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This letter discusses a modified Friedmann-Robertson-Walker cosmology in which the equation of state
behaves like p = 3ηamρn−ρ,(η,m,n) ∈ R. Many interesting features are revealed in particular the manifesta-
tion of domain wall, cosmic string, stiff matter, dust and radiation/ultra-relativistic particles.
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The recent astronomical observations of the dynamics of
galaxies [1,2,3], Type Ia supernovae (SNIa)[4] with redshift
z > 0.35, the first acoustic peak of the CMB temperature
fluctuations or anisotropies [5] and the recent findings of
BOOMERANG experiments [6] favour a spatially flat matter
universe undergoing a phase of accelerated expansion. These
observational facts suggest that the universe is dominated by
a mysterious invisible to us and missing energy component
dubbed Dark Energy (DE) characterized by a negative Equa-
tion of State Parameter (EoSP) w = p

/
ρ < 0, which accounts

for about 70% of the total energy content and 30% of dark
matter. This ephemeral energy has special effects that have
only been detected on the largest scales of our Universe and
then only in the past ten years. Questions still linger about
the nature of dark matter, especially its distribution in cen-
tral region of clusters and galaxies. It is worth mentioning
that the equation of state parameter (EoSP) for a cosmolog-
ical constant is w = p

/
ρ = −1, and −1 < w < −1

/
3 for a

quintessence fluid, whereas w < −1 for a phantom fluid. A
large number of theoretical and phenomenological compet-
itive models have been presented to account for its gravita-
tional effects. These models include the ΛCDM model[7],
quintessence [8], K-essence[9], viscous fluid [10], Chaply-
gin gas with equation of state p =−Kρ−1,ρ > 0,K ∈ R (pis
the spatially homogeneous pressure and ρ the energy den-
sity)[11], Generalized Chaplygin gas (GCG) model whose
equation of state is p = −Kρ−a,ρ > 0,0 < a ≤ 1 [12,13],
exotic matters with generalized equation of statep = Aρ−
Bρa,(A,B,a)∈R [14,15], Brans-Dicke (BD) pressureless so-
lutions with non-minimal coupling [16] and so on. Other
theoretical alternatives include the Modified Gravity (MG)
or alternatives theories of gravity sorting from the low en-
ergy effective heterotic string theory/E8×E8 M-theory and
braneworld scenarios [17-25]. Most of these approaches are
accompanied with problems and many difficulties and we still
ignore which of these models are the most viable or more real-
istic than the others. We are grappled with deep cosmological
enigmas and many unsolved problems.

In this letter, we will address another simple alternative.
Unlike the previous works on dark energy problem, in partic-
ular those dealing with scalar field gravity we will deal with a
new variable equation of state parameter leading to dark en-
ergy and Big Rip. The universe may contain some kind of
exotic matters so that energy conditions are violated.[26] The
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presence of exotic components point toward a need to im-
prove our concepts about the primordial composition of the
universe and hence the equation of state needs some general-
ization. More precisely, the equation of state conjectured here
is p = 3ηamρn−ρ,(η,m,n) ∈ R. As already noted, the case
where η = 0 corresponds to the cosmological constant, and
that for m = 0 corresponds to the case of exotic matters with
generalized equation of state p = −ρ−Bρn,(B = −3η,n) ∈
R. It will be shown that the equation of state we conjecture
in this work will not only result in many suitable analytical
solutions but will be the outcome of many interesting cos-
mological consequences which overwhelmingly will be justi-
fied by the latest astronomical observations. As it is believed
that the matter density varies with the scale factor of the uni-
verse, the equation of state p = 3ηamρn− ρ can be viewed
as a generalization of the generalized Chaplygin gas equation
of state. This later is a new version of the generalized equa-
tion of state for Chaplygin gas recently introduced in litera-
ture.[14,15] One normally expects m < 0 and 0 < η < 1 that
w > −1 for the generalized Chaplygin gas but one may also
expects new generalized Chaplygin gas models for which m
and η can lie outside this range.

We naturally assume that the universe is spatially flat,
isotropic and homogeneous at large scales. In a general rel-
ativistic context, such a spacetime is described by a four-
dimensional manifold and is endowed with a Friedman-
Robertson-Walker (FRW) space-time metric ds2 = dt2 −
a2(t)[dr2 + r2(dθ2 + sin2

θdϕ2)]. Here a(t) is the scale fac-
tor of the universe. The effective Einstein’s field equation in
the presence of the cosmological constant Λ is written in their
standard form:

Rµν−
1
2

gµνR+Λgµν =−8πG [(p+ρ)uµuν + pgµν] , (1)

where Rµν is the Riemann’s curvature tensor, R is the scalar
curvature, Tµν = (p +ρ)uµuν + pgµν is the stress-energy mo-
mentum tensor, gµν is the metric and G is the gravitational
constant. The Friedmann equation in the presence of matter
is usually written like[27]:

ȧ2

a2 =
8πGρ

3
+

Λ

3
. (2)

The first step is to derive the form of the matter density. For
this, we make use of the continuity equation ρ̇+3H(p+ρ) =
0 where H = ȧ

/
a is the Hubble parameter. After simple alge-

braic calculations, we obtain:

ρ =
(

C−9(1−n)η
am

m

) 1
1−n

, (3)
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where C is the integration constant. Assuming that at the ori-
gin of time (t = 0),a = a0(≡ 1)⇒ ρ = ρ0(≡ 1), we obtain
straightforwardly:

ρ =
(

1+
9(1−n)η

m
− 9(1−n)η

m
am
) 1

1−n

. (4)

Surprisingly, this equation is similar in form to the matter
density obtained within the framework of generalized Chap-
lygin gas. However, in our framework, the density evolution
in our case changes from ρ ∝ am/(1−n) at early times to ρ =
constant at late times unless m

/
(1−n) < 0. After replacing

onto equation (2), we obtain:

ȧ2

a2 =
8πG

3

(
1+

9(1−n)η
m

− 9(1−n)η
m

am
) 1

1−n

+
Λ

3
. (5)

However, equation (4) may lead to useful restrictions on the
values of the parameters introduced as is necessary to have
a real and positive energy density. This natural and physical
fact restricts the parameters to −1 < 9(1−n)η

/
m < 0. A

desirable solution is obtained now from equation (5) if for
instance we assume 9(1−n)η =−m and m =−2(1−n), i.e.
η = 2

/
9,n 6= 1 for which the Friedmann equation and the

generalized equation of state are respectively reduced to:

ȧ2

a2 =
8πG

3
a−2 +

Λ

3
, (6)

p =
2
3

a−2(1−n)
ρ

n−ρ, (7)

As in this particular case, m
/
(1−n) = −2 < 0, the density

evolution in our case changes from ρ ∝ a−2 at early times
to ρ = constant at late times, whereas in the generalized
Chaplygin gas model explored by Bento et al[12] with the
equation of state p = −Aρ−α,(A,α) ∈ R, the density evo-
lution in our case changes from ρ ∝ a−3 at early times to
ρ = constant at late times. Of course, other possible so-
lutions for different values of the parameters (η,m,n) may
be obtained. The particular solution obtained in Starobin-
sky model which is based on a semi-classical Einstein equa-
tion and in the initial stage and obtained by Mukherjee et
al.[15] is p = Bρn,n = 1

/
2,B < 0. However, in Starobin-

sky model, we have no matter and the vacuum energy of the
fields act as the source of gravitation. In our case, for n = 1

/
2,

p = 2a−1√ρ
/

3−ρ different from Starobinsky approach. Ob-

viously, for the critical density ρc = (3a2(1−n)
/

2)1/(n−1) ∝ a2,
the pressure vanishes and singularity will occurs. Apparently,
in our framework, ρ ∝ a−2; hence p =−ρ

/
3 and accordingly

the universe is dominated in our approach by cosmic strings.
This case gives straightforwardly n = 1.

The analytic solution of the differential equation (6) in
closed form is [26]:

a(t) =

√
2πG
ΩΛ

[
e
√

Λ/3(t−t0)−Ωe−
√

Λ/3(t−t0)
]
. (8)

Here

Ω = (
√

(8πGa−2
0 +Λ)

/
3−
√

Λ
/

3)
/

(
√

(8πGa−2
0 +Λ)

/
3+
√

Λ
/

3)

with 0 < Ω < 1,Λ > 0 and a0 = a(t0 = 0)≡ 1 for mathemat-
ical simplicity. Accordingly, equation (8) is simply rewritten
like:

a(t) =

√
2πG
ΩΛ

[
e
√

Λ/3t −Ωe−
√

Λ/3t
]
, (9)

where

Ω =(
√

(8πG+Λ)
/

3−
√

Λ
/

3)
/

(
√

(8πG+Λ)
/

3+
√

Λ
/

3)

On the other hand, as t → ∞, the solution gives asymptoti-
cally a de Sitter universe, even if the equation of state is not
characteristic of the vacuum state p = −ρ. It is noteworthy
that in case where Ω ≈ 1 or Λ << 1, equation (9) is reduced

to a(t) ∝ sinh(
√

Λ
/

3t) which is also reduced at late time for
the asymptotically de Sitter universe. Nevertheless, for m =
−3(1− n) and η = 1

/
3, equation (4) is reduced to ρ = a−3

and accordingly, equation (2) gives: ȧ2
/

a2 = Aa−3 +B,(A =
8πG

/
3,B = Λ

/
3) and the analytical solution in closed form

is a(t) =
√

A
/

4BΩ[e3
√

B(t−t0)−Ωe−3
√

B(t−t0)]2/3. As t → ∞,
the solution gives asymptotically a de Sitter-like universe

a(t) ≈
√

A
/

4BΩe2
√

B(t−t0) which is faster than the solution

given in equation (9) which is a(t)≈
√

A
/

4BΩe
√

B(t−t0) even

if the density of matter behaves like matter (ρ = a−3). Finally,
note that for m =−4(1−n) and η = 4

/
9, equation (2) gives:

ȧ2
/

a2 = Aa−4 + B,(A = 8πG
/

3,B = Λ
/

3) and the analyti-

cal solution in closed form is a(t) =
√

A
/

4BΩ[e3
√

B(t−t0)−

Ωe−3
√

B(t−t0)]1/2 and hence as t→ ∞, the asymptotic solution

is a de Sitter-like with a(t)≈
√

A
/

4BΩe3
√

B(t−t0)
/

2.

If t → 0 is the Big Bang time moment, the pre-Big Bang
occurs at t < 0 and the scale factor evolves correspondingly
like

a(−t) =

√
2πG
ΩΛ

[
e−
√

Λ/3t −Ωe
√

Λ/3t
]
. (10)
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It is noticeable that a(t) = a(−t)[e
√

Λ/3t −
Ωe−
√

Λ/3t ]
/
[e−
√

Λ/3t − Ωe
√

Λ/3t ] and hence at the ori-
gin of time a(t) = a(−t). This scenario is similar to the
Pre-Big Bang framework without singularity [28].

The Hubble expansion parameters at t and −t are respec-
tively:

H+ ≡ H(t) =
ȧ(t)
a(t)

=

√
Λ

3
1+Ωe−2

√
Λ/3t

1−Ωe−2
√

Λ/3t
, (11)

H− ≡ H(−t) =
ȧ(−t)
a(−t)

=

√
Λ

3
Ω+ e−2

√
Λ/3t

Ω− e−2
√

Λ/3t
, (12)

and therefore H+(t = ∞) = H−(t = ∞) =
√

Λ
/

3and H+(t =

0) =−H−(t = 0) =
√

Λ
/

3(1+Ω)
/
(1−Ω). If for instance,

Ω = ±1, then H(t) = H(−t). There is hence a probability
that the universe accelerates from negative times towards the
Big Bang and then decelerates just after the Boom.[28] It is
noteworthy that for the case of a non-flat Universe modeled
by the Friedmann equation

ȧ2

a2 =
(

8πG
3
− k
)

a−2 +
Λ

3
, (13)

where k = −1,0,+1 is curvature parameter for open, lat and
closed spacetime, the analytic solution is given by:

a(t) =

√
3

4ΞΛ

(
8πG

3
− k
)[

e
√

Λ/3t −Ξe−
√

Λ/3t
]
, (14)

where

Ξ = (
√

(8πG+Λ)
/

3− k−
√

Λ
/

3)
/

(
√

(8πG+Λ)
/

3− k +
√

Λ
/

3), 0 < Ξ < 1,Λ > 0

and k < 8πG
/

3 .

Nevertheless, in case where Ξ ≈ 1 or Λ << 1, equation (14)

is reduced again to a(t) ∝ sinh(
√

Λ
/

3t)which is also reduced
at late time for the asymptotically de Sitter universe.

Finally, in return to equation (4), an interesting point may
arise if for instance (n = 1

/
2,η 6= 0,m ∈ R)with −1 <

9η
/

2m < 0. Hence:

ρ =
(

1+
9η

2m
− 9η

2m
am
)2

=
(

1+
9η

2m

)2

−9η

m

(
1+

9η

2m

)
am

+
(

9η

2m

)
a2m = ρ1 +ρ2 +ρ3, (15)

p =−
(

1+
9η

2m

)2

+
(

3η+
27η2

2m
− 9η

m
− 81η2

2m2

)
am

−
(

27η2 +9η

2m

)
a2m = p1 + p2 + p3, (16)

and it is an easy task to identify the following three-
components:

1. The cosmological constant which may account for the
dark energy problem

p1 =−ρ1 =−
(

1+
9η

2m

)2

. (17)

2. The second equation of state

p2 =
(

1− 9ηm+2m2

27η+6m

)
ρ2 =

(9η+2m)(3−m)
3(9η+2m)

ρ2 =
3−m

3
ρ2. (18)

3. The third equation of state

p3 =−(1+3η)ρ3. (19)

As −1 < 9η
/

2m < 0, then p1 = −ρ1 < 0 as it is obvious
from equation (17). Furthermore, for positive m, −2m

/
9 <

η < 0, and accordingly p3 = −(1 + 3η)ρ3 > −ρ3. Further-
more, notice that for m = 3, p2 = 0. As phantom field are not
allowed in our framework, it is required to have 0 < m < 6
and consequently, −12 < −2m < 9η < 0. If, for instance,
m
/
(1−n) =−2, then 1 < n < 4.

For this special case, the Friedmann equation is:

ȧ2

a2 =
8πG

3

(
1+

9(1−n)η
m

− 9(1−n)η
m

am
)2

+
Λ

3
, (20)

with the restrictions

−12 <−2m < 9η < 0,1 < n < 4,0 < m < 6. (21)

To illustrate, we choose n = 5
/

2, η =−1
/

4 and m = 3. Ac-
cordingly, equations (17)-(19) give straightforwardly:

p1 =−ρ1 =−25
64

, (22)
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p2 = 0, (23)

p3 =−5
8

ρ3, (24)

and the energy density behaves amazingly like ρ ∝ a−2 at late
time dynamics. This case corresponds for cosmic string-like
which could have important consequences on galaxies for-
mation. It is noteworthy that the equation of state parameter
which results from equation (15) and (16) is:

w =
p
ρ

=
p1 + p2 + p3

ρ1 +ρ2 +ρ3
. (25)

For the particular case n = 5
/

2, η =−1
/

4 and m = 3, equa-
tions (22)-(24) give:

w =
p
ρ

=−
25
64 + 5

8 ρ3
25
64 +ρ2 +ρ3

, (26)

and as a result, w >−1 if, for instance, ρ2 +3ρ3
/

8 > 0.
Of course, there exist different values of the parameters and

dissimilar restrictions which give as well interesting scenar-
ios. If, for instance, m

/
(1−n) = −1, then ρ ∝ a−1 and thus

the cosmological scenario behaves as a domain wall. For this
special case, we find for 0 < m < 6, 1 < n < 7. As a simple
illustration, we choose m = 1, n = 2 and η =−1

/
9. However,

for this special case, we find

p1 =−ρ1 =−1
4
. (27)

p2 =
2
3

ρ2, (28)

p3 =−2
3

ρ3. (29)

whereas equation (5) results into:

ȧ2

a2 ≈
Λ

3
a2− 4πGa

3
, (30)

which approximates a de-Sitter like solution at late-time dy-
namics. The equation of state parameter which results now
from equation (15) and (16) is therefore:

w =
p
ρ

=
− 1

4 + 2
3 (ρ2−ρ3)

1
4 +ρ2 +ρ3

, (31)

and as a result, w >−1 if, for instance, 5ρ2 +ρ3 > 0. Supple-
mentary different solutions (stiff matter, exotic matter, dust,
radiation/ultra-relativistic particles) may exist depending on
the choice of the parameters.

In conclusion, the acceleration of the universe presents one
of the greatest problems in theoretical physics today. This
problem has been attacked head on, but no compelling, well-
developed and well-motivates solutions have yet merged.
While much work in literature has focused on the search for
new matter sources that yield accelerating solutions to gen-
eral relativity, more recently complementary approach of ex-
amining whether new gravitational physics might be respon-
sible for cosmic acceleration was developed. The work done
in this letter is just a kind of the modified gravity theory to
yield accelerating expansion. In this letter, we have discussed
a particular cosmological scenario dominated by a particular
generalized equation of state p = 2a−2(1−n)ρn

/
3− ρ. This

particular form combines the cosmological constant and dark
energy models and provides a possible mechanism to allow
for a currently accelerating universe. Our analysis yields ad-
ditional information beyond the standard generalized Chap-
lygin gas recently explored in literature. The idea ansatz in-
troduced through this work is interesting that deserves further
investigation.

ACKNOWLEDGMENTS

The author would like to thanks the referees for their useful
comments and suggestions.

[1] V Sahni, 2004 Lect. Notes Phys. 653, 141.
[2] V Sahni, 2000 PRAMANA J. Phys. 55, Nos 1&2, 43.
[3] V Sahni , 2002 Class. Quantum Grav. 19, 3435.
[4] A G Riess et al 1998, Astron. J. 116, 1009.
[5] S Perlmutter 1999, Astrophys. J. 517, 565.
[6] P de Bernardis 2000, Nature, 377, 600.
[7] P J E Peebles and B Ratra 2003, Rev. Mod. Phys. 75, 559.
[8] Ph. Brax and J Martin 1999, Phys. Lett. B468, 45.
[9] C Armendariz-Picon , V Mukhanov and P J Steinhardt 2001,

Phys. Rev. D63, 103510.
[10] J C Fabris, S V B Concalves and R de Sa Ribeiro 2006, Gen.

Rel. Grav. 38, 495.
[11] J C Fabris, S V B Concalves and P E de Souza 2002, Gen. Rel.

Grav. 34, 53.
[12] N C Bento, O Bertolami and A A Sen 2002, Phys. Rev. D66,

043507.
[13] N Bilic, G P Tupper and R D Viollier 2002, Phys. Lett. B535,

17.
[14] J C Fabris et al (2007) Phys. Lett. A367, 423.
[15] S Mukherjee et al (2006) Class. Quantum Grav. 23, 6927.
[16] A A Sen, S Sen and S Sethi, 2001 Phys. Rev. D63, 107501.
[17] R A El-Nabulsi (2009) Int. J. Mod. Phys. D18, 2, 289.
[18] R A El-Nabulsi(2009) Int. J. Mod. Phys. D18, 15, 691.
[19] R A El-Nabulsi (2009) Comm. Theor. Phys. (in press).
[20] R A El-Nabulsi(2008) Chin. Phys. Lett. 25, No. 8, 2785.
[21] R A El-Nabulsi(2008) Mod. Phys. Lett. A23, No. 6, 401.
[22] R A El-Nabulsi(2010) Gen. Rel. Grav. DOI 10.1007/s10714-

009-0911-x (in press).
[23] R A El-Nabulsi (2010) Astrophys. Space Scie. 325, 2, 149.
[24] R A El-Nabulsi (2010) Astrophys. Space Scie. 325, 2, 277.



154 El-Nabulsi Ahmad Rami

[25] R A El-Nabulsi (2009) Astrophys. Space Scie. 324, 1, 75.
[26] D Hochebrg and D Visser 1998 Phys. Rev. D58 044021.
[27] S Weinberg, Gravitation and Cosmology, Wiley (1979).

[28] M Gasperini and G Veneziano (1992) Phys. Lett. B277, 256.


