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The main purpose of this paper is to explicitly verify the consistency of the energy-momentum and angular
momentum tensor of the gravitational field established in the Hamiltonian structure of the Teleparallel Equiva-
lent of General Relativity (TEGR). In order to reach these objectives, we obtained the total energy and angular
momentum (matter plus gravitational field) of the closed universe of the Friedmann-Lemaitre-Robertson-Walker
(FLRW). The result is compared with those obtained from the pseudotensors of Einstein and Landau-Lifshitz.
We also applied the field equations (TEGR) in an expanding FLRW universe. Considering the stress energy-
momentum tensor for a perfect fluid, we found a teleparallel equivalent of Friedmann equations of General

Relativity (GR).
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I. INTRODUCTION

It is generally believed that the energy of a gravitational
field is not localizable, that is, defined in a finite region of
space. An example of this interpretation can be found in the
works of Landau and Lifshitz [1], where they present a pseu-
dotensor of the gravitational field that is dependent of the sec-
ond derivative of the metric tensor. This quantity can be an-
nulled by an adequate transformation of coordinates. The re-
sults would be consistent with Einstein’s principle of equiv-
alence. According to this principle, you can always find a
small region of space-time that prevails in the space-time of
Minkowski. In such space-time, the gravitational field is null.
Therefore, it is only possible to define the energy of a gravi-
tational field in a whole space-time region and not in a small
region. To avoid this difficulty, alternative geometric models
to GR were constructed out of the torsion tensor.

The notion of torsion in the space-time was introduced by
Cartan [2][3], who also gave a geometric interpretation for
this tensor. Consider a vector in some space-time point and
transport it simultaneously along a closed infinitesimal curve
projected in the space tangent. If the connection used to ac-
complish the transport parallel has torsion, we will obtain a
“gap” among curve extremities in the space tangent. In other
words, infinitesimal geodesic parallelograms do not close in
the presence of torsion [4]. The curvature effect already pro-
duces a change in the vector direction when it returns to the
starting point. This way, while the torsion appears directly
related to translations, the curvature appears directly related
to rotations in the space-time.

It is important to mention that Weitzenbock [5] indepen-
dently introduced a space-time that presents torsion with
null curvature during the 1920s. This space-time posseses
a pseudo-Riemannian metric, based on tetrads, known as the
Weitzenbock space-time. A tetrad is a set of four linearly in-
dependent vectors defined at every point in a space-time. The
condition that we have null curvature in Weitzenbock space-
time leads to an absolute parallelism or teleparallelism of a
tetrads field. The first proposal of using tetrads for the de-
scription of the gravitational field was made by Einstein [6] in
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1928 in the attempt to unify the gravitational and electromag-
netic fields. However, his attempt failed when it did not find
a Schwarzschild’s solution for the simplified form of its field
equation. The description of gravitation in terms of absolute
parallelism and the tetrads field were forgotten for some time.
Later, Mgller [7] rescued Einstein’s idea by showing that only
in terms of tetrads we can obtain a Lagrangian density that
leads to a tensor of gravitational energy-momentum. This
tensor, constructed from the first derivatives of the tetrads,
does not vanishes in any coordinates transformation. An al-
ternative teleparallel geometric description to GR is the for-
mulation of the Teleparallel Equivalent of General Relativity
(TEGR). In this formalism, the Lagrangian density contains
quadratic torsion terms and is invariant under global Lorentz
transformation, general coordinate and parity transformation
[8].

In 1994, Maluf [9] established the Hamiltonian formula-
tion of the TEGR in Schwinger’s time gauge [10]. An es-
sential feature of the Hamiltonian formulation shows that we
can define the energy of a gravitational field by means of an
adequate interpretation of the Hamiltonian constraint. Sev-
eral configurations of gravitational energies were investigated
with success, such as in the space-time configurations of de
Sitter [11], conical defects [12], static Bondi [13], disclina-
tion defects [14], Kerr black hole [15], Banddos, Teitelboim
and Zanelli (BTZ) black hole [8] and Kerr anti-de Sitter [16].
For Andrade and Pereira [17], the TEGR can indeed be un-
derstood as a gauge theory for the translation group. In this
approach, the gravitational interaction is described by a force
similar to the Lorentz force equation of electrodynamics, with
torsion playing the role of force.

In 2000, Sousa and Maluf [18][19] established the Hamil-
tonian formulation of arbitrary teleparallel theories using
Schwinger’s time gauge. In this approach, they showed that
the TEGR is the only viable consistent teleparallel gravity
theory.

In 2001, Maluf and Rocha [20] established a theory in
which Schwinger’s time gauge was excluded from the geom-
etry of absolute parallelism. In this formulation, the definition
of the gravitational angular momentum arises by suitably in-
terpreting the integral form of the constraint equation I = 0.
This definition was applied satisfactorily for the gravitational
field of a thin, slowly-rotating mass shell [21] and the three-
dimensional BTZ black hole [22].



In GR, the problem of energy-momentum and angular mo-
mentum is generally addressed by the energy-momentum
(angular momentum) complex. It is calculated as the sum
of the energy-momentum (angular momentum) pseudotensor
of the gravitational field and the energy-momentum (angu-
lar momentum) tensor of the matter. In the literature [23]
these complexes appear with several names, such as Landau-
Lifshitz, Bergman-Thompson, Einstein and others. They dif-
fer from each other in the way they are constructed. These
complexes have been applied to several configurations of
the gravitational field, such as the universe of Friedmann-
Lemaitre-Robertson-Walker (FLRW). In these works, Rosen
[24], Cooperstock [25], Garecki [26], Johri et al. [27] and
Vargas [28] show that for the spherical universe, the total en-
ergy is zero.

Although the TEGR approach produced consistent results
for the energy of several configurations of space-time, the
TEGR is not a different geometric structure of GR, but equiv-
alent to it. It is found that the field equations of TEGR are
equivalent to the equations of Einstein in the tetrads form [9].

In this work, we first explicitly verify the equivalence be-
tween GR and TEGR. More specifically, we consider the so-
lution for an isotropic and homogeneous universe described
by the FLRW metric in Cartesian coordinates. The main rea-
son for using these coordinates is for subsequent comparison
of our work with other literature results. We find an identical
equation to the cosmological equation of Friedmann. We also
verify the consistency of the tensorial expressions of the total
energy-momentum and angular momentum from the Hamil-
tonian formalism of the TEGR. For this, we apply the Hamil-
tonian formulation implemented by Maluf [21][29] to find
the total energy-momentum (gravitational field plus matter)
and gravitational angular momentum values in the FLRW uni-
verse. It is shown that all these quantities vanish for flat and
spherical geometries.

The article is organized as follows. In section 1, we review
the Lagrangian and Hamiltonian formulation of the TEGR.
In section 2, using the field equations of the TEGR, we find
the teleparallel version of Friedmann equations. In section
3, we calculate the total energy of the FLRW universe and
compare it with those obtained from the pseudotensors. In
section 4, we find the total three-momentum of the universe.
In section 5, we obtain the gravitational angular momentum
of the FLRW universe. Finally, in section 6, we present our
conclusions.

The notation is the following: space-time indices y,v, ...
and global SO(3, 1) indices a, b,... run from 0 to 3. Time and
space indices are indicated according to =0, a=(0), (i). The
tetrad field is denoted by e“ o and the torsion tensor reads
Tyuv= 0yeqy — Oveqy. The flat, Minkowski space-time metric
tensor raises and lowers tetrad indices and is fixed by ng=
equepvg”" = (—+++). The determinant of the tetrad field is
represented by e = det(e? ). We use units in which ¢ = 1,
where c is the light speed.
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II. THE HAMILTONIAN CONSTRAINTS
EQUATIONS AS AN ENERGY AND
GRAVITATIONAL ANGULAR MOMENTUM
EQUATIONS

We will briefly recall both the Lagrangian and Hamiltonian
formulations of the TEGR. The Lagrangian density for the
gravitational field in the TEGR [10] with the cosmological
constant A is given by

1 . 1 .
L(ea,u) — e (ZTabLTabc + ET(/lbc Tyue — TaTa)

—Ly —2ek' A= —K e Ty — Ly — 2ek' A, (1)

where k' = 1/(16nG), G is the Newtonian gravitational con-
stant and Ly, stands for the Lagrangian density for the matter
fields. As usual, tetrad fields convert space-time into Lorentz
indices and vice versa. The tensor % is defined by

1 1
Zabc — Z (Tabc + Tbac _ Tcab) + 5(T]ach _ T]ach)’ )

and 7% = T?,“. The quadratic combination £*“T,,.. is pro-
portional to the scalar curvature R(e), except for a total diver-
gence. The field equations for the tetrad field read

1 :
eakebyav (ezhk\/) —e (va aTbv,u - 4ea,uTbchde>

1 1
+§eea,1A = @eTaH . 3)
where eT,, = 8Ly /8e“". 1t is possible to prove by explicit
calculations that the left-hand side of Eq. (3) is exactly given
by

1 1
3¢ {Rtw(e) — EeapR(e) + eapA} , 4)

and thus, it follows that the field equations arising from the
variation of L with respect to e“ , are strictly equivalent to
Einstein’s equations in tetrad form.

The field equations (3) may be rewritten in the form

1 N
9 (ex) = et (M) 5)
where
= K (4T = Ty ) (©)
and
TH = M o)/ gMA, 7

are interpreted as the gravitational energy-momentum ten-
sor [29][30] and the matter energy-momentum tensor respec-
tively.



Brazilian Journal of Physics, vol. 40, no. 1, March, 2010

The Hamiltonian formulation of the TEGR is obtained by
first establishing the phase space variables. The Lagrangian
density does not contain the time derivative of the tetrad com-
ponent e,. Therefore this quantity will arise as a Lagrange
multiplier [31]. The momentum canonically conjugated to
eqi is given by I1% = 8L /8é,;. The Hamiltonian formulation
is obtained by rewriting the Lagrangian density in the form
L= pg—H , in terms of e,;, [1% and Lagrange multipliers.
The Legendre transform can be successfully carried out and
the final form of the Hamiltonian density reads [20]

H = e,0C* + 0o T 4 B, T, ®)

plus a surface term. Here ay and P are Lagrange multi-
pliers that (after solving the field equations) are identified as
Aix =1/2(Tior + Tioi) and Bk = Toor - C%, Ik and T* are first
class constraints. The Poisson brackets between any two field
quantities F and G is given by

8F &G 3F _8G
{F,G} = / d3x(66‘ai(x) OII%(x)  SIT“(x) Seai(x)) O

The constraint C¢ is written as C* = —9;IT% + h®, where h*
is an intricate expression of the field variables. The integral
form of the constraint equation C* = 0 motivates the defini-
tion of the energy-momentum P? four-vector [15]

J - /V PO (10)

where V is an arbitrary volume of the three-dimensional
space. In the configuration space we have

1% = — 4k ex . (11)

The emergence of total divergences in the form of scalar or
vector densities is possible in the framework of theories con-
structed out of the torsion tensor. Metric theories of gravity
do not share this feature.

By making A = 0 in equation (5) and identifying IT% in
the left-hand side of the latter, the integral form of Eq. (5) is
written as

P“:/d3xee“y(t0"+]~"0“). (12)
4

This equation suggests that P* is now understood as the to-
tal, gravitational and matter fields (plus a cosmological con-
stant fluid) energy-momentum [29]. The spatial components
P form a total three-momentum, while temporal component
P is the total energy (gravitational field plus matter) [1].

It is important to rewrite the Hamiltonian density H in the
simplest form. It is possible to simplify the constraints into
a single constraint I It is then simple to verify that the
Hamiltonian density (8) may be written in the equivalent form
[21]

1
H = e,0C" + E}\fabraba (13)

where A, = — Ay, are Lagrange multipliers that are identified
as A = 0l and Ao = —Ago = Pi. The constraints %> = —I>
embodies both constraints I'* and T'* by means of relation

Ik =e,le, T, (14)
and
¥ =% =k =1 = ¢, %%, k1. (15)
It reads
[ = M 4 4K (£ — x07) (16)

Similar to the definition of P?, the integral form of the con-
straint equation I'®” = 0 motivates the new definition of the
space-time angular momentum. The equation I'*? = 0 implies

M® — _4fe (Z“Ob _ zbO“) . (17)

Therefore Maluf [21] defines

[ — / Pre? o M, (18)
\4

where

M@ =% e M = —MP. (19)

as the four-angular momentum of the gravitational field.

The quantities P? and L% are separately invariant under
general coordinate transformations of the three-dimensional
space and under time reparametrizations, which is an ex-
pected feature since these definitions arise in the Hamiltonian
formulation of the theory. Moreover, these quantities trans-
form covariantly under global SO(3,1) transformations.

III. TELEPARALLEL VERSION OF FRIEDMANN
EQUATIONS

In this section, we will derive several TEGR expressions
capable of calculating the total momentum and angular mo-
mentum of the gravitational field in the FLRW universe
model. Indeed, we will explicitly demonstrate the equiva-
lence between GR and TEGR in this specific model.

In order to solve the field equations (3) of TEGR, it is nec-
essary to determine the tetrads field. In the Cartesian coordi-
nate system, the line element of the FLRW space-time [32] is
given by

R(1)?
% (d® +dy* +d7?) (20)
<1+%)

where 12 = x* +y? +z2, R(t) is the time-dependent cosmo-
logical scale factor, and k is the curvature parameter, which
can assume the values kK = 0 (flat FLRW universe), k = +1

ds* = —dt* +



(spherical FLRW universe) and k = —1 (hyperbolic FLRW
universe).
Using the relations

g = € ey, (21)

and

eau ="Nave” i (22)

a set of tetrads fields that satisfy the metric is given by

1 0 0 0
0o R 0 0
(-]
Cau = 0 0 (li(]fzz 0 . (23)
e
0 0 0 k()

(-]

We remember here that we use two simplifications to
choose this tetrads field. The first simplification is the
Schwinger’s time gauge condition [10]

M =o. (24)

which implies

V=0 (25)

The second simplification is the symmetry valid in Carte-
sian coordinates for space tetrads components

€(i)j = €(j)i» (26)

that establish a unique reference space-time that is neither re-
lated by a boost transformation nor rotating with respect to
the physical space-time [15].

Now, with the help of the inverse metric tensor g¥, we can
write the inverse tetrads

et =g"ea, (27)
as
1 0 0 0
1)
0 g O 0
€a M= (1+%> ) (28)
0 0 gt 0
0 0 0 (1+#>

where the determinant of e u 18

3
e= Ri(t) (29)

3
kr?
(1 + T)
Before solving the field equations, it is necessary to con-
sider the material content of the universe. We restrict our
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consideration here to the stress-energy-momentum tensor of
a perfect fluid [32] given by

p O 0 0
0-p 0 0

THy=10 0 —p 0 |, (30)
00 0 —p

where p = p(x) is the matter energy density and p is the mat-
ter pressure. It is convenient rewrite the field equations of the
TEGR (3) as

€4).€hu0v (eed ec VZde>

1
—e (nadec VEdeThv,u - Zea/.lec ey VThWZde>

1 1
+§eeaﬂA = 5% T, 31)

where:
. 1 . . )
Zabc — Z (nadeb,uew Tdyv + T,lhdea,uecv Td,u\/ _ nadea,uebv Td,uv)

1 . .
+§ (nmehved#Td,uv _ nabecveded’uv) ] (32)

These equations were obtained using the transformations
given by

T = TyyeeVn®, (33)
Tipe = Tywveptec”, (34)
b = Tdﬂveb"ed“7 (35)
yav . = Zabdeb Vndm (36)
THY = 2, Fe, Y, 37)
Ty = Toueq". (38)

The non-zero components of the torsion tensor Ty, are
given by

R(t
Ty = Ty = T3yoz = (k)rz ) (39)
I+
R(t)ky
T =Tsn = %, (40)
2(1+4)
R(t)kz
Tiyiz =Ty = %7 (41)
2(1+)
R(t)kx
T2)21 = T(3)31 = Lza (42)
kr?
2(1+4)
remembering that the torsion components are anti-

symmetrical under the exchange of the two last indexes.
After tedious but straightforward calculations, we obtain
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the non-zero components of the tensor X%

kx
OO0 _
x 2R(1)’ “43)
k
0o _ b
) IOk (44)
kz
0oE) _ ko
) R (45)
OO0 — 500 —y@0e) _ K0 o
R(t)’
k
WO _ yeE@ _ __k
> > RO 47)
kz
MG _ y@E6) _ _
Y X 4R(l‘)7 48)
kx
@O _ y@ME) _ ke
b b 08 (49)

Next, we proceed to obtain the components {a = (0),
/JZO}> {CI: (])7 = 1}7 {CI: (2)7 :u:2}7 and {a: (3)7
u =3} of the field equations. The other components of field
equations are identically zero. This is carried out in two steps.
First, we calculate the component {a = (0), u = 0}. It is not
difficult to obtain

Jrfeew)o/\ = —ee() OTO(). (50)

By substituting (23), (28), (29), (30) and (40)-(48) into the
above equation, we arrive at

R2(t) +k

TR

— A = 87nGp. (51

The second step consists of calculating the component
{a= (1), u =1} of the field equation. Eliminating the null

terms, we find

en)1e()l {80 (ee(l) le(0> 02(1)(1)(0))

+0> <€€(1) le(2> 22(1)(1)<2)>
+03 (66’(1) 1e<3) 32(1)(1)(3))}

—e (%)(1)6(0)

25 (@)

HNynew) (1)21

+myme) TP,
TN(1)(1)€3)
—Seaneo e T

—eqneq) e *TayZ M@

—eqneq) e *T? @

—emeq) e Ty
1 1

—1-566(1)1/\ = @eem lTl 1.

(52)
By replacing (23), (28)-(30), (39)-(42) and (47)-(49) into

the above equation, we arrive at
2R(1)R(t) +R*(1) +k
R%(1)

A = —87Gp. (53)

The differential equations for the components {a = (2),
u =2} and {a = (3), u =3} are the same as equation (53).
The field equations” solutions of the TEGR reduce to the sys-
tem of equations (51) e (55).

R2(t)+k _
O
R? 2R(t)R k
(t)+R2£3 (t)+ —A = —8TEGP7

which is equivalent to the Friedmann equations of General
Relativity [33].

IV. TOTAL ENERGY OF THE FLRW UNIVERSE

Let us now calculate the total energy of the FLRW uni-
verse using the equations shown in section 2. By replacing
the equation (5) in (12) and using that

Zalv — Zabceb }\,ec V7 (54)
we have

P = / dxakdy (e T %e V). (55)
JV

As previously observed, the temporal component repre-
sents the system energy. Therefore, the energy will be given
by

PO — / d3x 4K 3y (e 200, °ecv)~ (56)
\%4



Such quantity can be written as

0):/d3 4 (9 (e OO, 0, 1
v X [1(6 €0 6(1) )

+0, (e X 2) 2) +03 (e )

By replacing (28), (29), (43)-(45) in (57), we obtain

(0)0)2), O¢,

3R
O = X 2 / 3
8nG Jv (1 b2 krz 8nG 1+ k,z)
(58)
It is convenient to perform the integration in spherical co-
ordinates. By solving the integral in © and ¢, we find

0 _ 3R [~ kr?

- 72 dr— — L _dr. (59)
2G.0 (1+kr2

ZG/ 1_|_kr2

We can now obtain the total energy PO) of the spherical
FLRW universe. By making k = 1, the component P(*) results

0) —
P G [6n 3(2m)] =0. (60)

We found that the total energy of a FLRW spatially-
spherical universe is zero at all times, irrespective of the equa-
tions of the state of the cosmic fluid.

We remark that by making k£ = 0 in equation (59), it follows
that the total energy in the expanding FLRW flat universe is
also zero.

It is important to note that by fixing k = —1, we obtain an
infinite energy P() in the integration interval [0,2] in accor-
dance with Vargas [28].

In the past, many researchers used the energy-momentum
complexes of general relativity to obtain the energy and mo-
mentum of the FLRW universe. Rosen [24] and Cooperstock
[25] calculated the energy of the universe, including matter
and gravitational field. They used the Einstein pseudotensor
of energy-momentum to represent the gravitational energy.
The result revealed that the total energy of a FLRW spheri-
cal universe is zero. Garecki [26] and Johri et al. [27] used
the energy complex of Landau-Lifshitz and found the same
result. We stress that Vargas [28], using the teleparallel ver-
sion of Einstein and Landau-Lifshitz pseudotensors, has also
obtained zero total energy in a FLRW spherical universe. Our
result is compatible with these results.

V. THE TOTAL MOMENTUM OF THE FLRW UNIVERSE

Clearly the total three-momentum (matter plus gravita-
tional field) of the FLRW universe vanishes according to the
physical principle by homogeneity. Let us verify the con-
sistency of our formalism. As seen in section 2, it is noted
that the total three-momentum is given by space components
a= {1}, {2} and {3} of the equation (55) .

In order to obtain the space component a = {1} of the total
momentum, we can write the quantity PU) ag
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1 = / d3x 4k’81 (e Z(l)(o)(l)e(o) 06(1) 1) . (61)
JV

By substituting (28), (29) and (46) in the previous equation,
we obtain

1y__RR [ 5 kix3
47G Jv ( 2
1+42)

In order to calculate this integral, we observe that the inte-
grand in (62) is an odd function. Thus

(62)

p) =0, (63)

The calculations to obtain the other two components of the
total three-momentum are analogous. We found P2 =pB) =
0. All three components of the total momentum are zero re-
gardless of the curvature parameter in the expanding universe.

VI. GRAVITATIONAL ANGULAR MOMENTUM

According to the physical principle by isotropy, the angu-
lar momentum must vanish. Let us verify the consistency of
the expression of gravitational angular momentum (18). By
making use of (19) and (17) we can write (18) in the form

JR / P dke (2”0” - z”‘)“) . (64)
\%4

By making use L% = ¢, °2%" and reminding that the
tetrad field matrix (28) is diagonal, then the equation (64) can
be rewritten as

f / x4k ee(q) " (2“<°>’L2b<0>“). (65)
\%4

Consider the non-zero components of the tensor ¢ given
by equation (43) up to (49). It is clear that the non-zero com-
ponents of the angular momentum tensor are L<0)(1>, LO®)
and L(Y0)_ Therefore, it is simple to obtain

LOm - _ / x4 ee(g) 'TOOW), (66)
1%
By replacing (28), (29) and (43), we have
_ / -
8TEG 1 + kr2>

Again, we observe that the integrand is an odd function,
thus

(67)

LOW =, (68)

B(y analogous calculations we found the components
LOQ2) = £(0)(3) = 0,
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VII. CONCLUSIONS

In the first part of this work, we analyzed the equivalence
between General Relativity and TEGR. According to this
equivalence, while the GR describes the gravitation through
the curvature, teleparallelism describes the same gravitation,
but using torsion. Starting with a Lagrangian density com-
posed by a quadratic combination of terms in the torsion, and
that contains the condition of null curvature as a constraint,
it is obtained that the dynamic equation of tetrads is equiva-
lent to Einstein’s equations. This characterizes the Telepar-
allelism Equivalent of General Relativity. In order to show
explicitly the equivalence between GR and TEGR, we found
a tetrads field in FLRW space-time that describes the cosmo-
logical model standard (isotropic and homogeneous). In this
cosmological model, we concluded that field equations of the
TEGR are equivalent to the Friedmann equations of GR.

In the second part of this work, using the gravitational ten-
sor in the context of the TEGR, we calculated the total energy
of the FLRW universe. For spherical universe (k = 1), the
total energy is zero, irrespective of the equations of the state
of the cosmic fluid, agreeing with the results using the pseu-
dotensors of Rosen, Cooperstock, Garecki, Johri et al. and
Vargas. This result is in accord with the arguments presented
by Tryon [34]. He proposed that our universe may have arisen
as a quantum fluctuation of the vacuum and mentioned that no
conservation law of physics needed to have been violated at
the time of its creation. He showed that in the early spherical
universe, the gravitational energy cancels out the energy of
the created matter. For the flat universe (k = 0), the energy
vanishes, as expected and in accordance with the previously

cited papers. Finally, for the hyperbolic universe (k = —1),
the energy diverges in the interval of integration [0,2]. Any
possible infinity energy in the universe could lead to ’big rip”
type singularities [35].

We showed by consistency of formalism that the total
three-momentum of the FLRW universe vanishes according
to the physical principle by homogeneity. Finally, we showed
by consistency of formalism that the components of the an-
gular momentum of the FLRW universe is zero. This result
was also expected since there are no privileged directions in
this expanding space-time.

Although, some results about total energy-momentum and
angular momentum found in this paper were expected and
previously obtained in the literature, we concluded from this
work that the TEGR obtained equivalent results to the GR
with the great advantage of addressing covariantly the defi-
nitions of quantities like energy-momentum and angular mo-
mentum tensors of the gravitational field.

In order to continue testing the gravitational energy-
momentum tensor of the TEGR, we intend to calculate the
total energy of the closed Bianchi type I and II universes and
Godel-type metric, among other configurations. These met-
rics are important mainly in the investigation of the possible
anisotropic early universe models. In particular, we expected
to find specific contributions of the anisotropy universe model
to the components of the total energy-momentum and angular
momentum tensors. Efforts in this respect will be carried out.
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