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Abstract

The cascade, lambda and vee type of three-level systems are shown to be described
by three different Hamiltonians in the SU(3) basis. We investigate the Bloch space
structure of each configuration by solving the corresponding Bloch equation and show
that at resonance, the seven-dimensional Bloch sphere 87 is broken into two distinct
subspaces S?xS* due to the existence of a pair of quadratic constants. We also give
a possible representation of the qutrit wave function and discuss its equivalence with

the three-level system.
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The atomic system interacting with two or multiple number of lasers provides an
unique opportunity to manipulate them because of its well-defined level structure. To
develop a systematic theory of the coherent control mechanism, it is necessary to study
the dynamics of the two-, three- or multi-level systems which may pave the way to the
experimental realization of the quantum computer [1-3] and associated phenomena such
as quantum teleportation [4], quantum cryptography [5], dense coding [6,7], quantum
cloning [8] etc. In the quantum information theory parlance where the qubit is treated
as the primary building block, the Bloch space representation of the two-level system is
significant for many reasons. Most importantly, a qubit state |¢gp > is codified as the
superposition of the computational basis {|0 >, |1 >} and it corresponds to various points
on the two-dimensional unit Bloch sphere S? [3,9]. Thus a quantum mechanical gate,
which indeed represents an unitary operator A, corresponds to the transformation of the
qubit state as |¢5 >= Algp >, defined on the surface of that sphere. A natural extension
of the qubit is the qutrit system, where the computational basis are defined as {|0 >, |1 >
and |2 >}, respectively. Physically a qutrit possesses much complex but richer structure
than the ordinary qubit and there exists several suggestions that it may be implemented
either as a three-level system [10,11], or transverse spatial modes of single photons [12], or
polarization states of the biphoton field [13,14], respectively. In recent years considerable
progress has been made to understand various aspects of the qutrit system treating it a
three-level system driven by bichromatic laser fields. These studies include, the quantum
information transfer between qutrits [15], separability among joint states of qutrits [16],
entanglement sudden death for qubit-qutrit composite system [17], cooperative mode in
the qutrit system with complex dipole-dipole interaction [18], teleportation between two
unknown entangled qutrits [19], cloning the qutrit [20], possible algebraic and geometric
structure [21-24], new quantum key distribution protocols dealt with qutrits [25,26] etc [27].
In spite of these progress, understanding the Bloch space of all three-level configurations
and the wave function of the qutrit system is the necessary prerequisite to define various
logic gates and the associated circuits, which perhaps form the basis of developing a richer
form of quantum information theory beyond qubit.

A systematic study of the N-level system and its connection with the SU(N) group was
first initiated by Eberly and Hioe [28-30] and later it was investigated in detail in context
with the three-level system [31-38]. From these studies it is revealed that the quadratic
casimir for the SU(3) group is manifested through the existence of a set of nonlinear
constants which gives rise to the non-trivial structure of the Bloch space, i.e., S®xS?xS%.
Later these constants were studied by solving the pseudo-spin equation [35] and also by the
Floquet theory technique [37,38]. However, all three-level configurations, namely, cascade,
lambda and vee type of system, are found to exhibit same set of nonlinear constants. The
primary hindrance of getting different constants for different configurations is the following:
It was pointed out by Hioe and Eberly that if the position of the intermediary energy
level Fy is changed with respect to other two levels shown in Fig.1, then all three-level
configurations can be expressed by similar Hamiltonian [29]. Since the proposal was made,
it has become a widely accepted convention that the cascade, lambda and vee type of three-
level systems are described by similar Hamiltonian with the energy hierarchy conditions,
namely, F3 > Ey > Fq, Es > F3 > FE1 and Ey > Es > Fj, respectively. Similar structure
of the Hamiltonian leads to same Bloch space for three systems and therefore forbids the
existence of different non-linear constants for different configurations. However, it is now



well-known that each configuration of the three-level system is associated with a diverse
range of coherent phenomena and therefore must be described by the distinct Hamiltonian.
For example, the lambda configuration exhibits the phenomena such as STIRAP [39], EIT
[40] etc, while the vee configuration is associated with quantum jump [41], quantum zeno
effect [42], quantum beat [43] and others, respectively. Taking the interacting fields to be
either classical or quantized bichromatic fields, the necessity of the inequivalence between
the lambda and vee systems is also studied [44]. In a recent work, we have proposed a
novel scheme to write the Hamiltonians of the three-level systems in the SU(3) operator
basis where the energy levels are arranged as E§ > E§ > E{ (a = Z,A and V) shown
in Fig.2 [45]. In particular, we have discussed the exact solution of the semiclassical and
quantized three-level systems and have compared the corresponding Rabi oscillations.

The primary objective of this paper is to discuss the structure of the Bloch space of
the three-level systems, while taking distinct Hamiltonian for different configuration. It is
shown that at vanishing detuning frequency, the Bloch space of each three-level system is
broken into two distinct sectors S?xS* and they are different for different configurations.
Finally we have constructed the wave function of the qutrit system and discuss its various
properties.

It is customary to view the three-level system as two two-level systems with one of
their levels overlaps with each other. Thus in the dipole approximation, the Hamiltonian
of the semiclassical cascade system can be expressed as [45]

HE = h(wlUg + ngg) + (?112 : El(Ql) + a23 : E2(92)7 (1)

where, dia = (U; + U_) and dag = (T4 + T_) be the dipole operators representing the
transitions 1 <+ 2 and 2 <> 3 and E1(1) = E14 + E;_ and E3(2) = Eoy + Es_ be the
bichromatic classical electric fields with frequencies €2y and 29, respectively. Similarly we
have

HA = h(w1 V3 + woT3) 4 dig - E1(Q1) + das - E2(Q2), (2)

for the lambda system, where dis = (V4 +V_), dag = (T4 +T_) be the dipole operators
representing transitions 1 <> 3 and 2 <> 3, respectively. Finally for the vee system we have

HY = h(w1 V3 4 walUs) + diz - E1 () + diz - E2(Q), (3)

where dyz = (V4 + V_) and dja = (U, + U_) characterize the transitions 1 « 3 and
1 < 2, respectively. In Eq.(1-3), fwi(= —E), h(w) — w2)(= EF) and hwy(= EF) be
the energies of the three levels of the cascade system, hwi(= —FE), hws(= —EY) and
hi(ws + w1)(= EL) be the energies of the lambda system and fw; (= EY), hws(= EY ) and
—h(ws +w1)(= EY) be those of the vee system shown in Fig.2, respectively. We note that
in all cases, unlike the conventional scheme shown Fig.1 [29], the energy levels maintain
the hierarchy, F§ > E§ > Ef (a = Z,A and V). In Egs.(1-3), we have defined the SU(3)
shift vectors,

Ty = 2(\ £iXg), Us = 3(X6 £ A7), Vi =2\ Eids),

T3 = A3, Us = (V3Xs — A3)/2, Vs = (V3Xs + A3)/2, (4)

respectively, where the Gellmann matrices are given by,



10 0 —i 0 1 0 0
M=|100], =i 0 0], A3 = -1 0,
10 0 0| 0 0 0] (0 0 0
[0 0 1] [0 0 —i ] [0 0 0
M=]00 0], =00 0 |, =100 11,
1.0 0| i 0 0 | (010
[0 0 0 10 0
=100 —i|, )\8:% 01 0 |, (5)
0 i 0 00 —2

respectively. These matrices follow the commutation and anti-commutation relations
i, Aj] = 2ifijn e, {Xi, A} = 3055 + 2diji A, (6)

where d;;, and fii (4,7 = 1,2, ..,8) represent completely symmetric and completely anti-
symmetric structure constants, respectively, which characterize SU(3) group [46].
In the rotating wave approximation (RWA), the Hamiltonians can be written as

H= = h(Q1 — w1 — w2)Us + h(Qa — w1 — w2) T + (AU + AST3)+
iUy exp(—i€dit) + hko Ty exp(—iQdat) + h.c. (7)
for the cascade system,
HA = h(Ql — w1 — CUQ)‘/g + h(Qg — w1 — WQ)Tg + h(A{xV'g + AQTg)—I—
hr1 Vi exp(—i€dit) + hroTy exp(—ifdat) + h.c. (8)
for the lambda system,
HY = h(Ql — w1 — CUQ)‘/g + h(Qg — w1 — CUQ)Ug + h(Allx‘/g + ASU{&)‘F

hk1 Vi exp(—i€it) + hroUy exp(—ifdat) + h.c. (9)

for the vee system, respectively. In Eq.(7-9), x; (¢ = 1,2) be the coupling parameters and
A = (2wiHw2—0) and A§ = (w1+2wa—2) be the respective detuning frequencies. Thus
we note that the Hamiltonian of any specific three-level configuration can be expressed by
a subset of SU(3) matrices, namely,

Cascade system : Uy,Us, Ty, T3, ie., {)\1,)\2,)\3,)\6,)\7,)\8},
Lambda system : Ty, T5, Ve, Vs, ie., {1, A2, A3, A, As, As ) (10)
Vee system : Ui,Us, Vi, Vs, ie., {)\3,)\4,)\5,)\6,)\7,)\8},

respectively [45], rather than all eight matrices [28-30]. Given with three well-defined
models, we proceed to develop the Bloch equation of all three-level systems and discuss
the constraints involving their solutions.

Let the solution of the Schrodinger equation of a generic three-level system described
by the Hamiltonian Eq.(7-9) is given by,

e(t) = C5(1) |0) + C1 () [1) + C5(1) [2) (11)



where C§(t), C{(t) and C§(t) be the normalized amplitudes with basis states |0), |1) and
|2), respectively. The exact evaluation of the probability amplitudes enables us to calculate
the density matrix of any system given by

p() = [0°(1) > © < T(0)] (12)

To start with, we consider the dressed wave function of the cascade system obtained by a
unitary transformation

U= = Ul(t)ws, (13)
where the unitary operator is given by
)
Ua(t) = exp[—g((Ql + QQg)Tg + (291 + Qg)Ug)t]. (14)

The corresponding time-independent Hamiltonian in Eq.(7) of the cascade system is given
by

HEZ(0) = (—hULU= + ULHE(t)U=)

Th(AT + 2AF) hwky 0
— hko Th(AT — AF) hky . (15)
0 fik —1h(2AT + AF)

Similarly, the unitary operator of the lambda system described by the Hamiltonian
Eq.(8) is,

7

Un(t) = eiﬂp[—g((?% — Q)75 + (201 — Q2)V3)t], (13)
and the corresponding time-independent Hamiltonian is given by,
5 %h(Ajl\ + Aé\) hlig hlil
HA(0) = hka (A} —2A8) 0 : (17)
B 0 Lh(A) — 2A0)

Also the Hamiltonian of the vee system in Eq.(6) can be made time-independent by
using the transformation operator

Uv(t) = 6%])[—%((292 — Ql)Ug + (291 - Qg)Vg)t], (18)
and corresponding Hamiltonian is,
) th2AY — AY) 0 Rk
HV(0) = 0 Th(2AY — AY) hkg . (19
h/ﬂ hlig —%h(AY + Ag)

Thus we have three distinct Hamiltonians with different non-vanishing entries for three
different configurations.
To obtain the Bloch equation, we define the generic SU(3) Bloch vectors

Sit(t) = Trlp*()Ail, (20)



where p® be the density matrix of the three-level systems given by Eq.(12) which satisfies
the Lioville equation, namely,
= Lt H(0) (1)
it ~ h' ' '

From Eq.(20), the density matrix written in terms of Bloch vector is,

a 1 3 8 a
p(t) = g(l +3 > SEHE)N). (22)
=1

Substituting Eq.(22) and the Hamiltonians given by Egs.(15), (17) and (19) in Eq.(21),
we obtain the Bloch equation

dS?fl a Qa

where M} be the eight dimensional anti-asymmetric matrix. For the Hamiltonian of the

cascade system given by Eq.(15), the matrix ME reads

0 A5 0 0 —K1 0 0 0
—AQE 0 2:‘%2 K1 0 0 0 0
0 2k 0 0 0 0 K1 0
= 0 -k 0 0 (AT+A5) 0 Ko 0
Mzl om0 0 —@aF+ap) o w00 |- @Y
0 0 0 0 Ko 0 AT 0
0 0 —K1 — K2 0 —AIE 0 \/glil
. 0 0 0 0 0 0 —V3k 0
Similarly for Eq.(17), the matrix of the lambda system is given by
0 A} 0 0 0 0 — k1 0 ]
~AY 0 2k O 0 K1 0 0
0 —2/%2 0 0 —K1 0 0 0
0 0 0 0 A 0 K 0
A _ 1 2
Mi=1 o 0 m -AF 0 — K2 0 V3hy | (%)
0 k10 0 Ko 0 (AN =AY 0
K1 0 0 —ko 0 — (A} — AD) 0 0
| 0 0 0 0 —V3k 0 0 0 |
and finally from Eq.(19) for the vee system we have,
I 0 (AY —AY) 0 0 — Ko 0 —K1 0
—(AY — Ag) 0 0 — K2 0 —K1 0 0
0 0 0 0 —FK1 0 Ko 0
MY 0 — Ky 0 0 AY 0 0 0
i Ko 0 k1 —AY 0 0 0 3k |
0 K1 0 0 0 0 ~AY 0
K1 0 —Kky 0 0 ~-AY 0 V3ka
I 0 0 0 0 —V3k1 0 —VBka O
(26)



respectively.

The algebraic structure of the SU(3) group allows the existence of a set of quadratic
casimirs which will appear in form of the quadratic constants. However, the searching of
the exact tuple of the Bloch vectors forming such constants is quite cumbersome because
of the large number of such combinations. More specifically, for eight Bloch vectors, we
have to search (8_8775)!7”(: 8,28,56, 70, ...,1) number of combinations forming such tuples
forn =1,2,3,..,8, respectively. We have developed a Mathematica program to search the
exact combination of the Bloch vectors obtained by solving the Bloch equation in Eq.(23)
and after a rigorous search obtain the following results for n = 3 and n = 5 only:

For the cascade system at resonance (AT = 0 = AF), the Bloch space is split into two
parts; one being of two sphere S2,

=2 =2 =2 =2 =2 =2
ST(t) + 557 (1) + S5~ (t) = ST7(0) + 557 (0) + S5 (0), (27a)
and other is the four sphere S%,
=2 =2 =2 =2 =2
Sy () + 557 (1) + Sp (1) + 577 (1) + 55 (1) =

S57(0) + S57(0) + ST7(0) + SF(0) + S5°(0), (27b)

respectively, where S=(0) be the constants at ¢ = 0 which are to be evaluated in terms of
the probability amplitudes. By noting the fact that the density matrix can be written as
p=(t) = UT(t)p=(0)U(t), Eq.(20) becomes,

(1]

S5 (0) = Tr[p=(0)Ail. (28)

Plucking back Eqgs.(5) and (12) into Eq.(28), different values of the constants S=(0) can
be evaluated in terms of probability amplitudes C15’273(0) at t = 0 and Eqs.(27) become

=2 =2 =2 = = = =
ST+ 55+ S5 = 4[CT(0)21CF(0)]* + 413 (0)]|C5(0) (29a)

and
=2 =2 =2 =2 =2 4 = = =
Sy +535 +57 +57 +5% :g(ICT(0)|2+|05(0)|2+|C§(0)|2)2

=3|C17(0)[*|C27(0)* — 3|C2(0)*[C57(0) (290)

respectively. Similarly at resonance (A} = 0 = A2), for the lambda system we have two

Bloch spheres,
2 2 2 = = = =
St + 517+ 527 = 4|CT(0)P|CF(0) + 4|C5(0)P|CE(0) (30a)

and
2 2 2 2 2 4
Sy +558" + 587 + 86 + Sg =g(ICHA(O)I2+|02A(0)I2+IC?,A(O)F)2

=3|C1*(0)]?[C2™ ()] — 3|C5™ (0)*|C1 A (0) . (300)



Also for the vee system at resonance (A} =0 = AY), we have
2 2 2
Sy 4 ST+ S5 =4Iy (0)PICS (0)F + 4|5 (0)PCY () (31a)

and
2 2 2 2 2 4
ST 85T+ 55 57+ 87 = (0 () + |G (O)F + 165/ (0))?

—3|C2Y (0)[1C5Y (0)|* — 3|C5Y (0)]*[C1 Y (0) 7, (31b)

respectively. Thus we note that the 3- and 5-tuple of the Bloch vectors form two quadratic
constants which are different for different three-level systems. From Eqgs.(29-31) it is
further evident that at resonance, the Bloch space S” is broken into two-subspaces S? x S?,
which indicates that each configuration has distinct norm. It is instructive to note that at
off resonance (A{ # 0 # A$), the solutions of the Bloch equation of all three configurations
satisty,

a a a a a a a a 4 a a a
S¢?+ 857+ 557 + 547+ 522 + S8 4+ S92 + S§* = g(‘cl(o)‘2+’02(0)‘2+’C3(0)‘2)2’ (32)

This shows that the normalization condition |Cf(0)[? +|C$(0)|? + |C$(0)|?> = 1 gives that
the radius-squared of the seven-dimensional Bloch sphere S7 will be % regardless of the
configurations.

Finally we consider the wave function of the qutrit system. A convenient parametriza-
tion of the normalized qutrit wave function is

6 6 0 Oy ,
lqr >= cos ?0]0 > —i—sin;osin?lsin ?26“15\1 >+
6 0 6 0 0
(sin;ocos?l —i—isin;osin?lcos 52)\2 >, (33)

where the three coordinates 0y, 61 and 0, lie between 0 to m with arbitrary value of the
phase angle ¢. From Eq.(33) it is evident that, the pure qutrit states [0 >, |1 > and
|2 > can be obtained by choosing the coordinates (6, 01,62) to be (0,601,03), (7,7, 7) and
(m,0,03), respectively. This indicates that for a qutrit system, the state |0 > may be any
point on the (01, 62) plane, |1 > corresponds to a well-defined point and |3 > lies on a line
for any value of 03, respectively. In other words, in the three-level scenario, the degeneracy
of the |0 > and |2 > states shows that the Bloch space structure of the qutrit is highly
non-trivial. This is in contrast with the two-level system representing qubit, where the
basis states |0 > and |1 > correspond to the north and south poles of the Bloch sphere,
respectively [3,9]. Using Eq.(12), various elements of the density matrix corresponding to
the qutrit wave function in Eq.(33) are given by
11 2 th

pr = cos” o

0 0 0
22 _ 2% .20l . 902
pT = sin” - sin® Z-sin”



1 0
p?;’ — 1(3 + cos 61 + cos O — cos 01 cos 62) sin? 2
« 1. 0 0
o = pA’ = §€Z¢ sin 0 sin 51 sin 52
% - 0 0 0 0 0 0
P2 = p3¥ = e sin? ?0 sin %(cos ?1 + isin 51 Ccos 52) sin ?2
« 1 0 0 )
p%p?’ = p%)’pl =3 sin Oy (cos 51 + i sin ?1 cos ?2) (34)

It is worth noting that this qutrit wave function is normalized, i.e., Tr[pr] = 1 and the
density matrix satisfies the pure state condition, namely, p% = pr. Finally plucking back
pr in Eq.(20) we obtain the Bloch sphere on S7,

4
ST+ S5 + 557 + 517 + 857 + S§7 + 577 + 57 = o (35)

This is precisely same as Eq.(32) obtained from different configurations of three-level
system indicating the equivalence between the qutrit system with the three-level system.
In this paper we have discussed different semiclassical three-level configurations and
obtain the solution of corresponding Bloch equations. It is shown that, if the energies of the
three levels follow a definite hierarchy prescription, it is possible to write the Hamiltonians
in the SU(3) basis which are different for different configurations. At zero detuning, the
Bloch sphere S7 of each configuration is broken into two disjoint sectors S?xS* due to
the existence of different constraints which are not alike. A significant outcome of our
approach is that we have given a possible representation of the qutrit wave function which
can be identically represented by a three-level system. Although our formulation gives a
possible representation of the qutrit wave function, but it is quite difficult to ascertain the
complicated structure of the Bloch space at this stage. Apart from that, the mechanism
of minimizing the information loss while teleporting between two or multiple number of
qutrits, developing appropriate search algorithm, the qutrit based protocol transfer etc
are still open issues which require further exploration of the qutrit wave function proposed
here. Although the quantum information processing has made significant progress with
the conventional qubit as the primitive identity, but the potential application of the qutrit
can not be properly addressed unless we do not understand the wave function of the
quatrit and its relation with the Bloch space structure of the three-level system in greater
detail. More exploration along this direction may provide some interesting results which
are within reach of the future high-Q cavity as well as nanomaterial based experiments.
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Ei A, =Y 11>
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v
VA
/o
Es |2>

Figure 1: Cascade, lambda and vee type three-level configurations according to the
Eberly-Hioe scheme [29] with the energy conditions, E5 > Es > Eq, E2 > F3 > E; and
E;, > E3 > Es, respectively. Here the position of the middle level (level-2) with energy
F> is changed to generate all models.
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E§ == hw2 Al _*_ _________ ‘3 >
Qs
Ez“ = h(w1 —WQ) __________ *_AQ ‘2 >
E} = h(w; +wa) A, — #_A2 3>
f 0y

W
Eé\ = —hw2 / |2 >
E{\ = —hwl ‘1 >
E;)/—hw1A1_i_ - ‘3>

]
E2 = hwg + AQ |2 >

Figure 2: Cascade, lambda and vee type three-level configurations according to our
scheme [45] E§ > E$ > E{ (a=Z,A and V).
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