter
density. These pose troubles on the theoretical alternative for
the energy fraction which seems to be absent.

In the last several years, numerous theoretical competitive
models trying to explain the physical nature of the dark com-
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ponent have been proposed, including theΛCDM [7] consist-
ing a mixture of cosmological constant Λand cold dark mat-
ter (CDM) or WIMPS composed of weakly interacting mas-
sive particles which must be relics of a grand unified phase
of the Universe, quintessence [8], K-essence [9], viscous
fluid [10], Chaplygin gas [11,12], Generalized Chaplygin gas
model (GCGM) [13,14], Brans-Dicke (BD) pressureless so-
lutions [15,16,17], decaying Higgs fields [18], decaying dark
energy models [19], dual role of Ricci scalar [20], modified
gravity and scalar tensor theories [21], higher-order correc-
tions [22], and so on. All these models stimulated a renewed
interest in the generalized or extended scalar gravity theo-
ries with repulsive gravitational force and time-increasing
gravitational constant causing the present accelerated expan-
sion of the Universe. Despite the appealing consequences
of these theories, some problems with many difficulties ap-
pear. The most embarrassing one is the coincidence problem
which concerns the fact that the energy densities of matter
and dark energy are of the same order today. Another dif-
ferent question concerns the fact that observations lead to a
value for the cosmological constant today 120 order of mag-
nitude smaller than that predicted by quantum field consider-
ations. ”Tracker field behavior” quintessence cosmological
model [23] with exponential self-interaction and Gaussian
potentials has been proposed to solve the CCP and to alle-
viate the fine tuning problem. In such models, for a wide
class of initial conditions, the equation of motion is an attrac-
tor like in a sense that for a wide range of initial conditions
the equation of motion converges to the same solution. In
other words, the equation of state of dark energy tracks the
one of the background matter and radiation. As for popular
quintessence theory with scalar field φ acting as fluctuating
dark energy, fine tuning parameters and several constraints
are required. Another concern is that a universe dominated
by dark energy with effective equation of state parameter
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w = p
/

ρ < −1 (superquintessence or phantom energy) may
end its existence at a Big Rip singularity at which the scale
factor and the energy density and pressure of quintessence
diverge at a finite time in the future [24]

On the other hand, theories of extra-dimensions includ-
ing braneworld models originally developed in the late 1990s
have received a lot of interest in recent years because M-
theory requires that the space-time of our universe might be
an 11-dimensional manifold in which the extra dimensions
are compactified by hand a la Kaluza-Klein on a Calabi-Yau
threefold via a bifold symmetry obtaining a five-dimensional
brane effective theory in which only the 4-dimensional is ob-
served experimentally [25]. These large extra-dimensions
may provide a possible solution to the hierarchy problem-
the unnatural huge discrepancy of sixteen orders of magni-
tude between the electroweak scale (103GeV ) and the Planck
scale (1019GeV ). These new concepts have a number of
interesting applications in modern cosmology and modified
gravity theories. In order to describe the current evolution
of the universe, several powerful mathematical tools were
developed and many exact solutions of the Einstein’s field
equations were obtained, but most of them assume some ad-
ditional matters and need particular settings.

In this paper, we adopt the simplest generalization of stan-
dard Friedmann-Robertson-Walker cosmology by including
a few extra spatial dimensions, i.e. cosmology in a (1+3+n)
dimensional homogeneous anisotropic universe described by
the combination of the standard (1+3) FRW metric and n
extra-dimensions as [26].

ds2 = −dt2 +a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
+

+b2(t)γ̃pqdypdyq,(p,q : 1, ...,n), (1)

where a(t) and b(t) are the scale factors of the expand-
ing universe respectively in three and n-dimensions, γ̃pqis
the maximally symmetric metric in n-dimensions. The Ein-
stein’s field equations [25]

RAB − 1
2

gABR+ΛgAB = κ2TAB,(A,B : 0,1, ...,3+n), (2)

withκ2 = 8π
/

M2+nwhere Mis the higher-dimensional
Planck’s mass and Λis the effective cosmological constant.
This determines the energy-momentum tensor to be of the
form:

T00 = ρ, Ti j = −paγi j, T3+p,3+q = −pbγ̃pq,
(3)

According to the current astrophysical observations dynam-
ical behaviour of the universe is well described by the stan-
dard FRW model in the presence of a perfect fluid. Thus it
might be worth-while to generalize this approach to the de-
scription of the post-inflationary stage in multidimensional
cosmological models.

In fact, the paper is divided into two main sections: in
Section II, we discuss two different cosmological scenarios:
1) – In the first scenario, the effective cosmological con-
stant was chosen to decay with cosmic time like Λe f f ective =
Ca−2 + D(b

/
aI)

2 where aI is an arbitrary scale factor char-
acterizing the isotropic epoch which proceeds the graceful
exit period. The extra-dimensional scale factor is assumed to
decay classically like b(t) ≈ ax(t), x ∈ R

−.

2) – In the second model, we adopt the phenomenological
law b(t) = a(t)exp(−Qt) as we expect that at the origin of
time, there is no distinction between the visible and extra
dimensions; Qis a real positive number.

Cosmological solutions of both models are explored and
compared. In Section III, we study a Λ−decaying extra-
dimensional cosmology with a static traversable wormhole
and where the cosmological constant in (3+n+1) is assumed
to decays like Λ(a) = 3Ca−2. In fact, our interest to ex-
plore wormhole cosmology came from the results obtained
recently by Gonzalez-Diaz when exploring the evolution of a
classical wormhole embedded in a FRW universe approach-
ing the Big Rip [27]. The author concluded that the worm-
hole accreting superquintessence expands more rapidly than
the surroundings FRW universe and that the radius of the
wormhole throat diverges before the occurrence of the Big
Rip, consequently the wormhole engulfs the whole universe,
which will reappear from the other wormhole throat. It is
noteworthy that such geometries connect two regions of the
same universe by a traversable throat. The consequential
spacetime is not globally hyperbolic and is a causal with
closed time-like curves threading the wormhole throat. Such
strange scenarios are potentially appealing as constraints. In
fact, if it can be proved that phantom energy leads in princi-
ple to improper consequences, this may be enough to rule out
its existence. Faraoni and Israel argued that if the wormhole
is modeled by a thin spherical shell accreting the phantoms
field, the wormhole becomes asymptotically comoving with
the cosmic fluid and the future evolution of the universe is
fully causal [28]. Furthermore, wormholes cosmology have
been discussed in higher-dimensional scenarios, in particular
brane world where a new class of static and spherically sym-
metric solutions in vacuum brane and bulk Weyl effects sup-
port the wormhole was obtained [29]. Very recently, Lobo
has given a wide-ranging formulation for brane wormholes
with two possible wormhole configurations with dust and
perfect fluid having linear equation of state, as the brane mat-
ter [30]. More recently, Gonzalez-Diaz and Martin-Moruno
discussed diverse arguments that have been raised against
the viability of the Big Rip process [31]. They argued that
this process is stable and can in reality occur by accretion of
phantom energy onto the wormholes.

In this work, the conservation equation of the stress-energy
tensor will be considered conserved in our scenarios which
seem to be at odds with current results obtained separately by
a number of authors, in particular the renormalization group
(RG) approach to cosmology which was proved to be an effi-
cient method to study the promising evolution of the cosmo-
logical parameters from the point of view of quantum field
theory in curved space-time [32]. Our speculation is dissimi-
lar since the coupling between the cosmological constant and
the gravitational coupling constant was chosen so as to outfit
the famous equivalence principle. More precisely, the van-
ishing of the covariant divergence of the Einstein tensor in
equation (2) and the usual energy-momentum conservation
relation T µν

;ν = 0lead to: Λ̇+ κ̇2ρ = 0and ρ̇+3Ha(pa +ρ)+
3Hb(pb +ρ) = 0.
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I. FIRST COSMOLOGICAL MODEL:
Λe f f ective = Ca−2 +D(b/a1)2 AND b(t) ≈ ax(t)

In reality, it is widely believed that the value of the cos-
mological constant was large during the early stages of
cosmological evolution and strongly influenced its expan-
sion, whereas its present value is too small. Observing that
the cosmological constant has dimension of inverse length
square, and that extra-dimensions compactify as the visible
dimensions expand, the simplest scale factor dependence we
adopted thought this work is Λe f f ective = Ca−2 + D(b

/
aI)

2

where C and Dare real positive constants and aI is an arbitrary
scale factor which characterize the isotropic epoch which
proceeds the graceful exit period. Whenb = aI , Λe f f ective =
Ca−2 + D and there is no distinction between the visible
and extra dimensions and consequently Dplays the role of
the false vacuum. One thus expects an effective curvature
constant in the theory. In fact, the case where Λe f f ective =
Ca−2 + D corresponds to the cosmic string matter and has
mostly been taken based on dimensional considerations by
some authors. [33]. This phenomenological decaying law
does not decipher in reality the cosmological constant prob-
lem, but it may relate this problem to the age problem (of
why the universe is old) and have a radius much larger than
the Planck length. One may presuppose that the value of
the effective lambda in the early universe have been much
superior than its current value and huge enough to compel
some spontaneous symmetry breaking which might have oc-
curred in the early epoch. There is also a strong believe that
Λe f f ective decay spontaneously in time into a massive and/or
massless particles reducing its value to its present tiny value
[34]. As we strongly believe that the effective cosmologi-
cal constant is very close to zero, the term Λe f f ective may be
identified to a variable dynamic degree of freedom so that
in an expanding it relaxes to zero. The phenomenological
law introduced here may explain why the effective cosmo-
logical constant is reduced from a large value at early times
to a sufficiently small value at late times in consistent with
observational upper limit. Within the framework of extra-
dimensions, the decaying of the cosmological constant plays
a crucial role [35]. It was recently shown that the cosmo-
logical constant may be reduced by thermal production of
membranes by the cosmological horizon rather than tunnel-
ing through it and consequently, black holes are produced
out of the vacuum energy associated with the cosmological
constant [36]. Further, it was proved that the decaying law
plays in (4+D)-dimensional Kaluza-Klein non-singular cos-
mology with a FRW metric the role of an evolving DE in the
universe [37] In fact, the existence of a large long-lived uni-
verse demands that the cosmological constant is tiny. Many
proponents of the braneworld and extra-dimensions models
are dealing with this problem seriously. [38,39,40]. The re-
cent approach of Randall-Sundrum in which the bulk dimen-

sions are extremely warped but not necessarily compactified
may explain why the cosmological constant appears to be
small [41].

Moreover, we consider naturally time-dependent gravita-
tional coupling in order to retain the energy conservation in
the background of the FRW spacetime by assuming conser-
vation of the energy-momentum tensor of matter content, i.e.
the variation of lambda is cancelled by the variation of κ2.
The time variation of the gravitational coupling constant with
time in multidimensional theories is widely discussed in lit-
erature [37]. It was recently found that the time-variation of
the gravitational coupling constant is related to the time vari-
ation of the Newton’s constant in three-space dimensions and
also is related to the time variation of the volume of the ex-
tra spatial dimensions [42]. It is worth noticing that early
attempts to unify gravity with electromagnetism predicted
such kinds of variation. Extra-dimensions theory such as
string/M-theory provides a natural and self-consistent frame-
work for such variation [43].

In reality, one would like to describe the late-time behav-
ior of the universe as a transition from a universe filled with
dust-like matter pressure to an accelerating one. It was ar-
gued that a dust universe can represents a solution to the DE
problem and the Cosmic Cosmological Coincidence Prob-
lem (CCCP) [44]. The phenomenological approach with
a perfect fluid as a matter source is widely used in usual
4-dimensional cosmology. In our framework, we will as-
sume simple equations of state for the anisotropic fluid,
namelypa = γρandpb = γ̄ρwhere γand γ̄are real parameters.
The continuity equation is obtained easily:

ρ̇+3
ȧ
a
(γ+1)ρ+n

ḃ
b
(γ̄+1)ρ = 0, (4)

The Friedmann equation for this particular case takes the
form:

3
ȧ2

a2 +3n
ȧ
a

ḃ
b

+
n(n−1)

2
ḃ2

b2 = κ2ρ+
C
a2 +D

a2x

a2
I

. (5)

By making the assumption that the extra-dimensions com-
pactify as the visible dimensions expand like b(t) ≈ ax(t)
where x is a real negative number [45] and assuming that
ρ = ρ0a−ywhereyis real constant and ρ0is a constant param-
eter assumed equal to one for mathematical simplicity, equa-
tion (4) gives easily:

(3(γ+1)+nx(γ̄+1)) = y. (6)

Making use of the relation Λ̇+ κ̇2ρ = 0, one finds easily:

κ2 =
2C

(y−2)
ay−2 − 2xD

a2
I (2x+ y)

a2x+y,

=
2C

(3γ+1+nx(γ̄+1))
a3γ+1+nx(γ̄+1) − 2xD

a2
I (2x+3γ+3+nx(γ̄+1))

a2x+3γ+3+nx(γ̄+1), (7)

for which a positive gravitational coupling constant corre- sponds for x < −1. The effective cosmological constant de-
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cays consequently in its turn like

Λe f f ective = Ca−2 +D
(

a2x

a2
I

)
,2x < −2. (8)

If for instance γ̄ = −1 and γ = −1
/

3, then y = 2, i.e. ρ ∝
a−2and consequently,

κ2 = 2C lna− 2xD
2a2

I (x+1)
a2x+2. (9)

If in contrast γ = −1, then y = nx(γ̄ + 1), i.e. ρ =
ρ0a−nx(γ̄+1)and therefore the gravitational constant and the
effective cosmological constant vary respectively like:

κ2 =
2C

nx(γ̄+1)−2
anx(γ̄+1)−2− 2xD

a2
I (2x+nx(γ̄+1))

a2x+nx(γ̄+1),

(10)

Λe f f ective = Ca−2 +D

(
a2y/n(γ̄+1)

a2
I

)
. (11)

More generally, the Friedmann equation is:(
3+3nx+

n(n−1)
2

x2
)

ȧ2

a2 = C
y

y−2
1
a2 +

y
2x+ y

D
a2

I
a2x,

(12)
and therefore we may discuss the following two special
cases: 1-the value x = −3

/
2is interesting as it gives the fol-

lowing modified Friedmann equation:(
3− 9

2
n+

9n(n−1)
8

)
ȧ2

a2 = C
y

y−2
1
a2 +

y
y−3

D
a2

I

1
a3 ,

(13)
while the gravitational coupling constant and the effective
cosmological constant vary respectively like:

κ2 =
2C

(y−2)
ay−2 − 2xD

a2
I (y−3)

ay−3, (14)

Λe f f ective = Ca−2 +D
(

a−3

a2
I

)
. (15)

For y = 5
/

2(5 =−3n(γ̄+1))and γ =−1 (cosmological con-
stant), i.e. ρ = ρ0a−5/2and κ2 = 4Ca1/2 − 6Da−1/2/a2

I ∝
4Ca1/2 for very large time. Furthermore, n > 0is for instance
γ̄ < −8

/
3(phantom energy). In reality an increasing gravita-

tional constant is favored by a lot of experimental limits on
the time variation of the gravitational constant [46] includ-
ing radar ranging data to the Viking landers on Mars, lunar
laser ranging experiments, measurements of the masses of
young and old neutron stars in binary pulsars.1 However,

1 In fact, reference [46] describes a result where effectively the fractional
variation of the gravitational coupling is of the same order of the abso-
lute value of the Hubble parameter, but admitting negative values. The
dispersion is very high, so it seems difficulty to confirm from actual ob-
servations that the gravitational constant increases with cosmic time.

from phenomenological point of view the present observed
acceleration of the universe may also be attributed to this
ever growing gravity. An increasing gravitational coupling
constant with cosmic time would cause the Planck length to
be an ever-increasing function in time, and the quantum fluc-
tuations on the metric would be too small in the high energy
epoch.

The Friedmann equation for this particular case takes the
form:

ȧ2

a2 =
5C(

3− 9
2 n+ 9n(n−1)

8

)
a2

−

+
5D(

3− 9
2 n+ 9n(n−1)

8

)
a2

I

1
a3 ≡ C1

a2 − D1a−2
I

a3 ,(16)

where

C1 =
5C

3− 9
2 n+ 9n(n−1)

8

, (17)

and

D1 =
5D

3− 9
2 n+ 9n(n−1)

8

. (18)

The typical solution of equation (16) is obtained making
use of the conformal time dt = adτ, as: [47]

a1/2 ≈ (Const)1/2 cosh
[ τ

2

]
. (19)

provided n ≥ 9 and the total density is given by:

ρ = ρm +ρvacuum = (20)

−3(γ+1)ρ1 +nx(γ̄+1)ρ2

ma5/2 +
C
a2 +D

a2x

a2
I

,2x < m < −2.

Notice that we have used the freedom in setting the ori-
gin of conformal time so that the universe is initially con-
tracting, and then bounces to an expanding phase. We may
set η = 0at the bounce so that the minimal radius is given
by amin =constant. Therefore, the aspect of a bouncing uni-
verse would permit one to evade the issue of resolving the
big bang or big crunch singularity, which afflicts many cos-
mological models. The main interesting point here is that
classical wormholes in a flat multi-dimensional cosmolog-
ical universe with spacetime consisting of n(n ≥ 9)extra-
dimensional spaces in the presence of a positively decaying
Λ and a perfect fluid are solutions of the cosmological model
described here.
It is worth-mentioning that the present day variation of the
gravitational coupling constant is (κ̇2

/
κ̇2)0 ≈ H0

/
2 in agree-

ment with recent astronomical data [46]; H = ȧ
/

ais the Hub-
ble parameter.

Two others interesting values are x = −2 and y = 3 which
yield the modified Friedmann equation:

[
2n2 −8n+3

] ȧ2

a2 =
3C
a2 − 3D

a2
I

1
a4 , (21)
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which may be rewritten in the special form

ȧ2

a2 =
C2

a2 − D2a−2
I

a4 , (22)

where

C2 =
3C

2n2 −8n+3
, (23)

and

D2 =
3D

2n2 −8n+3
, (24)

provided n ≥ 4. Equation (21) accounts for a wormholes
corresponding to the conformal scalar field. If in contrast
x = −3, the same dynamical equation accounts for axion.
The solution are given respectively in conformal time by
a(τ)≈ cosh(τ)for x =−2 and by a2(τ)≈ cosh(2τ)forx =−3.
It is noticed that as long as xdecreases, the restriction on the
number of extra-dimensions decreases. In this special case,
the present day variation of the gravitational coupling con-
stant is (κ̇2

/
κ̇2)0 ≈H0 in agreement also with recent astro-

nomical data [46]. It is easy to prove that the scalar curvature
invariant is non-singular at the early epoch of the universe.
A final point concerns the energy conditions: it is easy to
check that in our arguments, in particular the case y = 5

/
2

for which γ̄ <−8
/

3(phantom field in the higher dimensional
space) and γ = −1(cosmological constant in the reduced
four-dimensional space), the null energy conditionp + ρ ≥
0is obviously violated. This implies a violation of the weak
energy condition which includes the statement ρ ≥ 0besides
the null energy condition

II. SECOND COSMOLOGICAL MODEL:
Λe f f ective = Ca−2 +D(b/a1)2 AND b(t) = a(t)eQt

As we believe that the extra dimensional space is very
large at the beginning, and it is much reduced at the present
time, we will take a more radical and generic attitude for
the extra-dimensions scale factor. We shall assume that
b(t) = a(t)e−Qt , Q is a real constant. It is evident that for
tclose to zero, b ≈ a, e.g. after the inflationary epoch and for
very large times, b(t) → 0as it is expected. The conservation
of energy (4) gives easily:

ρ̇+3
ȧ
a
(γ+1)ρ+n(γ̄+1)ρ

(
−Q+

ȧ
a

)
= 0. (25)

In the section, we assume also that ρ = ρ0a−yand therefore:

ȧ
a

=
Qn(γ̄+1)

3(γ+1)+n(γ̄+1)− y
. (26)

The solution is easily deduced and takes the special form:

a(t) = a0 exp
(

Qn(γ̄+1)
3(γ+1)+n(γ̄+1)− y

t
)

, (27)

where a0 = a(t = 0)and assumed equal to one for mathe-
matical simplicity. This case is identical to the inflationary
scenario if for instance one of the following constraints is
realized: Q < 0, γ̄ < −1, 3(γ+1)+n(γ̄+1) > y, Q < 0, γ̄ >
−1, 3(γ+1)+n(γ̄+1) < y , Q > 0, γ̄ <−1, 3(γ+1)+n(γ̄+
1) < y or if finally Q > 0, γ̄ > −1, 3(γ + 1)+ n(γ̄ + 1) > y.
Therefore, the extra-dimension varies like:

b(t) ∝ exp
(

Q(y−3(γ+1))
3(γ+1)+n(γ̄+1)− y

t
)

. (28)

Hence, a decaying extra-dimension is realized if for instance
Q < 0 and 3(γ + 1) + n(γ̄ + 1) < y < 3(γ + 1) with γ̄ > −1
which corresponds to the more realistic constraint. Making
use again of the relation Λ̇+ κ̇2ρ = 0, one finds:

κ̇2 =
2C
ρ0

ay−3ȧ− 2D
ρ0aI

{
ay+1ȧ−Qay+2}e−2Qt , (29)

and consequently:

κ2 =
2Cay−2

0
ρ0(y−2)

exp
(

Qn(γ̄+1)(y−2)
3(γ+1)+n(γ̄+1)− y

t
)

− 2Day+2
0

ρ0aI(y+2)
exp
(

n(γ̄+1)(y+2)
3(γ+1)+n(γ̄+1)− y

−2
)

Qt

−Day+2
0

ρ0aI
exp
(

n(γ̄+1)(y+2)
3(γ+1)+n(γ̄+1)− y

−2
)

Qt. (30)

while the cosmological constant varies like:

Λe f f ective = C exp
( −2Qn(γ̄+1)

3(γ+1)+n(γ̄+1)− y
t
)

+
D
a2

I
exp
(

2Qt(n(γ̄+1)−1)
3(γ+1)+n(γ̄+1)− y

t
)

. (31)

If for instance Q < 0and y > 3(γ + 1) + n(γ̄ + 1), then a
decaying cosmological constant in time corresponds to γ̄ >
−1(dark energy). Notice that the effective lambda is finite at
the origin of time. For very large time, b(t) = a(t)e−Qt →

0and therefore, the Friedmann equation takes the form:

ȧ2

a2 =
2yC

3(y−2)a2 . (32)
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Therefore for y > 2, the solution is given by:

a(t) =

√
2yC

3(y−2)
t +a0, (33)

where a0 = a(t = 0). This is interesting as it coincides with
a non-singular scale factor evolution dominated by dark en-
ergy. The gravitational constant varies in this particular case
like:

κ2 =
2C

(y−2)ρ0
ay−2 =

2C
(y−2)ρ0

(√
2yC

3(y−2)
t +a0

)(y−2)/2

,

(34)
and therefore the present day variation of the gravitational
coupling constant is(

κ̇2

κ̇2

)
0
=

y−2(√
8yC

3(y−2)

)(y−2)/2 H0, (35)

in agreement also with recent astronomical data [48], in par-
ticular for y close to 2.

III. THIRD MODEL: NON-SINGULAR ACCELERATED
FLAT COSMOLOGY WITH EXTRA-DIMENSIONS AND A

WORMHOLE

The purpose of this last paragraph is to explore worm-
hole dynamics embedded in a (3+n+1) dimensional homo-
geneous anisotropic universe described by the combination
of the standard 4D FRW metric and static wormhole as fol-
lows:

ds2 = −eΦ(r)dt2 +a2(t)×

×
[

dr2

1−B(r)
/

r
+ r2(dθ2 + sin2 θdφ2)

]
+

+b2(t)γ̃pqdypdyq,(p,q : 1, ...,n), (36)

where Φ(r)is the lapse function assumed here equal to zero,
a(t) and b(t) are the scale factors of the expanding universe
respectively in three and n-dimensions, B(r)is the wormhole
shape function, γ̃pqis the maximally symmetric metric in n-
dimensions. Further, we will explore the classical worm-
hole in a Λ−decaying accelerated cosmology dominated in

four-dimension by dust. The metric (36) is the simple real-
istic alternative for exploring accelerated expansion in extra-
dimensions with wormholes. The case of seven dimensional
universe with a wormhole is explored in literature where it
was incorporated an expanding Gidding-Strominger worm-
hole at the center of the extra dimensions generating an adi-
abatic pressure [[48,49]. The model has some extra suitable
characteristics. The Einstein’s field equations read also

RAB − 1
2

gABR+ΛgAB = κ2TAB,(A,B : 0,1, ...,3+n). (37)

Here Λ is the cosmological constant in (3+n+1) dimen-
sions assumed through this work to decays like Λ(a) =
3C
/

a2where Cis a real constant. Further, we allow the grav-
itational coupling to vary with time in order to retain the en-
ergy conservation, i.e. the variation of lambda is cancelled
by the variation of κ2. Of interest for us for instance are the
(0,0) components of the Friedman equation

3
ȧ2

a2 +3
ka

a2 +3n
ȧ
a

ḃ
b

+
n(n−1)

2

[
ḃ2

b2 +
kb

b2

]
+

1
a2

B′(r)
r2 =

κ2ρa(r, t)+3
C
a2 . (38)

In our framework, we will assume again simple equations
of state for the anisotropic fluid, namely pa = γρ and pb =
γ̄ρwhere γand γ̄are real parameters. Here ρa(r, t) = Tt̂t̂ is the
energy density in the orthonormal frame î ĵ.The energy con-
servation equation T A

0;A = 0is therefore:

ρ̇+3(pa +ρ)
ȧ
a

+n
ḃ
b
(pb +ρ) = 0, (39)

where 3ρa(r, t) = 3ρ + 2Pa − τais the effective energy den-
sity in the FRW frame, τa(r, t)is the surface tension,
Pa(r, t)andpb(r, t)are the pressures in 3 and n-dimensional
spacetime (in the orthonormal frameî ĵ). ka = −1,0,+1and
kb = −1,0,+1 are the spatial curvatures in ordinary space
and universal extra-dimensions respectively. Following [50]
we introduce the ansatz:

a2ρa(r, t) = a2ρ̃c(t)+ ρ̃w(r), (40)

separating the time-dependent cosmological dynamics from
space-dependent wormhole dynamics, one finds easily:

a2ρ̃c(t)− 3
κ2

(
ȧ2 +[ka −C]+nȧa

ḃ
b

+
n(n−1)

6
a2
[

ḃ2

b2 +
kb

b2

])
=

B′(r)
κ2r2 − ρ̃w(r) = M, (41)

Mis a parameter independent of rand t. It is straight-
forward to see that in order to have a possible solution,
we must impose the constraint B(r) = κ2 R

ρ̃w(r)r2dr + c
where c is an integration constants. If for instance ρw(r) =
ρw0(r

/
r0)−α,α ∈ R and whereρw0 = ρw(r = r0) at the

throat, then B(r) = κ2ρw0r3−α/(3−α) + c and therefore
the requirement of asymptotic flatness B(r)

/
r → 0 as r →

∞is verified if 2 < α < 3. If for instance ∃r0/B(r0) =
r0, then c = r0 − κ2ρw0r3−α

0

/
(3−α) and hence B(r) =

κ2ρw0[r3−α − r3−α
0 ]

/
(3−α)+ r0. The flare-out condition at
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the throat B′(r0) < 1 gives r0 < −κ2ρw0r2−α
0 . Accordingly,

equation (38) may be written like:

3
ȧ2

a2 +3
ka

a2 +3n
ȧ
a

ḃ
b

+
n(n−1)

2

[
ḃ2

b2 +
kb

b2

]
+

1
a2 κ2ρw0r−α

= κ2ρa(r, t)+3
C
a2 , (42)

and obviously, the fifth term on the RHS of equation (42)
tends to zero for r → ∞for2 < α < 3. One may also con-
jecture that the gravitational coupling constant varies like
κ2 ∝ rαand accordingly the fifth term on the RHS of equa-
tion (2) can be viewed as a cosmological constant term. This
may have interesting consequences concerning the presence
of dark matter at galactic and cosmological scales similar
to the ones proposed by the asymptotically free theories of

gravity.
Making use of equation (41), equation (39) and the rela-

tion τa = −Paas measured by an observer who always re-
mains at rest at constant (r,θ,φ) give:

ρ̃c = ρ̃0a−3b−n(1+γ̄) +
m

1+3γ
a−2, (43)

whereρ̃0and m are real positive constants. In reality, one
would like to describe the recent behavior of the universe as
a transition from a universe filled with dust-like matter pres-
sure (γ = 0) to an accelerating one. It was argued that a dust
universe can represents a solution to the DE problem and the
Cosmic Cosmological Coincidence Problem (CCCP). Con-
sequently, equation (38) is written like:

ȧ2

a2 +
1
a2

[
ka −C− κ2

3
(m−M)

]
+n

ȧ
a

ḃ
b

+
n(n−1)

6

[
ḃ2

b2 +
kb

b2

]
=

κ2ρ̃0a−3b−n(1+γ̄)

3
. (44)

Making use of the relation Λ̇+ κ̇2ρ̃c = 0, one finds easily:

κ2 =
6C
m

ln
[
ρ̃0b−n(1+γ̄) +ma

]
. (45)

This corresponds to a slowly increasing gravitational con-
stant in time. Notes that for γ̄ = −1,

κ2 =
6C
m

ln [ρ̃0 +ma] , (46)

and thus the gravitational coupling constant does no longer
depends on the extra-dimensional scale factor. This proce-
dure leads us to the definition of an effective gravitational
constant due to the presence of a wormhole and is given by
equation (45). It is interesting to have quintessence gener-
ated from the extra-dimensional world. Equation (44) in its
turn takes the form:

ȧ2

a2 +n
ȧ
a

ḃ
b

+
n(n−1)

6

[
ḃ2

b2 +
kb

b2

]
=

6C
m

ln
[
ρ̃0b−n(1+γ̄) +ma

][ ρ̃0b−n(1+γ̄)

3a3 − (M−m)
a2

]
, (47)

where we have assumed that ka = C = +1, i.e. positive cos-
mological constant. Let us finally note that by making the
assumption that the extra-dimensions compactify as the visi-

ble dimensions expand like b(t)≈ a−x(t),0 < x < 1, equation
(47) can be written for kb = 0 as:

[
n(n−1)

6
x2 −nx+1

]
ȧ2

a2 =
6
m

ln
[
ρ̃0anx(1+γ̄) +ma

][ ρ̃0

3a3−nx(1+γ̄) −
(M−m)

a2

]
. (48)

For the special case n = 1, i.e. 5D-cosmology, one obtains
easily:

ȧ2

a2 =
6

m(1− x)
ln
[
ρ̃0ax(1+γ̄) +ma

][ ρ̃0

3a3−x(1+γ̄) −
(M−m)

a2

]
.

(49)

Equation (50) tells us that in order to have an asymptotically
Euclidean wormhole, ȧ2 must remain positive at large scale
factor. Thus, we need to have γ̄ ≥ −1andM > m. Conse-
quently, the equation of state parameter is w = p

/
ρb = γ̄ ≥

−1in agreement with the current observations. The model
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described here is a deviation from the standard scenarios in
which the wormholes in FRW models are typically described
by a constraint equation of the form ȧ2 = 1−Da2−n,n > 2
[49]. In return to the gravitational coupling constant, there
are several models which predict a time dependence of κ2.
In our framework, the time variation of κ2 is related to both
the time variation of the FRW scale factor and the internal
space scale factor b ≈ a−xby:

κ̇e f f ective
2

κe f f ective
2

=
ȧ−n(1+ γ̄)ax(n(1+γ̄)+1)[

anx(1+γ̄) +a
]

ln
[
anx(1+γ̄) +a

] , (50)

where we have assumed for simplicity and without loos-
ing generality thatρ̃0 = 1and m = 1. Clearly for γ̄ = −1,
κ̇e f f

2

/
κe f f

2 ≈ ȧ
/
(a lna)and the logarithmic term is due to the

presence of a wormhole. This variation shows that as long
as the universe expands in time, κ̇e f f

2

/
κe f f

2 is too small as it
is expected. Let us finally investigated about the behavior
of the scale factor: one may easily check that at late time-
dynamics, the scale factor evolves like a(t)≈ exp(Pt2 +Qt +
R), P,Qand R are real constants. This corresponds to a super-
accelerated non-singular universe with a wormhole in which
the conventional four-dimensional FRW flat spacetime is
dominated by dust-like matter while the extra-dimensional
part is endowed by an exotic non-tachyonic fluid or DE vio-
lating strong energy condition with EoS parameter γ̄ ≥ −1
and slowly increasing gravitational constant. In this con-
text, the cosmological constant which is finite at the origin of
time, decays rapidly to zero and this may explain its small-
ness at the present time. Further, from the fact b ≈ a−x, this
prove that extra-dimensions are compactified to zero rapidly
as t → ∞ but there are finite and large at the origin of time
(t = 0).
In summary, it is shown that we have a deviation from most
of the results elaborated in literature, in particular, the special
form of the Friedman equation and the logarithmic behav-
ior of the effective gravitational constant. Unlike the model
adopted by Kim in which the curvature is affected by the
wormhole even though the universe is flat, we show in the
present model that the curvature is not affected the worm-
hole if the cosmological constant is positive and decays like
Λ ∝ a−2. Further, phantom energy are excluded in our frame-
work and the universe is non-singular. Notes that wormholes
with phantom energy fields were proposed extensively in lit-

erature but from cosmological point of view, they face some
strong difficulties. We assumed that the universe started
higher-dimensional at high energies limit (Planck’s scale)
and subsequently the combination of dark energy, dust-like
matter and a static wormhole were needed for the dynamical
suppression of the extra dimensions. For further research,
other models including time-dependent wormhole will be
considered and studied.

IV. CONCLUSIONS

In conclusion, we have argued that the simple physics
of extra-dimensions with the special form of the decaying
lambda described in this work may actually be a modifica-
tion to the standard Friedmann equation. Despite the simple
phenomenological laws introduced here, many modern fea-
tures arise naturally, e.g. wormholes, dark energy and phan-
tom fields. Further the universe is free from the initial sin-
gularity. It is shown that we have a deviation from most of
the results elaborated in literature, in particular, the special
form of the Friedmann equation, the behavior of the effective
gravitational constant, the effective lambda and the extra-
dimensional scale factor. The extra-dimension is coupled
to a perfect fluid violating the strong energy condition, but
the effect of extra-dimension can be probed through its con-
sequence on the cosmological lambda and the gravitational
coupling constant. The three independent models discussed
here are free from lot of cosmological problems and can fit
well with the present observational data. Instead of look-
ing for the complicated action to obtain wormhole and brane
solution, the models introduced here offer possible simple
alternative. Our main aim was to build the theoretical setup;
for future work, we shall extend these ideas for various cos-
mological solutions augmented by numerical tests.
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