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Abstract

We describe a hashing function from the elements of the finite field
Fq into points on a Hessian curve. Our function features the uniform
and smaller size for the cardinalities of almost all fibers compared
with the other known hashing functions for elliptic curves. Moreover, a
point on the image set of the function is uniquely given by its abscissa.
For ordinary Hessian curves, the cardinality of the image set of the
function is exactly given by (q + i)/2 for some i = 1, 2, 3.
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1 Introduction

It is well-known that many cryptographic schemes based on elliptic
curves require efficient hashing of finite field elements into points on
a given elliptic curve. Examples are the Boneh- Franklin identity
based encryption scheme [1], the SPEKE (Simple Password Exponen-
tial Key Ex- change) [10] and the PAK (Password Authenticated Key
exchange) [3].

We note that designing an efficient hash function from field ele-
ments to points on an elliptic curve has been an open problem for
quite a long time. Recently, two constructions have appeared, that of
Shallue and van de Woestjine [16] and also of Icart [9]. Furthermore,
Farashahi, Shparlinski and Voloch have studied the properties of the
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Icart’s function and also slightly adjust and prove the asymptotic for-
mula for its image size conjectured in [9]. Also, analogous arguments
for both hash functions have recently been presented by Fouque and
Tibouchi [6].

Moreover, designing an injective efficient function from fields ele-
ment into the points of a given elliptic curve is a challenging problem.
Such functions will have several applications in many cryptographic
schemes based on elliptic curves and in designing cryptographically se-
cure pseudorandom generators with elliptic curves. Alternatively, one
may consider functions with the small size of preimages, for instance
a function that is 2 : 1 for all points.

In this paper, we describe a function from fields element to the
points on an elliptic Hessian curves. The use of Hessian curves in
cryptography has been studied in [4, 11, 17, 7, 8]. Moreover, recently
very efficient and fast unified addition formulas for Hessian curves
have provided, see [13, 2]. Our technique to obtain a hash function
for Hessian curves is similar to that of Icart’s technique [9] which is
based on computing the cubic root of a field element. Moreover, our
function, is a 2 : 1 map at almost all points, which gives the uniform
and small size 2 for the cardinalities of the fibers.

Throughout the paper, for a field F, we denote its algebraic closure
by F and its multiplicative subgroup by F∗. The letter p always de-
notes a prime number and the letter q always denotes a prime power.
As usual, Fq is a finite field of size q. The cardinality of a finite set S
is denoted by #S.

For p > 2, let χ be the quadratic character in Fq. So, for x ∈ Fq,
we have χ(x) = 0, 1 or −1, if x = 0, x = w2 for some w 6= 0 or x 6= w2

for all w ∈ Fq, respectively. Moreover, for p = 2 and x ∈ Fq, let
χ(x) = 0.

2 Backgrounds on Hessian Curves

A Hessian curve Hd over a finite field Fq is given by the equation

Hd : x3 + y3 + 1 = 3dxy, (1)

where d ∈ Fq with d3 6= 1, see [12].
We recall that the set of Fq-rational points of Hd denoted by Hd(Fq)

forms an Abelian group. For q ≡ 2 (mod 3), the Hessian curve Hd has
one Fq-rational point at infinity O that is the neutral element of the
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group. For the affine point P of Hd, the x-coordinate of P is denoted
by x(P ).

Let πd be the projection map πd : Hd(Fq) −→ Fq
⋃
{∞} defined

by πd(P ) = x(P ) if P 6= O and πd(P ) =∞ if P = O.
Let Xd be the subset of Fq given by

Xd =
{
x ∈ Fq : 1 ≤ #π−1

d (x) ≤ 2
}
. (2)

In other words, Xd is the the set of elements x ∈ Fq so that there exist
only one or two affine points P in Hd(Fq) with x(P ) = x.

Proposition 1. Let q ≡ 2 (mod 3) and let Hd be a Hessian curve
over Fq defined by the equation (1) with d 6= 1. For the cardinality of
the set Xd, given by equation (2), we have

#Xd =

{
q, if d = 0,(
q + χ(d4 − d)

)
/2, if d 6= 0.

Proof. We note that, the map κ : Fq → Fq by κ(x) = x3 is a bijection,
since q ≡ 2 (mod 3). For an element x ∈ Fq, we have #π−1

d (x) = 1
if and only if the polynomial gx = Y 3 − 3dxY + x3 + 1 has at most
two distinct irreducible factors in Fq[Y ]. We distinguish the following
possibilities for d and p.

• If d = 0, for all x ∈ Fq the polynomial gx has only one root in
Fq, since κ is a bijection over Fq. So, #Xd = q.

• We assume that d 6= 0 and p 6= 2. For x ∈ Fq, let ∆x be the
discriminant of gx, that is

∆x = −27(x6 + 2(1− 2d3)x3 + 1).

If ∆x 6= 0, then the number of irreducible factors of gx over Fq
equals 2 if and only if ∆x is a quadratic non-residue element
of Fq (see [14, 5] or [15, Corollary 1]). Therefore, we have

#Xd =
∑

x∈Fq ,χ(∆x) 6=1

1.

We recall that the map κ is a bijection over Fq. For x ∈ Fq, let

Dx = x2 + 2(1− 2d3)x+ 1.
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For q ≡ 2 (mod 3), we have χ(−3) = −1. Therefore, we obtain

#Xd =
∑

x∈Fq ,χ(Dx)6=−1 1 =
∑

x∈Fq
1+χ(Dx)

2 +
∑

x∈Fq ,Dx=0
1
2 .

We note that
∑

x∈Fq χ(Dx) = −1 if d4 − d 6= 0. Moreover, there
are two distinct values of x ∈ Fq with Dx = 0 if and only if
χ(d4 − d) = 1. So, for d 6= 0, we have

#Xd = q−1
2 + 1+χ(d4−d)

2 = q+χ(d4−d)
2 .

• Now, we assume that p = 2 and d 6= 0. For x = 1, the polynomial
gx has the roots y = 0,

√
d in Fq. Also, for x ∈ Fq with x 6= 1,

the number of irreducible factors of gx over Fq equals 2 if and
only if the polynomial T 2 +T +(−3dx)3/(x3 +1)2 factors over Fq
(see [18, Lemma 4.2]). The latter is equivalent to Tr(∆x) = 0,
where

∆x = d3x3/(x3 + 1)2.

Therefore, we have

#Xd = 1 +
∑

x∈Fq ,x 6=1,Tr(∆x)=0

1.

For q ≡ 2 (mod 3), the map κ is a bijection. Hence,

#Xd = 1 +
∑

x∈Fq , x 6=1,Tr
(

d3x
(x+1)2

)
=0

1

= 1 +
∑

x∈F∗q ,Tr
(
d3( 1

x
+ 1
x2

)
)

=0

1

=
∑

x∈Fq ,Tr(d3(x2+x))=0

1.

Then, one can see that #Xd = q/2 if d3 6= 0, 1.

So, the proof of Proposition 1 is complete.

3 Our Results

Let Fq be the finite field with q ≡ 2 (mod 3) and let Hd be the Hessian
curve over Fq defined by the equation (1), where d3 6= 1. In this
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section, we define an encoding map from the elements of Fq to the
Fq-rational points of Hd. We also describe the bijection between the
set of affine points of the image set of this map and the set Xd, give
by equation (2). Then, we obtain the cardinality of the image set of
the map.

3.1 The encoding map from Fq to Hd(Fq)
Let α be a function α : Fq −→ Fq. If the function α is not defined
at some element of Fq, we adjoin ∞ to Fq as a possible value of the
function α at this element.

For q ≡ 2 (mod 3), we consider the map

hα;d : Fq −→ Hd(Fq) (3)

defined by hα;d(u) = (x, y) if α(u) 6= −1,∞, where

x = −α(u)
(
d3α3(u) + 1
α3(u) + 1

)1/3

, y = −
(
d3α3(u) + 1
α3(u) + 1

)1/3

+dα(u) (4)

and hα;d(u) = O if α(u) = −1,∞.
We note that the map hα;d is well defined. We let

Hα;d = hα;d(Fq),

that is the image set of the map hα;d. We also note that, for a point
P = (x, y) ∈ Hd(Fq), we have P ∈ Hα;d if and only if there exists an
element u ∈ Fq satisfying

dα2(u)− α(u)y + x = 0. (5)

Notice that if d = 0, then the Hessian curve Hd is supersingular
with #Hd(Fq) = q + 1. In this case, the map hα;d is injective if α is
injective. In other words, for all points P ∈ Hα;d we have #h−1

α;d(P ) =
1, if α(Fq) = Fq. So, for d = 0, we have #Hα;d = q, if α is a bijection
over Fq.

3.2 Size of the image set Hα;d

From now on, we assume that d 6= 0. The following theorem gives the
explicit formulas for the cardinality of the image set Hα;d = hα;d(Fq),
where α is a bijection over Fq.
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Theorem 2. Let q ≡ 2 (mod 3) and let Hd be a Hessian curve over
Fq defined by the equation (1) with d 6= 0, 1. Let hα;d be the map
defined by the equation (3). If α : Fq −→ Fq is a bijective function,
for the cardinality of the image set Hα;d = hα;d(Fq), we have

#Hα;d =
(
q + χ(d4 − d) + 2

)
/2.

Proof. We note that

#Hα;d =
∑

P∈Hα;d

1
#h−1

α;d(P )
.

Let

Nk = #
{
P : P ∈ Hα;d, #h−1

α;d(P ) = k
}
, k = 1, 2, . . . .

From the definition of the map hα;d, we have #h−1
α;d(P ) = 1 if P = O.

Moreover, from the equation (5), for a point P = (x, y) ∈ Hd(Fq), we
have P ∈ Hα;d if and only if the equation

dα2(U)− α(U)y + x = 0 (6)

has a solution u ∈ Fq. Furthermore, the number of distinct roots of
the equation (6) equals #h−1

α;d(P ). Since α is a bijective function, we
see that 1 ≤ #h−1

α;d(P ) ≤ 2. Therefore, Nk = 0 for k > 2. Moreover,
N1 +N2 = q. Then,

#Hα;d =
2∑

k=1

Nk

k
=
q +N1

2
. (7)

As we noticed before, the value N1 − 1 is equal to the number of
points P = (x, y) ∈ Hd(Fq) where the equation (6) has exactly one
root in Fq. To compute the value of N1, we distinguish the following
possibilities for p the characteristic of the finite field Fq.
• If p 6= 2, for a point (x, y) ∈ Hd(Fq), the equation (6) has only

one root in Fq if and only if y2 − 4dx = 0. This implies that
z2 + 16d3z + 64d3 = 0 with z = y3. The discriminant of above
quadratic equation is 44d3(d3 − 1). Since q ≡ 2 (mod 3), then
N1 = 1 if χ(d4 − d) = −1 and N1 = 3 if χ(d4 − d) = 1.

• If p = 2, for a point (x, y) ∈ Hd(Fq), the equation (6) has only
one root in Fq if and only if x = 1, y = 0 with α2(u) = 1/d.
Hence, N1 = 2.

So, we have N1 = 2 + χ(d4 − d), where d 6= 0. Then, using (7), we
obtain the explicit formulas for the cardinality of Hα;d.
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3.3 Correspondence between the sets Xd andHα;d

We recall the set Xd, given by (2), that is the set of elements x ∈ Fq
such that the number of affine points in Hd(Fq) with x-coordinate
equal to x is one or two.

We consider the restriction of the projection mao πd to the set
Hα;d. So, let πα;d be the map

πα;d : Hα;d −→ Xd
⋃
{∞} (8)

defined by πα;d(P ) = x(P ) if P 6= O and πα;d(P ) =∞ if P = O.
The following lemma shows that the map πα;d is injective.

Lemma 3. Let q ≡ 2 (mod 3) and let Hd be a Hessian curve over Fq
defined by the equation (1) with d 6= 0, 1. Let πα;d be the map defined
by (8). Then, πα;d is an injective function.

Proof. First, we show that the map πα;d is well defined. We note only
the point O is mapped to ∞. Then, let P be an affine point of Hα;d.
We have

x(P ) = −α(u)
(
d3α3(u)+1
α3(u)+1

)1/3

for some u ∈ Fq. We distinguish the following cases for the character-
istic p of Fq.

• For p 6= 2, from the proof of Proposition 1, we have x(P ) ∈ Xd if
and only if χ(∆x(P )) 6= 1, where ∆x = −27(x6 +2(1−2d3)x3 +1)
for x ∈ Fq. Next,

∆x(P ) = −27
(
d3α6(u)+2d3α3(u)+1

α3(u)+1

)2
.

So, χ(∆x(P )) 6= 1, since χ(−3) 6= 1. Hence, x(P ) ∈ Xd.
• For p = 2, form the proof of Proposition 1, we have x(P ) ∈ Xd if

and only if x(P ) = 1 or Tr(∆x(P )) = 0, where ∆x = d3x3/(x3 +
1)2 for x ∈ Fq, x 6= 1. Then,

∆x(P ) = z2 + z, z = d3α3(u)+1
d3α6(u)+1

.

So, Tr(∆x(P )) = 0 if x(P ) 6= 1. Hence, x(P ) ∈ Xd.
Next, we shall prove that the map πα;d is injective, i.e., for all

elements x in Xd, we have #π−1
α;d(x) ≤ 1. Again, we consider the

following cases for p.
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• We assume that p 6= 2. By the definition of the set Xd and the
proof of Proposition 1, for x ∈ Xd there is only one point on
Hd(Fq) with x(P ) = x if ∆x 6= 0, where

∆x = −27(x6 + 2(1− 2d3)x3 + 1).

So, for x ∈ Xd with ∆x 6= 0, we have #π−1
α;d(x) ≤ 1.

Next, suppose x ∈ Fq with ∆x = 0. Then, x3 = 2d3 − 1 + 2ds,
where s is a square root of d4− d in Fq. Next, the points (x, y1),
(x, y2) with y1 = (d2− s)x2, y2 = 2(s−d2)x2 are the only points
of Hd(Fq) with the x-coordinate equal to x. Moreover, from the
equation (5), for a point P = (x, y) ∈ Hd(Fq), we have P ∈ Hα;d

if and only if χ(y2 − 4dx) 6= −1. Furthermore, we have

y2
1 − 4dx = −3dx = −3y2

1.

Since χ(−3) = −1 and d 6= 0, we see that (x, y1) /∈ Hα;d. Also, we
have y2

2−4dx = 0. So, (x, y2) is a point ofHα;d and #π−1
α;d(x) = 1.

• For the case of p = 2, from the definition of the set Xd and the
proof of Proposition 1, we have #π−1

α;d(x) ≤ 1, where x ∈ Xd,
x 6= 1. Moreover, for x = 1, we have π−1

α;d(x) = {(1, 0)}.

Therefore for all x ∈ Xd, we have #π−1
α;d(x) ≤ 1, which completes the

proof of this lemma.

Corollary 4. Let q ≡ 2 (mod 3) and let Hd be a Hessian curve over
Fq defined by the equation (1) with d 6= 0, 1. Let πα;d be the map
defined by the equation (8). If α is a bijective function, then the map
πα;d is a bijection.

Proof. From Lemma 3, πα;d is an injective function. We note that
the point O is mapped to ∞. If α is a bijective function, then from
Proposition 1 and Theorem 2, we have #Hα;d = 1 + #Xd. Hence, the
map πα;d is a bijection.

4 Concluding Remarks

In this paper, we gave an efficient hashing of the elements of Fq into
the Fq-rational points of the Hessian curve Hd. The size of the image
set of this function is about q/2 if d 6= 0 and q if d = 0. We remark
that the case d = 0 is corresponded to the supersingular Hessian curve.
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For ordinary Hessian curves, if α is an injective function over Fq,
then our encoding map hα;d, given by equation (3), is a 2 : 1 map at all
points except at one or three points that is 1 : 1 and it depends on the
value of χ(d4−4), see the proof of Theorem 2. So, in comparison with
Icart’s map, [9], our map have the uniform size 2 for the cardinalities
of almost all fibers. We recall that the size of fibers of Icart’s map is
varied between 1 and 4.

Moreover, we observed a bijection between the image set Hα;d

and the set Xd ∪ {∞}, where the function α is a bijection over Fq.
This observation, leads us to extract random bits from the points
in the image set Hα;d by extracting random bits from the elements
of Xd. This extractor can be used for several application in many
cryptographic scheme and pseudorandom generators based on elliptic
curves.

We note that our map hα;d is not surjective. Moreover, we can
extend this map to a surjective map defined from Fq × Fq to Hd(Fq),
see [9]. Using the map hα;d, we consider the map

fα;d : Fq × Fq −→ Hd(Fq) (9)

defined by fα;d(u, v) = hα;d(u) + hα;d(v), for u, v in Fq. To show that
the map fα;d is surjective, one needs to prove that all fibers are non-
empty sets. This can be easily checked if the cardinality of Hd(Fq) is
at most q. Moreover, one can see that generally a fiber of the map hα;d

relates to an absolutely irreducible curve defined over Fq. So, from the
Hasse-Weil theorem, all fibers are non-empty if q is large enough. For
the bijective function α, and for all Hessian curves Hd over Fq with
q ≡ 2 (mod 3) and q ≥ 11, our experiments show that all fibers are
nonempty sets.

In the following theorem, we give estimates for the cardinality of
the fibers of the map hα;d, where α is a bijection. We leave the proof
of the following theorem for the future work.

Theorem 5. Let q ≡ 2 (mod 3) with q ≥ 11 and let Hd be a Hessian
curve over Fq defined by the equation (1) with d 6= 0, 1. Let fα;d be
the map defined by (9). If α : Fq −→ Fq is a bijective function, then
for all points P ∈ Hd(Fq) and for the cardinality of the pre-image set
I(P ) = f−1

α;d(P ), we have

|#I(P )− q| =

{
q +O

(√
q
)
, if x(P ) = 0,

O
(√
q
)
, if x(P ) 6= 0.
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