非能动核电站主给水丧失事故仿真研究

李明岩,彭敏俊,张志俭

(哈尔滨工程大学 核安全与仿真技术国防重点学科实验室,黑龙江 哈尔滨 150001)

摘要:AP1000 非能动安全系统是一种新型的安全系统,无论从原理上还是系统布置上均与第2代核电站有区别,AP1000 目前尚未实际运行,所以,其设计原理还需进一步深入地论证和分析。本文应用JTopmeret、THEATRe 建模软件对 AP1000 非能动余热排出系统(PRHRS)、堆芯补水箱(CMT)系统进行仿真,验证在主给水丧失事故条件下 PRHRS、CMT 系统运行的可行性和应急堆芯冷却的有效性。结果表明:在事故条件下,PRHRS、CMT 系统能够及时、有效地排出堆芯衰变热,保证堆芯的安全。此结论对 AP1000 电站的实际运行有一定的参考作用。

关键词:AP1000;非能动余热排出系统;主给水丧失;仿真
中图分类号:TL353.12
文献标志码:A
文章编号:1000-6931(2010)04-0436-05

Simulation Research on Loss of Normal Feedwater for Passive Nuclear Power Plant

LI Ming-yan, PENG Min-jun, ZHANG Zhi-jian

(National Defense Key Subject Laboratory for Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin 150001, China)

Abstract: The passive safety system of AP1000 is a new type of safety system, which is different to the second generation nuclear power plant in principle and system layout. There is no actual operation experience of AP1000, therefore, the design principle of AP1000 still need be further verified and analyzed. This paper uses JTopmeret and THEATRe modeling software to carry out simulation on passive residual heat removal system (PRHRS) and core made tank (CMT) system of AP1000. The simulation object is to verify the feasibility and validity of PRHRS and CMT system during accidental conditions. The simulation results show that PRHRS and CMT system can discharge decay heat timely and effectively and guarantee safety of reactor core. The conclusions have reference value in helping operation of AP1000.

Key words: AP1000; passive residual heat removal system; loss of normal feedwater; simulation

AP1000 是第 3 代核电站的典型代表,我 国已引进 AP1000 技术建设两座电站,且通过 消化、吸收,开发我国的第 3 代核电技术。由于 AP1000 非能动安全系统是新型的安全设计, 目前还未实际运行,其设计原理需进一步论证。

本工作以 AP1000 为研究对象,选择主给 水丧失事故进行计算分析。因主给水丧失事故 属中等频率故障,满功率运行时丧失主给水流 量,堆芯将处于非常危险的状态。本文在主给 水丧失事故的仿真分析中,非能动余热排出系 统(PRHRS)、堆芯补水箱(CMT)系统均投入 运行。

THEATRe 程序是反应堆热工水力实时 仿真分析工具,用于仿真轻水堆稳态、瞬态以及 大破口、小破口、ATWS、给水丧失、厂外电丧失 等事故工况下的反应堆热工水力分析。 JTopmeret是两相流图形建模工具,用自带模 块建立流体网络热工水力模型。

本文采用 THEATRe 及 JTopmeret 仿真 程序建立反应堆冷却剂系统(RCS)、PRHRS 及 CMT 系统仿真模型。通过考察事故后非能 动系统各参数变化,验证 PRHRS、CMT 系统 非能动运行的可行性和应急堆芯冷却的有 效性。

1 仿真内容及仿真方法

本文仿真的范围是 AP1000 的 RCS 和应 急堆芯冷却系统,包括 PRHRS、CMT 系统及 相关管道等。图1示出仿真计算模型简图^[1-4]。

仿真工况为主给水丧失事故,事故时间序 列列于表 1^[4]。在引入给水丧失事故前,反应 堆冷却剂系统满功率下运行,CMT 与冷管段 平衡管线上的阀门、非能动余热排出热交换器 (PRHR HX)与热管段连接的阀门均处于开启 状态,使得压力平衡。经一段时间后引入事故, 给水逐渐减少,在蒸汽发生器(SG)窄量程低水 位信号触发下,反应堆自动紧急停堆,辅助给水 系统由于故障原因未投入运行,在反应堆停堆 后汽轮机停止运行,且汽轮机旁路系统冷凝器 由于故障原因也未投入运行。汽轮机停止运行 后,SG 压力迅速上升,蒸汽旁路排放阀此时未 投入运行,SG 压力上升至安全阀开启,由于二 次侧传热能力的降低,一回路温度上升,稳压器

图 1 仿真系统简图 Fig. 1 Scheme of simulation system IRWST——安全壳内换料水贮存箱; R/V——压力容器;PZR——稳压器; C. L. ——冷管段;H. L. ——热管段

表 1 主给水丧失事故时间序列

Table 1 Sequence for loss of normal feedwater

事件	时刻/s
	10
反应堆停堆	48
汽轮机停止	54
SG 安全阀开启	82
PZR 安全阀开启	90
PZR 安全阀关闭	95
PRHRS 投入	158
SG 安全阀关闭	166
主泵停止	1 038
CMT 系统投入	1 050
PZR 安全阀开启	3 241
PZR 安全阀关闭	41 516
PRHRS、CMT系统长期排出堆芯余热, 直至达到安全停堆状态	

安全阀开启。在 SG 宽量程低水位信号触发下,PRHRS 自动投入。一段时间后,主回路冷却剂冷段温度 T。低于整定值时,触发主泵停止及 CMT 系统投入。PRHRS 导出堆芯余热且 CMT 直接注入硼水到反应堆容器的下降段环腔。RCS 不会降压到触发安注箱启动的压力。 在电厂状况稳定且满足终止准则后,操作员启动正常电厂停堆程序。

AP1000 主回路系统设计特点与目前已运 行核电站反应堆主回路系统设计特点基本一 致。本文应用 THEATRe 程序建立主回路系 统的模型,模型节点划分示于图 2。

图 2 AP1000 主回路系统节点图 Fig. 2 Nodalization of main loop system

对于 AP1000 的 PRHRS,当其投入后涉及 到主冷却剂与安全壳储水箱内部的水进行热量 交换;当 CMT 系统投入时,主冷却剂通过自然 循环流入 CMT 与冷硼水进行热量交换。针对 这两个非能动系统流体循环方式、热量传输特 点,本文采用 JTopmeret 仿真工具,应用两相 流、多组分、非热平衡模型,基于质量、动量、能 量守恒基本原理对其建模。

2 仿真结果分析

反应堆的功率是由仿真程序计算的,包括 燃料元件产生的功率、燃料包壳产生的功率及 反应堆的衰变热功率。反应堆停堆后的功率, 主要由缓发中子引起的裂变反应、裂变产物的 衰变及其他材料的中子俘获等因素引起的。停 堆后反应堆功率由 Glasstone 公式计算:

图3示出反应堆功率和冷却剂流量随时间 的变化。从图 3a 可看出,10 s 时产生主给水丧 失事故,随着二次侧传热能力的降低,一次侧温 度、压力升高,主冷却剂负反应性增大,堆芯功 率缓慢下降。48 s时,反应堆停堆,堆芯功率迅 谏下降,随着燃料包壳产生的功率及反应堆衰 变热功率的减少,堆芯功率也逐渐减少,直至安 全停堆。从图 3b 可看出,在 PRHRS 投入后, 其所在一侧堆芯冷却剂流量大于另一侧,提高 了堆芯衰变热的排出效率。随后由于冷段产生 低温信号,主泵在1038s停止,堆芯流量下降。 在主泵停止后延迟 12 s CMT 系统投入, PRHRS 与 CMT 系统一起以自然循环的方式 长期排出堆芯衰变热。随着堆芯冷、热段温度 差的降低, PRHRS、CMT 系统自然循环能力也 逐渐降低,堆芯冷却剂流量也逐渐减少,直至电 厂达到正常停堆条件。

图 4 示出冷却剂温度随时间的变化。10 s 时,产生给水丧失事故,由于二次侧传热能力的 降低,所以,冷段及热段温度逐渐上升。48 s 时,反应堆停堆,堆芯功率迅速降低,所以,热段 温度会下降。54 s 时,汽轮机停止,二次侧压力 迅速上升,传热能力也下降,所以,冷段温度会 快速上升。由于稳压器安全阀的开启、关闭,冷 段、热段温度产生波动。158 s 时,PRHRS 投 人,排出余热。冷段、热段温度同时逐渐下降。 由于 IRWST 温度升高,PRHRS 传热能力降 低,冷段及热段温差也逐渐减少。在触发冷段 低温信号后,主泵停止,冷却剂流量迅速降低, PRHRS 传热能力降低,所以,在此过程中热段 温度上升。主泵停止后,CMT 系统投入。经 PRHRS 与 CMT 系统一起持久的传热,热段温

图 3 反应堆功率(a)和冷却剂流量(b)随时间的变化 Fig. 3 Reactor core decay power (a) and coolant mass flux (b) vs. time

Fig. 4 Reactor coolant temperature in loop
 a——有 PRHRS 一侧; b——无 PRHRS 一侧

度在上升一段时间后最终逐渐下降。对于冷 段,由于 CMT 系统投入后形成一冷却剂热交 换循环回路,冷段温度会降低。经一段时间,堆 芯的衰变热大于 CMT 系统及 PRHRS 的排热 能力,所以,冷段温度会上升一段时间。堆芯衰 变功率呈指数下降,所以,在 PRHRS 及 CMT 系统的共同排热能力下,反应堆冷段及热段温 度将一直降低。对于图 4b,其变化趋势与图 4a 不同之处在于,CMT 通过反应堆容器注入口 及相应的冷段构成一新的冷却回路,冷硼水与 冷却剂相混合,使得冷却剂温度迅速下降。

图 5 示出反应堆燃料包壳外表面温度、稳 压器压力和 SG 压力随时间的变化。从图 5a 可看出,在发生事故后,由于二回路传热能力的 降低,使冷却剂温度有所升高,所以,燃料温度 也升高。在反应堆停堆后,燃料温度会迅速下 降,同时由于 PRHRS 投入,堆芯燃料温度一直 在下降。但在主泵停止运行后,冷却剂流量迅 速降低,随后 SG 隔离,堆芯冷却剂温度升高, 使燃料温度也升高。经 PRHRS与CMT系统 一起持久的传热,燃料温度在上升一段时间后 最终逐渐下降。从图 5b 可看出,10 s 时,引入 给水丧失事故,一回路系统压力迅速上升,48 s 时,反应堆停堆及汽轮机停止,二次侧排热能力 迅速降低,一回路系统压力逐渐上升。稳压器 安全阀在此过程中相继开启、关闭。在 PRHRS 投入后,一回路系统有 PRHRS 一侧 热段温度下降,压力也下降。在 CMT 系统投 入后,随着热段温度的上升及下降,系统压力也 随之上升及下降。从图 5c 可看出,在发生给水 丧失事故后,给水减少,SG 二次侧水装量减 少,反应堆衰变热不能及时排出,使得一次侧及 二次侧温度升高,所以,SG 压力逐渐上升。在 汽轮机停止后,SG 压力迅速上升,蒸汽旁路排 放阀此时不能投入运行,SG 安全阀开启,随着 蒸汽通过安全阀排出及 PRHRS 的投入,SG 压 力将降低。在有 PRHRS 一侧的 SG,一部分冷 却剂流入 PRHRS, 所以, SG 压力的变化较缓 一些。在无 PRHRS 一侧,热段温度的变化还 是比较剧烈,所以,SG 压力的变化也较剧烈。

图 5 燃料包壳外表面温度(a)、稳压器压力(b)和 SG 压力(c)随时间的变化

Fig. 5 Outside surface temperature of fuel element cladding (a), pressurizer pressure (b) and

图 6 示出 PRHRS 换热功率与堆芯额定功 率比例 M 随时间的变化趋势。158 s时, PRHRS 投入,此时 PRHRS 出口、入口的温差 最大,且冷却剂主泵未停止,其流量最大,此时 PRHRS 换热功率最大。1 038 s时,主泵停止, PRHRS 冷却剂流量迅速减小,所以,其换热功 率也迅速降低。在 CMT 系统投入后,PRHRS 以自然循环的方式排出堆芯热量。随堆芯释热 量的减小,PRHRS 功率将逐渐降低。

图 6 PRHRS 换热功率与堆芯额定功率比例 与时间的关系

Fig. 6 Proportion of PRHRS heat power and core rated power vs. time

图 7 示出 CMT 注入流量随时间的变化。 1 050 s时,CMT 系统投入,此时 CMT 出口、入 口的温差最大,所以,其注入流量最大。随出、 入口温差的减小(密度差减小),其流量也逐渐 减小。

图 7 CMT 注入流量

3 结论

 在事故的进程中,反应堆冷、热段温度 的变化均低于安全阈值,燃料元件温度在事故 过程中低于初始温度,所以,在事故的进程中反 应堆未发生堆芯损毁现象。

2) PRHRS 仅布置在反应堆主冷却剂环路 的一侧,其对堆芯的冷却是不对称的。冷段温 度通过 PRHRS 的冷却,其温度减少范围是有 限的,所以,未对堆芯的稳定运行产生影响;在 PRHRS 投入运行后,由于在事故的进程中, SG、稳压器的安全阀会先后开启、关闭,对 PRHRS 排出堆芯衰变热产生影响,出现波动, 但 PRHRS 的能力还是能够满足要求的; PRHRS 能够及时排出堆芯的衰变热,避免了 冷却剂由稳压器安全阀溢出。

3) CMT 在主泵停止后投入,将冷水注入 到压力容器下降段,确保堆芯应急冷却和淹没, 在水箱上部未产生蒸汽,在事故的发展进程中, CMT 以水-水循环的方式运行,此循环方式避 免了在堆芯补水箱内产生水锤现象。

由于论文涉及多个系统的投入,应用两个 仿真工具来分析,且忽略一些因素的影响,所 以,对仿真的精度有一些影响。在下一步的工 作中应进一步完善研究,包括考虑安全壳蓄水 箱的作用、应急堆芯冷却系统注入硼酸的反应 性反馈。

参考文献:

- [1] 沈瑾,江光明,唐钢,等. AP1000 非能动安全系统初步应用研究[J]. 国外核动力,2006(1):1-6.
 SHEN Jin, JIANG Guangming, TANG Gang, et al. AP1000 passive safety systems primer applied research[J]. Foreign Nuclear Power, 2006 (1): 1-6(in Chinese).
- [2] IAEA. Description of natural circulation and passive safety systems in water cooled nuclear power plants[R]. Vienna: IAEA, 2005.
- [3] IAEA. Natural circulation in watercooled nuclear power plants: Phenomena, models, and methodology for system reliability assessments [R]. Vienna: IAEA, 2006.
- [4] SCHULZ T L. Westinghouse AP1000 advanced passive plant [J]. Nuclear Engineering and Design, 2006, 236(14-16): 1 487-1 547.