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Quantum walks can be used either as tools for quantum algorithm development or as entanglement
generators, potentially useful to test quantum hardware. We present a novel algorithm based on
a discrete Hadamard quantum walk on a line with one coin and two walkers whose purpose is
to generate entanglement between walkers. We provide several classical computer simulations of
our quantum algorithm in which we show that, although the asymptotical amount of entanglement
generated between walkers does not reach the highest degree of entanglement possible at each step for
either coin measurement outcome, the entanglement ratio (entanglement generated /highest value of
entanglement possible, for each step) tends to converge, and the actual convergence value depends on
the coin initial state and on the coin measurement outcome. Furthermore, our numerical simulations
show that, for the quantum walks used in our algorithm, the value towards which entanglement
ratio converges also depends on the position probability distribution symmetry of a quantum walk
computed with one single walker and the same coin initial state employed in the corresponding

quantum walk with two walkers.

PACS numbers: PACS numbers: 03.67.Bg, 03.67.Lx, 03.67.-a, 03.67.Ac

I. INTRODUCTION

Quantum walks were designed as quantum counter-
parts of classical random walks, a branch of stochastic
processes widely used in algorithm development. Al-
though some authors have selected the name “quantum
random walk” to refer to quantum phenomena |1, 2, |3]
and, in fact, in the seminal work by R.P. Feynman [4]
about quantum mechanical computers we find a proposal
that could be interpreted as a (continuous-time) quantum
walk [5], it is generally accepted that the first paper with
quantum walks as its main topic was published in 1993
by Aharonov et al [6]. Thus, the links between classical
random walks and quantum walks, as well as the utility
of quantum walks in computer science, are two fresh and
open areas of research.

Since one of the main goals in quantum computing is
the development of quantum algorithms, and given the
success of employing classical random walks for comput-
ing solutions to NP-complete problems [7, 8, 9], there has
been a huge interest in understanding the physical and
computational properties of quantum walks over the last
few years on both experimental [10, [11, 112, [13, [14] and
theoretical research communities (see [15] for a review
on theoretical aspects of quantum walks). In addition to
their usage in computer science, the study of quantum
walks is relevant to the modelling of physical phenom-
ena such as energy transfer in photosynthetic systems
[16]. Moreover, although it has been proved that cer-
tain properties of quantum walks are also reproducible
by classical systems (like variance enhancement with re-
spect to classical random walks [17,[18,[19]), it is also true
that uniquely quantum mechanical properties of quan-
tum walks, such as entanglement, may be employed to

building methods in order to test the “quantumness” of
emerging technologies for the creation of quantum com-
puters. Thus it is of crucial importance to develop meth-
ods of entanglement generation through quantum walks
so that the genuine quantum nature of a given walk with
given physical systems may be tested.

Quantum entanglement has been incorporated into
quantum walks research either as a result of performing
a quantum walk [20, 121, 22, 123, [24, [25] or as a resource
to build new kinds of quantum walks [26, [27, (28, [29].
Since entanglement is a key component in quantum com-
putation, it is worth keeping in mind that quantum walks
can be used either as entanglement generators or as com-
putational processes taking advantage of this quantum
mechanical property.

In this paper we introduce a novel algorithm based
on a discrete quantum walk on a line with one coin and
two walkers whose purpose is to generate entanglement
between walkers. After evolving the quantum walk for
a certain number of steps, we perform a measurement
on the coin state. We then obtain a post-measurement
quantum state composed by the tensor product of one
coin state and several walker components. We take the
walker components of this post-measurement state and
calculate the entanglement between walkers. We per-
form many quantum walks with the same initial condi-
tions and evolution operators, so that we have a quan-
tum walk ready to be measured for each time step. In
addition to our algorithm, we provide several simulation
results using different initial conditions for the proposed
quantum walks. While this analysis highlights the po-
tential of a quantum walk to entangle high dimensional
quantum systems (the dimension of the space available
to the walkers grow in each step) it can also at times be
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practically useful. This will be the case when the walk-
ers are systems which do not directly interact with each
other such as two different electromagnetic field modes.
Then the coin can be a common system such as an atom
which interact with both and can entangle them to a
high degree with the degree depending on the number of
steps possible within the reasonable decoherence time of
the fields.

II. ALGORITHM FOR ENTANGLEMENT
GENERATION

In this section we present our algorithm for the genera-
tion of entanglement in a family of quantum walks on an
unrestricted line. A succint mathematical representation
of a quantum walk after n steps is

) = (U)"|¥)initiar, (1)

where [1)initial 1S the initial total state of the quantum
walk. In our case, the family of quantum walks we shall
employ is composed by the tensor product of one coin
and two walkers

|coin) ® |walker;, walkera) (2)

as total initial state. After several applications of an
evolution operator composed of a coin operator and a
shift operator, we perform a measurement on the coin
state. The result of this operation is a post-measurement
quantum state composed by the tensor product of one
coin state and several walker components. We take the
walker components of this coin post-measurement state
and calculate the entanglement between walkers using
the von Neumann entropy

d
E(|)) = S(pa) = S(pB) = — Za? logy (7). (3)

where |¢)) = Zle a;lia)lip) is the Schmidt decom-
position of a bipartite quantum state |¢)). We compute
n quantum walks using the same initial states and
evolution operator in order to measure the degree of
entanglement between walkers for each step, so that the
final result of this algorithm is a graph with the amount
of entanglement available at each step. We summarize
this explanation in algorithm 1.

Algorithm 1. Quantification of entanglement.
Input: A maximum number of steps n for the quantum
walk, and n identically prepared total initial states |¢))o
with one coin and two walkers.

Objective: To quantify the amount of entanglement
between walkers for each step of the quantum walk.

01. Set t=1

02. While (t < n)

03. Apply the evolution operator U? = (S(C ® I))t to
[ho.

04. Perform a measurement on the coin system. Since
|coin) € H? there are only two possible outcomes. We
label them ag and «;.

05. For outcome g then

06. Compute the post-measurement quantum state
%) epm

07. Quantify entanglement between walkers from quan-
tum state [1);5,,
08. For outcome o« then

09. Compute the post-measurement quantum state
%)% pm

10. Quantify entanglement between walkers from quan-
tum state |z/1)§}pm
11. Increase t by 1

As stated in the introduction, we are interested in
quantifying the amount of entanglement between walkers
for each coin outcome, as well as in studying the impact
of different initial quantum states in this quantification of
entanglement. The following lines shows corresponding
results using unrestricted quantum walks on a line.

A. Entanglement Generation in unrestricted
Quantum Walks on a Line

We shall use Eqs. (@al)-([d) as total initial states,
where each initial condition has the form [¢)y =
|coin) ® |position)q, with |coin)( as coin initial state and
|position) as walker initial state.

[¥)o = 10)e ©10.0), (12)
¥ = I1)e ©10,0), (4D)
1 {
o= (5l NI @ 10,0 (40)
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1

0)e + —=[1)c) ©10,0)p (4d)

[¥)0 = (VO.85[0)c — VO.15[1)c) ©10,0),  (de)

where subindex ¢ stands for ‘coin’ and subindex p
stands for ‘walker position’.

Additionally, we use the Hadamard operator as coin
operator

B =~ (10)(0] + [0} (1] + [1)e(0] — [1)e(1]) (5
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Our shift operator is given by

Sent = [0)c (0] @ D i+ 1, + 1), (i, i+
De(t| @ Ji—1,i—1),(,i| (6)

The observable used for coin measurement (step 4 of
algorithm 1) is given by

M = agMy + oy My = ag|0)(0] + a1 |1)c(1]  (7)

With the purpose of exemplifying the behavior of al-
gorithm 1, we show in the following lines three steps of a
quantum walk and corresponding entanglement measure-
ment using Eq. (@al) as total initial state, and Eqgs. (&)
and (@) as corresponding coin and shift operators. Using
Eq. (@) we find that

1

90 7

(|O>C|171>p+ |1>C| - 17_1>p) (8)

)2 = %(I0>cl2,2>p+|1>c|070>p+|0>c|0,0>p—|1>c|—27—2> )

9)

1
|¢>3 = 2—\/5
- |1>C| - 17 _1>p + |0>C|17 1>p + |1>C| - 17 _1>p

- |0>C| - 17 _1>p + |1>C| - 3= _3>p)

For |¢)1 (Eq. (8)), the post-measurement quantum
state after performing a coin measurement with mea-
surement operator Mo (Eq. (@) is given by [¢){°,, =
|0)c|1,1),, and the degree of entanglement between walk-
ers is clearly 0. As for coin 1, we perform a coin mea-

surement on [¢)1 (Eq. () using measurement operator

M; (Eq. (@), obtaining as post-measurement quantum
state [¢)7",, = [1)c] = 1,—1),. It is also clear that the

degree of entanglement between walkers in [t)7",, is 0.

In step 2 (Eq. (@), we have [¢)5°,,,, = \%|O)c(|2, 2)p+
|0,0),) as coin |0). post-measurement state, and cor-
responding entanglement betwen walkers is equal to 1,
since \/iﬁ(|2, 2)p,+10,0),) is a maximally entangled state.

(10)el3;3)p + [1)el1, 1)p 4 0)e[1, 1)

(10)

Along the same lines, the coin |1). post-measurement
state is given by [1)5',,, = %(|1>C)(|0, 0)p+|—2,-2)p).
Since %(|0, 0)p + | —2,—2),) is a maximally entangled
state, its degree of entanglement is equal to 1.

Finally, in step 3 (Eq. (IQ)), [¢)5%,, = %|O>c(|3, 3)p+
2|1,1), — | — 1,-1),), and corresponding degree of en-
tanglement between walkers is equal to 1.2516 (maxi-

mum degree of entanglement attainable between walk-
ers is log, 3 = 1.585.) As for coin |1)¢, |[¥)5.,. =

»pm
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FIG. 1: After computing a 1000-steps quantum walk
[1)1000 = [Sens (H @ 1)]'% 1) with |¢))o given by Eq. (@al)
and Eqgs. (B) and (@) as coin (H) and shift () operators, we
perform a coin measurement on |1/J>1ooo using measurement
operator My (Eq. (). The thin line of (i) (red color online)
shows the maximum degree of entanglement between walk-
ers attainable in the post-measurement quantum state |1/)>§f’pm
(for example, log, 2 = 1 for the second step and log, 3 = 1.585
for the third step), and the thick line of (i) (blue color online)
shows the actual entanglement between walkers available at
each step. We can see that, asymptotically, the entanglement
available is about 80% of the corresponding maximum degree
of entanglement (plot (ii)).
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FIG. 2: After computing of a 1000-steps quantum walk
[¥)1000 = [Sens (H @ I)]"* )0 with |¢)o given by Eq. (Fa)
and Eqs. (B) and (@) as coin (H) and shift (S) operators,
we perform a coin measurement on [¢)1000 using measure-
ment operator M; (Eq. (@)). The thin curve of (i) (red
color online) shows the maximum degree of entanglement be-
tween walkers attainable in the post-measurement quantum
state |’l/1>;1pm (for example, log, 2 = 1 for the second step and
log, 3 = 1.585 for the third step), and the thick curve of (i)
(blue color online) shows the actual entanglement between
walkers available at each step. We can see that, for large
number of steps, the entanglement available is about 90% of

the corresponding maximum degree of entanglement (graph

(i).

%(|O>C)(|1, 1), +| — 3,—3)p), with degree of entangle-
ment between walkers equal to 1.

We show in Figs. [I), @) and @), simulation results
for a 1000-steps quantum walk performed with Eq. (4a))
as total initial state and Eqs. () and (@) as coin and
shift operators.

Fig. () presents the results of measuring entangle-
ment between walkers in a coin |0). post-measurement
state [1);%,,,- In Fig. ([Ili) we show two curves. The thin
curve (red color online) indicates, for each step of the
quantum walk, the maximum amount of entanglement
between walkers achievable at each time step, while the
thick curve (blue color online) shows the actual degree



of entanglement between walkers available for each step.
We can see that, as the number of steps increases, the
amount of entanglement available vs the maximum de-
gree of entanglement attainable is about 80% (Figure (I
ii).)

In Fig. (@) we present the same results as in Fig.
(@ but for a coin [1). post-measurement state [1)i,,.
First of all, we notice that, as in the previous paragraph,
the degree of entanglement between walkers available in
[9)¢ 5, (thin line (red color online) of Fig. (Zli)) does
not reach the highest degree of entanglement attainable
at each time step (thick (blue color online) line in Fig.
[@li)). However, it can be seen by comparing the asymp-
totical behavior shown in Fig. ([Ili) and Fig. (@i) that,
if the coin measurement outcome is a1 (Fig. ([@1i)) then
the amount of entanglement available between walkers
tends to be higher (about 90%, Fig. (2ii)) than the cor-
responding degree of entanglement between walkers for
a coin measurement outcome «g (Fig. (li)) which is, as
shown in Fig. (lii), about 80%.

In Fig. (@i) we display the probability vs location
graph of a 1000-step Hadamard quantum walk with an
initial state given by [0). ® |0), (i.e. one coin and only
one walker) and shift operator provided by

c<0l®le‘+1>p<

The symmetry of this walk, about a line passing
through the origin and perpendicular to the = axis, is
the same as that of a Hadamard quantum walk with ini-
tial state given by |) = |0). ® |0,0), and shift operator
given by Eq. (6)). The black curve of Fig. (Blii) shows the
amount of entanglement available between walkers in the
post-measurement state [¢);%,,, (as in Fig. (i), while
the gray curve (red color online) shows the correspond-
ing degree of entanglement available between walkers for
post-measurement state [);’,,,, (as in Fig. (@1i)). The
purpose of Fig. (@) is to relate the amount of entangle-
ment available for each coin post-measurement state with
the symmetry of the quantum walk and, consequently,
with the total initial state of the quantum walk. We
shall come back to Fig. (B shortly.

We now focus on Figs. @), (&) and (@), which present
the numerical behavior of a quantum walk with initial
quantum state given by Eq. (@L), and Eqs. (&) and (@)
as coin and shift operators, respectively.

As in the previous case, Figs. (@) and (@) display
the results of measuring entanglement between walkers
in a coin |0). post-measurement state [¢);9,,, and a coin
|1)c post-measurement state [¢);?,,. However, and in
contrast to Figs. ([I)-@), in this case we see that, as
the number of steps increases, the entanglement between
walkers for |1)},,,, (about 90% with respect to the degree
of entanglement attainable in each step, Fig. ({ii)) is
higher than that of state |¢);%,,, (about 80% with respect
to the degree of entanglement attainable in each step, Fig.
(Aii)). As we can see by comparing Figs. (B) and (@),

Z'|+|1>c<1|®z:Ii—1>p<i|- (11)
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FIG. 3: Plot (i) presents the probability vs location graph
of a 1000-step Hadamard quantum walk with an initial state
|0)c ® |0)p and shift operator provided by Eq. (IIJ). The sym-
metry of this walk, about a line passing through the origin and
perpedicular to the x axis, is the same as that of a Hadamard
quantum walk with initial state given by [¢)) = |0). ® |0,0),
and shift operator given by Eq. (@). Plot (ii) is a summary
of Figs. ([Ii) and (2li), and shows that the amount of entan-
glement between walkers available in post-measurement state
[4)%,,, tends to be higher than the amount of entanglement

between walkers available in post-measurement state [1);%,,-
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FIG. 4: Entanglement values for coin post-measurement state
|1/)>;°pm computed from a 1000-steps quantum walk |1)1000 =
[Sent (H @ 1)]°%°|4p)o with |1)o given by Eq. (@L), Eqs. (&)
and (@) as coin (H) and shift (S) operators, and measurement
operator My (Eq. (7). The thin line of (i) (red color online)
shows the maximum degree of entanglement between walkers
attainable in the post-measurement quantum state [t));° topm
and the thick line of (i) (blue color online) shows the actual
entanglement between walkers available at each step. We can
see that, asymptotically, the entanglement available is about
90% of the corresponding maximum degree of entanglement
(plot (ii)). Note that this amount of entanglement available
between walkers (90%) is higher than the amount of entan-
glement available between walkers (80%) for coin |0). post-
measurement quantum state with initial state |0). ® |0,0),

(Fig. (@)

the symmetry of the probability distribution computed
with initial quantum state given by Eq. (4b) (Fig. (1))
seems to have a significant effect on the actual entangle-
ment values for [){9,,, and [¢){", .

So, a natural step forward is to compute quantum
walks with initial states that produce symmetric prob-
ability distributions, in order to see the asymptotical be-
havior of entanglement. With this thought in mind we
have computed the following three sets of numerical sim-
ulations.

The first set consists of Figs. (), ) and @), in
which we expose the numerical behavior of a quantum
walk with initial quantum state given by Eq. (@d), i.e.
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FIG. 5: Entanglement values for coin post-measurement state
[¥)¢%,,, computed from a 1000-steps quantum walk [¢))1000 =

[Sent (H @ 1)]*°%°)4p)o with |1)o given by Eq. (@L), Eqs. (&)
and (@) as coin (H) and shift (S) operators, and measure-
ment operator M, (Eq. (@)). The thin line of (i) (red color
online) shows the maximum degree of entanglement between
walkers attainable in the post-measurement quantum state
[4)¢%,,,, and the thick line of (i) (blue color online) shows the
actual entanglement between walkers available at each step.
We can see that, asymptotically, the entanglement available
is about 80% of the corresponding maximum degree of entan-
glement (plot (ii)). Note that this amount of entanglement
available between walkers (80%) is less than the amount of en-
tanglement available between walkers (90%) for coin |1) post-
measurement quantum state with initial state |0). ® |0,0),

(Fig. @)).
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FIG. 6: Plot (i) presents the probability vs location graph
of a 1000-step Hadamard quantum walk with an initial state
|1)c ®|0)p and shift operator provided by Eq. (IIJ). The sym-
metry of this walk, about a line passing through the origin and
perpedicular to the x axis, is the same as that of a Hadamard
quantum walk with initial state given by |¢) = |1). ® |0,0),
(Eq. (D)) and shift operator given by Eq. (@). Plot (ii)
is a summary of Figs. ([@i) and (Bli), and shows that the
amount of entanglement between walkers available in post-
measurement state [¢);,,,, tends to be less than the amount of
entanglement between walkers available in post-measurement
state [1);,,, in stark contrast to the numerical results com-
puted for a quantum walk with total initial state |0). ®10,0),

(Figs. (TH3)).

)0 = (2510)c + /1)) ©10,0),, and Eqs. (B and @)
as coin and shift operators, respectively. Fig. (@) shows
the results of measuring entanglement between walkers
in a coin |0). post-measurement state [1)3",,,, while Fig.
@®) introduces corresponding results for a coin |1). post-
measurement state |1);%,,,.

Although an initial quantum state of the form given
by Eq. ([@d) produces a balanced probability distribution
(Fig. [@1)), such a property does not have a significant ef-
fect on the degree of entanglement between walkers (Fig.
@ii)). In fact, comparing plots from Figs. (Blii) and
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FIG. 7: Entanglement values for coin |0). post-measurement
state [¢)79,, computed from a 1000-steps quantum walk
[¥)1000 = [Sent(H @ D))o with [)o = (J5l0)e +
%H)c) ® [0,0), given by Eq. (@d), coin (H) and shift (3)
operators given by Eqgs. (@) and (@) respectively, and mea-
surement operator Mo (Eq. (Z)). The thin line of (i) (red
color online) shows the maximum degree of entanglement be-
tween walkers attainable in the post-measurement quantum
state [1);,,, and the thick line of (i) (blue color online) shows
the actual entanglement between walkers available at each
step. The asymptotical behavior of entanglement values for
this quantum walk is the same as that shown by a quantum
walk with total initial state |0). ® |0,0), (Fig. ().
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FIG. 8: Entanglement values for coin |1). post-measurement
state [¢)%,, computed from a 1000-steps quantum walk
[¥)1000 = [Sens(H @ D' lyp)o with [¢)o = (IF5/0)e +
%|1>c) ® [0,0), given by Eq. ([@d), coin (H) and shift (3)
operators given by Eqgs. (B) and (6)) respectively, and mea-
surement operator M; (Eq. (). The thin line of (i) (red
color online) shows the maximum degree of entanglement be-
tween walkers attainable in the post-measurement quantum
state [1);%,,,,, and the thick line of (i) (blue color online) shows
the actual entanglement between walkers available at each
step. The asymptotical behavior of entanglement values for
this quantum walk is the same as that shown by a quantum
walk with total initial state |0). ® |0,0), (Fig. @)).

[@ii) shows that the asymptotical behavior of entangle-
ment values for a quantum walk with initial state given
by Eq. (al) is the same as those entanglement values
computed for a quantum walk with initial state given by
Eq. (@d).

Figs. ([I0) - (I2) introduce the asymptotics of en-
tanglement values for a quantum walk with initial state
given by Eq. (@d). Again, although the initial state
[)o = (ﬁ|0>c + %H)c) ®10,0), produces a symmetri-
cal probability distribution (Fig. (I2li)), we notice that
the asymptotical behavior of entanglement values for a
coin |0) post-measurement quantum state [1));9,,, is dif-
ferent from that of a coin |1) post-measurement quantum
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FIG. 9: Plot (i) presents the probability vs location graph
of a 1000-step Hadamard quantum walk with an initial state
(%|0)C + ﬁ|1>c) ® |0), and shift operator provided by Eq.
(). The symmetry of the probability distribution shown in
plot (i) is the same as that of a Hadamard quantum walk
with initial state given by [¢)o = (%|0>C + %H)C) ® 10,0,
and shift operator given by Eq. (B). Although the symmetry
of plot (i) is significantly different from that of Fig. (@li),
plot (ii) shows the same asymptotical behavior as that of Fig.

@ii).
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FIG. 10: Entanglement values for coin |0). post-measurement

state [¢)7%,, computed from a 1000-steps quantum walk

[¥)1000 = [Sent(H @ D]'*lgp)o with [¢)o = (I5/0)c +
%H)C) ® 10, 0), given by Eq. (@), coin (H) and shift (S)
operators given by Egs. (B) and ([]) respectively, and measure-
ment operator My (Eq. (@)). The thin line of (i) (red color
online) shows the maximum degree of entanglement between
walkers attainable in the post-measurement quantum state
[4)¢%,, and the thick line of (i) (blue color online) shows the
actual entanglement between walkers available at each step.
The asymptotical behavior of entanglement values for this
quantum walk is the same as that shown by a quantum walk
with total initial state |1). ® |0,0), (Fig. ).

state |¢);',,, (Fig. (I2ii)). In fact, comparing plots from
Figs. (@) and (IQ) for a coin |0) post-measurement quan-
tum state [¢);9,,,, and plots from Figs. (&) and (1)) for a
coin [1) post-measurement quantum state [t));",,,, shows
that the asymptotics of entanglement values for initial

states given by Eqs. (@) and (d) are the same.

However and in stark contrast to the previous cases,
the symmetry properties of the probability distribution
of a quantum walk with initial state |¢)o = (v/0.85|0). —
Vv0.15|1).) ® |0,0), (Eq. (Z€)) does have an effect of the
entanglement between walkers produced from coin post-
measurement quantum states.

In Figs. (I3) and (4] we exhibit the asymptotical be-
havior of entanglement values of coin post-measurement
states [¢);5,, and [¢);},, respectively, for a quantum
walk with initial state given by Eq. (@d). As op-

20 20

FIG. 11: Entanglement values for coin |1). post-measurement
state [¢);},,, computed from a 1000-steps quantum walk
[¥)1000 = [Sent(H @ D]'*Plgp)o with [¢)o = (I5/0)c +
%|1>c) ® 10,0), given by Eq. (@d), coin (H) and shift (3)
operators given by Egs. (B]) and (@) respectively, and measure-
ment operator M; (Eq. (@)). The thin line of (i) (red color
online) shows the maximum degree of entanglement between
walkers attainable in the post-measurement quantum state
[4)¢%,,,, and the thick line of (i) (blue color online) shows the
actual entanglement between walkers available at each step.
The asymptotical behavior of entanglement values for this
quantum walk is the same as that shown by a quantum walk
with total initial state |1). ® |0, 0), (Fig. ([@)).
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FIG. 12: Plot (i) presents the probability vs location graph
of a 1000-step Hadamard quantum walk with an initial state
(710)e + %H)c) ® ]0), and shift operator provided by Eq.
(). The symmetry of the probability distribution shown in
plot (i) is the same as that of a Hadamard quantum walk with
initial state given by [¢)) = (ﬁ|0)0+%|1>c)®|0, 0)p and shift
operator given by Eq. (@). Although the symmetry of plot (i)
is significantly different from that of Fig. (@i), plot (ii) shows
the same asymptotical behavior as that of Fig. (@lii).

posed to previous cases in which asymptotical values of
entanglement between walkers were different for post-
measurement states [);5,,, and [¢);},,, we can see in
Figs. (I3) and ([I4) that the asymptotics of both entan-
glement curves tend to the same efficiency of 85% approx-
imately. This tendency can also be seen in Fig. (IAlii)

where we show that both entanglement curves overlap.

IIT. CONCLUSIONS

We have proposed an algorithm to generate entangle-
ment between walkers, after measuring the coin state,
for a Hadamard quantum walk with one (2-dimensional)
coin and two walkers. Our numerical simulations show
that, asymptotically, the amount of entanglement gener-
ated between walkers does not reach the highest degree
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FIG. 13: Entanglement values for coin |0). post-measurement
state [¢):%,, computed from a 1000-steps quantum walk
[W)1000 = [Sent(H @ DI Y)o with [¢)o = (v0.85]0)c —
V0.15[1).) ® |0, 0),, given by Eq. (@), coin (H) and shift (S)
operators given by Egs. (B]) and (@) respectively, and measure-
ment operator Mo (Eq. (@)). The thin line of (i) (red color
online) shows the maximum degree of entanglement between
walkers attainable in the post-measurement quantum state
[¥):%m, and the thick line of (i) (blue color online) shows
the actual entanglement between walkers available at each
step. We can see that the asymptotics of entanglement values
given in plot (ii) tend to the same values as those shown in
Fig. ([d), obtained from a coin |1). post-measurement state
[¥)¢%m computed from a quantum walk with the same initial

state (Eq. (@€)).

000 20
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FIG. 14: Entanglement values for coin |1). post-measurement

state [¢)¢%,, computed from a 1000-steps quantum walk

[¥)1000 = [Sent(H @ 1)]'*Jp)o with [p)o = (v0.85/0)c —
V0.15[1).) ® |0, 0),, given by Eq. (@€), coin (H) and shift (3)
operators given by Egs. (B) and ([]) respectively, and measure-
ment operator M, (Eq. (@)). The thin line of (i) (red color
online) shows the maximum degree of entanglement between
walkers attainable in the post-measurement quantum state
[)¢%,,, and the thick line of (i) (blue color online) shows
the actual entanglement between walkers available at each
step. We can see that the asymptotics of entanglement values
given in plot (ii) tend to the same values as those shown in
Fig. ([@3)), obtained from a coin |0). post-measurement state

|1/)>ff’pm computed from a quantum walk with the same initial

state (Eq. (@e).

of entanglement possible at each step (purely from the
dimensionality of the space explored by the walkers in a
given step) for either coin measurement outcome. Never-
theless, our simulations also show that the entanglement
ratio (= entanglement generated/highest value of entan-
glement possible, for each step) tends to converge to a
rather high value (for example, to 0.8 or 0.9), and the
actual convergence value seems to depend on the coin
initial state and on the coin measurement outcome.

Convergence of entanglement ratio leads to a most
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FIG. 15: Plot (i) presents the probability vs location graph
of a 1000-step Hadamard quantum walk with an initial state
(v0.85]0)c — v/0.15|1)¢) ® |0), and shift operator provided
by Eq. (). The symmetry of the probability distribu-
tion shown in plot (i) is the same as that of a Hadamard
quantum walk with initial state given by |¢)) = (1/0.85]0). —
V/0.15|1).) ® |0,0),, and shift operator given by Eq. (@). In
this case, the asymptotics of entanglement values for both coin
post-measurement states |4){5,,,, (black curve of plot (ii)) and

[4)¢%,,, (gray curve of plot (ii)) tend to the same values.

interesting result: the actual value towards which the
entanglement ratio converges, for each coin measure-
ment outcome, depends on the symmetry of the coin
initial state. However, the relationship is not straight-
forward, as it is possible to find two coin initial states
(0)0 = 510) + 5 [1) and |¢)o = vO.85/0) — VOI5[1))
such that, although both produce balanced probability
distributions, only one coin initial state (|¢)g) makes the
asymptotical values of entanglement, for both coin mea-
surements, converge to the same value. Going to two
walkers and exploring their entanglement can thereby
reveal differences in two quantum walks which are not
differentiated easily in the usual case of a single walker.

A noteworthy feature of our algorithm is the high
amount of the entanglement generated between the walk-
ers which grows with the number of steps. Our scheme
is particularly applicable in physical realizations where
the coin is a qubit (such as an atom or a superconduct-
ing qubit) which interacts with a distinct physical sys-
tem (such as an electromagnetic field mode) acting as a
walker [11, [12,130]. Taking two such walkers, each being
a distinct system, one can probe how entanglement is
generated between them through our algorithm. As such
walkers do not naturally interact with each other, using
the coin (qubit) system is the only way to entangle them.
A recent circuit QED suggestion for the physical imple-
mentation of a quantum walk [30] even estimate a walk
of a significant number of steps to be carried out within
the decoherence times of the relevant physical systems.
Simply enhancing such schemes to two walkers would en-
able observing the entanglement generation mechanism
that we have presented and analyzed in this paper.
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