Stability Criteria of 3D Inviscid Shears

Y. Charles Li

Abstract

The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer" [22 [21] 20]. As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form $(U(y, z), 0,0)$ in velocity variables. All such 3 D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.

1. Introduction

There has been a lot of continuing interest in searching for 3D steady solutions (or traveling wave solutions in a different frame) in plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow 17, 16 [21] 11 ,22 [20 6] 4] 7. There seems to be confirmation of their existence in experiments [7]. Recent numerical studies of [22] [21] [20] reveal that the so-called lower branch steady states in the plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3 D limiting shear of the form $(U(y, z), 0,0)$ in velocity variables. All the 3 D shears of this form are steady states of the 3D Euler equations. This raises two important questions: (1). What is the special property of the limiting shear? (2). What is the nature of stability of 3D inviscid shears in contrast to the classical Rayleigh theory of 2D inviscid shears? The first question was addressed in [14. It turns out that the limiting shear satisfies a necessary condition: $\int \Delta U f(U) d y d z=0$ for any function f. We shall address the second question in this study. We shall use the channel flow (plane Couette flow and plane Poiseuille flow) as the example.

As the Reynolds number decreases from infinity, the limiting 3D shear as a steady state deforms into the lower branch steady state; while the 3D shear itself undergoes a slow drifting toward the classical laminar shear. In fact, all the shears (3D and 2D) form a stable submanifold of the classical laminar shear. These

[^0]shears can play a fundamental role in the transition to turbulence from the classical laminar shear 13.

2. Inviscid Channel Flow

The inviscid channel flow is governed by the 3D Euler equations

$$
\begin{equation*}
\partial_{t} u_{i}+u_{j} u_{i, j}=-p_{, i}, \quad u_{i, i}=0 \tag{2.1}
\end{equation*}
$$

where $\left(u_{1}, u_{2}, u_{3}\right)$ are the three components of the fluid velocity along (x, y, z) directions, and p is the pressure. The boundary condition is the so-called slip condition

$$
\begin{equation*}
u_{2}(x, a, z)=0, \quad u_{2}(x, b, z)=0 \tag{2.2}
\end{equation*}
$$

where $a<b$, and $u_{i}(i=1,2,3)$ are periodic in x and z directions with periods ℓ_{1} and ℓ_{3}.

We start with the steady shear solutions of the 3D Euler equations:

$$
u_{1}=U(y, z), \quad u_{2}=0, \quad u_{3}=0, \quad p=p_{0}(\text { a constant })
$$

where $U(y, z)$ is periodic in z with period ℓ_{3}. Linearize the 3D Euler equations with the notations

$$
\begin{aligned}
& u_{1}=U(y, z)+\left[e^{i k(x-c t)} u(y, z)+c . c .\right], \quad u_{2}=e^{i k(x-c t)} v(y, z)+c . c . \\
& u_{3}=e^{i k(x-c t)} w(y, z)+c . c ., \quad p \rightarrow p_{0}+\left[e^{i k(x-c t)} p(y, z)+c . c .\right]
\end{aligned}
$$

where k is a real constant and c is a complex constant, we obtain the linearized 3D Euler equations

$$
\begin{align*}
& i k(U-c) u+v U_{y}+w U_{z}=-i k p, \tag{2.3}\\
& i k(U-c) v=-p_{y}, \tag{2.4}\\
& i k(U-c) w=-p_{z} \tag{2.5}\\
& i k u+v_{y}+w_{z}=0 \tag{2.6}
\end{align*}
$$

Two forms of simplified systems can be derived:

$$
\begin{align*}
& k^{2}(U-c) v=\partial_{y}\left[(U-c)\left(v_{y}+w_{z}\right)-\left(U_{y} v+U_{z} w\right)\right] \tag{2.7}\\
& k^{2}(U-c) w=\partial_{z}\left[(U-c)\left(v_{y}+w_{z}\right)-\left(U_{y} v+U_{z} w\right)\right] \tag{2.8}
\end{align*}
$$

with boundary condition $v(a, z)=v(b, z)=0$ and v, w are periodic in z; and

$$
\begin{equation*}
(U-c)^{2} \nabla \cdot\left[(U-c)^{-2} \nabla p\right]=k^{2} p \tag{2.9}
\end{equation*}
$$

with boundary condition $\partial_{y} p(a, z)=\partial_{y} p(b, z)=0$ and p is periodic in z. We are not successful in utilizing the system (2.7)-(2.8). System (2.9) turns out to be fruitful. The first result that can be derived from system (2.9) is the Howard semi-circle theorem.

Theorem 2.1. 8 3 The unstable eigenvalues (if exist) lie inside the semi-circle in the complex plane:

$$
\left(c_{r}-\frac{M+m}{2}\right)^{2}+c_{i}^{2} \leq\left(\frac{M-m}{2}\right)^{2}, c=c_{r}+i c_{i}, c_{i}>0
$$

where $M=\max _{y, z} U$, and $m=\min _{y, z} U$.

Proof. Multiply (2.9) with \bar{p}, integrate by parts, and split into real and imaginary parts; we obtain that

$$
\begin{align*}
& \int_{0}^{\ell_{3}} \int_{a}^{b} U G d y d z=c_{r} \int_{0}^{\ell_{3}} \int_{a}^{b} G d y d z \tag{2.10}\\
& \int_{0}^{\ell_{3}} \int_{a}^{b} U^{2} G d y d z=\left(c_{r}^{2}+c_{i}^{2}\right) \int_{0}^{\ell_{3}} \int_{a}^{b} G d y d z \tag{2.11}
\end{align*}
$$

where

$$
G=|U-c|^{-4}\left[|\nabla p|^{2}+k^{2}|p|^{2}\right] .
$$

Let

$$
M=\max _{y, z} U, \quad m=\min _{y, z} U
$$

then

$$
\int_{0}^{\ell_{3}} \int_{a}^{b}(U-m)(M-U) G d y d z \geq 0
$$

Expand this inequality and utilize (2.10)-(2.11), we arrive at the semi-circle inequality in the theorem.

Our next goal is to find a counterpart of the Rayleigh criterion [2]. For that goal, we need to introduce the transform

$$
\begin{equation*}
\tilde{p}=(U-c)^{-1} p \tag{2.12}
\end{equation*}
$$

then \tilde{p} satisfies

$$
\begin{equation*}
\Delta \tilde{p}+\left[\frac{\Delta U}{U-c}-\frac{2 \nabla U \cdot \nabla U}{(U-c)^{2}}\right] \tilde{p}=k^{2} \tilde{p} \tag{2.13}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\partial_{y} \tilde{p}+\frac{U_{y}}{U-c} \tilde{p}=0, \text { at } y=a, b \tag{2.14}
\end{equation*}
$$

It turns out that we can only derive results when U satisfies the constraint

$$
\begin{equation*}
U_{y}=0, \text { at } y=a, b \tag{2.15}
\end{equation*}
$$

in this case, \tilde{p} satisfies the simplified boundary condition

$$
\begin{equation*}
\partial_{y} \tilde{p}=0, \text { at } y=a, b \tag{2.16}
\end{equation*}
$$

Theorem 2.2. For $U(y, z)$ satisfying the constraint $U_{y}=0$, at $y=a, b$; if $U(y, z)$ has an (inviscid) unstable eigenvalue, then
(1)

$$
\nabla \cdot\left(\frac{1}{|U-c|^{4}} \nabla U\right)=0
$$

at some point $\left(y_{*}, z_{*}\right)$ in the interior of the domain, for some $c\left(c_{i}>0\right)$ in the semi-circle $\left(c_{r}-\frac{M+m}{2}\right)^{2}+c_{i}^{2} \leq\left(\frac{M-m}{2}\right)^{2}$, where $M=\max _{y, z} U$, and $m=\min _{y, z} U$;
(2)

$$
2 \frac{|c|^{2}-U^{2}}{|U-c|^{2}}|\nabla U|^{2}+U \Delta U>0
$$

at some point $\left(y_{*}, z_{*}\right)$ in the interior of the domain, for some $c\left(c_{i}>0\right)$ in the semi-circle $\left(c_{r}-\frac{M+m}{2}\right)^{2}+c_{i}^{2} \leq\left(\frac{M-m}{2}\right)^{2}$, where $M=\max _{y, z} U$, and $m=\min _{y, z} U$.

Proof. Multiply (2.13) with $\overline{\tilde{p}}$, integrate by parts, and split into real and imaginary parts; we obtain that

$$
\begin{align*}
& \int_{0}^{\ell_{3}} \int_{a}^{b}\left[\frac{U-c_{r}}{|U-c|^{2}} \Delta U-2 \frac{\left(U-c_{r}\right)^{2}-c_{i}^{2}}{|U-c|^{4}}|\nabla U|^{2}\right]|\tilde{p}|^{2} d y d z>0 \tag{2.17}\\
& \int_{0}^{\ell_{3}} \int_{a}^{b}\left[\frac{1}{|U-c|^{2}} \Delta U-4 \frac{U-c_{r}}{|U-c|^{4}}|\nabla U|^{2}\right]|\tilde{p}|^{2} d y d z=0 \tag{2.18}
\end{align*}
$$

Equation (2.18) directly implies the first claim in the theorem. The second claim is along the spirit of the Fjortoft theorem [2]. Multiply (2.18) by c_{r} and add (2.17), we obtain the second claim.

Next we will derive a relation between c_{i} and k.
Theorem 2.3. For $U(y, z)$ satisfying the constraint $U_{y}=0$, at $y=a$, b; let $A=$ $\max _{y, z}|\nabla U|, B=\max _{y, z}|\Delta U|$; then the unstable eigenvalue (if exists) and the wave number k satisfy the condition

$$
\begin{aligned}
& \left(k c_{i}\right)^{2} \leq 2 A^{2}+B c_{i}, \quad\left(c_{i}>0\right) \\
& {\left[\text { equivalently, } \quad\left(k c_{i}-\frac{B}{2 k}\right)^{2} \leq 2 A^{2}+\left(\frac{B}{2 k}\right)^{2}\right]}
\end{aligned}
$$

Proof. Multiply (2.13) with $\overline{\tilde{p}}$ and integrate by parts, we obtain that

$$
\begin{equation*}
\int_{0}^{\ell_{3}} \int_{a}^{b}\left[\frac{\Delta U}{U-c}-2 \frac{|\nabla U|^{2}}{(U-c)^{2}}\right]|\tilde{p}|^{2} d y d z=\int_{0}^{\ell_{3}} \int_{a}^{b}\left[|\nabla \tilde{p}|^{2}+k^{2}|\tilde{p}|^{2}\right] d y d z \tag{2.19}
\end{equation*}
$$

The left hand side of (2.19) is less than or equal to

$$
\left(\frac{B}{\left|c_{i}\right|}+2 \frac{A^{2}}{\left|c_{i}\right|^{2}}\right) \int_{0}^{\ell_{3}} \int_{a}^{b}|\tilde{p}|^{2} d y d z
$$

The right hand side of (2.19) is greater than or equal to

$$
k^{2} \int_{0}^{\ell_{3}} \int_{a}^{b}|\tilde{p}|^{2} d y d z
$$

Thus

$$
\frac{B}{c_{i}}+2 \frac{A^{2}}{c_{i}^{2}} \geq k^{2}, \quad\left(\text { when } c_{i}>0\right)
$$

which leads to the claim of the theorem.
It is obvious that Theorems 2.2 and 2.3 apply to the 2 D shears $U(y)$ too. Theorem 2.2 is not the exact 3D counterpart of the 2D Rayleigh criterion. The exact counterpart seems elusive. Next we will derive a variation formula for the unstable eigenvalue. This type of formulas was initially derived by Tollmien [19] $[15$ for 2D shears. They are useful in deriving unstable eigenvalues near neutral eigenvalues. For 3D shears in atmosphere problems [1], specific approximations can make the stability problem very similar to the 2D Rayleigh problem. In such a case, a similar variation formula can also be derived to predict unstable eigenvalues near neutral eigenvalues [1]. In our current case, no approximation can be made, and we have a much harder problem. We have to work with the pressure variable of which the singularity nature is not clear even for 2 D shears. We can derive a formula near an unstable eigenvalue, but its limit to a neutral eigenvalue is elusive
and finding a neutral eigenvalue here is more challenging than finding an unstable eigenvalue in contrast to the 2 D shear problem. Let (p, c, k) and $\left(p_{1}, c_{1}, k_{1}\right)$ be two unstable eigenfunctions (if exist) to (2.9), then

$$
\begin{gather*}
\nabla \cdot\left[(U-c)^{-2} \nabla p\right]=k^{2}(U-c)^{-2} p, \tag{2.20}\\
\nabla \cdot\left[\left(U-c_{1}\right)^{-2} \nabla p_{1}\right]=k_{1}^{2}\left(U-c_{1}\right)^{-2} p_{1} \tag{2.21}
\end{gather*}
$$

Multiply (2.20) by p_{1} and (2.21) by p, integrate and subtract, we get

$$
\begin{aligned}
& \left(c_{1}-c\right) \int_{0}^{\ell_{3}} \int_{a}^{b} \frac{c_{1}+c-2 U}{\left(U-c_{1}\right)^{2}(U-c)^{2}}\left[\nabla p \cdot \nabla p_{1}+k^{2} p p_{1}\right] d y d z \\
= & \left(k_{1}-k\right)\left(k_{1}+k\right) \int_{0}^{\ell_{3}} \int_{a}^{b} \frac{p p_{1}}{\left(U-c_{1}\right)^{2}} d y d z
\end{aligned}
$$

from which we obtain the variation formula

$$
\begin{align*}
\frac{d c}{d k}= & -k \int_{0}^{\ell_{3}} \int_{a}^{b} \frac{p^{2}}{(U-c)^{2}} d y d z \\
& {\left[\int_{0}^{\ell_{3}} \int_{a}^{b} \frac{1}{(U-c)^{3}}\left[\nabla p \cdot \nabla p+k^{2} p^{2}\right] d y d z\right]^{-1} . } \tag{2.22}
\end{align*}
$$

The merit of this formula is that it does not involve $d p$. This formula is valid at an unstable eigenvalue ($c=c_{r}+i c_{i}, c_{i}>0$). If the unstable eigenvalue lies on a curve $c=c(k)$ that leads to a neutral eigenvalue $c^{0}=c\left(k^{0}\right), c_{i}^{0}=0$ as in the case of a 2 D shear, then by the semi-circle theorem [2.1] $c^{0}=U\left(y_{0}, z_{0}\right)$ for some $\left(y_{0}, z_{0}\right)$. In such a case, the limit $k \rightarrow k^{0}$ of (2.22) is still very attractive even though finding the neutral eigenvalue c^{0} here is more challenging than finding an unstable eigenvalue in contrast to the case of 2 D shears. On the other hand, the limit seems very singular (even for 2D shears). First of all, in the limit $k \rightarrow k^{0}$, equation (2.9) is singular, so the limiting eigenfunction p will be singular too. The following simple equation

$$
t^{2} q^{\prime \prime}+\alpha t q^{\prime}+\beta q=0, \quad(\alpha, \beta \text { constants })
$$

already show a variety of singular solutions near $t=0$. Moreover, the singularities generated by $\left(U-c^{0}\right)$ in the integrals in (2.22) add to the challenge.

Similarly, starting from (2.13), (2.15) and (2.16), we can derive the following

$$
\begin{aligned}
& \left(c_{1}-c\right) \int_{0}^{\ell_{3}} \int_{a}^{b}\left[\frac{\Delta U}{\left(U-c_{1}\right)(U-c)}+\frac{2 \nabla U \cdot \nabla U\left(c_{1}+c-2 U\right)}{\left(U-c_{1}\right)^{2}(U-c)^{2}}\right] \tilde{p} \tilde{p}_{1} d y d z \\
= & \left(k_{1}-k\right)\left(k_{1}+k\right) \int_{0}^{\ell_{3}} \int_{a}^{b} \tilde{p} \tilde{p}_{1} d y d z
\end{aligned}
$$

from which we obtain the variation formula

$$
\begin{align*}
\frac{d c}{d k}= & 2 k \int_{0}^{\ell_{3}} \int_{a}^{b} \tilde{p}^{2} d y d z \\
& {\left[\int_{0}^{\ell_{3}} \int_{a}^{b}\left[\frac{\Delta U}{(U-c)^{2}}-\frac{4 \nabla U \cdot \nabla U}{(U-c)^{3}}\right] \tilde{p}^{2} d y d z\right]^{-1} . } \tag{2.23}
\end{align*}
$$

3. Viscous Channel Flow

The viscous channel flow is governed by the Navier-Stokes equations

$$
\begin{equation*}
\partial_{t} u_{i}+u_{j} u_{i, j}=-p_{, i}+\epsilon u_{i, j j}, \quad u_{i, i}=0 \tag{3.1}
\end{equation*}
$$

where $\left(u_{1}, u_{2}, u_{3}\right)$ are the three components of the fluid velocity along (x, y, z) directions, p is the pressure, and $\epsilon=1 / R$ is the inverse of the Reynolds number R. The boundary condition is

$$
\begin{equation*}
u_{1}(x, a, z)=\alpha, \quad u_{1}(x, b, z)=\beta, \quad u_{j}(x, a, z)=u_{j}(x, b, z)=0,(j=2,3) \tag{3.2}
\end{equation*}
$$

where $a<b, \alpha<\beta$, and $u_{i}(i=1,2,3)$ are periodic in x and z directions with periods ℓ_{1} and ℓ_{3}. For the viscous channel flow, the 3D shears mentioned above are no longer fixed points, instead they drift slowly in time (sometimes called quasisteady solutions):

$$
\left(e^{\epsilon t \Delta} U(y, z), 0,0\right)
$$

By ignoring the slow drift and pretending they are still fixed points (or by using artificial body forces to stop the drifting), their unstable eigenvalues will lead to transient nonlinear growths as shown numerically $\mathbf{1 2}$. The corresponding linear Navier-Stokes operator at $(U(y, z), 0,0)$ is given by the following counterpart of (2.3)-(2.6),

$$
\begin{align*}
& i k(U-c) u+v U_{y}+w U_{z}=-i k p+\epsilon\left[\Delta-k^{2}\right] u, \tag{3.3}\\
& i k(U-c) v=-p_{y}+\epsilon\left[\Delta-k^{2}\right] v \tag{3.4}\\
& i k(U-c) w=-p_{z}+\epsilon\left[\Delta-k^{2}\right] w \tag{3.5}\\
& i k u+v_{y}+w_{z}=0 \tag{3.6}
\end{align*}
$$

Again two forms of simplified systems can be derived:

$$
\begin{align*}
& \partial_{y}\left\{\left[\Delta-k^{2}-i k R(U-c)\right]\left(v_{y}+w_{z}\right)+i k R\left(v U_{y}+w U_{z}\right)\right\} \\
& -k^{2}\left(\Delta-k^{2}\right) v+i k^{3} R(U-c) v=0 \tag{3.7}\\
& \partial_{z}\left\{\left[\Delta-k^{2}-i k R(U-c)\right]\left(v_{y}+w_{z}\right)+i k R\left(v U_{y}+w U_{z}\right)\right\} \\
& -k^{2}\left(\Delta-k^{2}\right) w+i k^{3} R(U-c) w=0 \tag{3.8}
\end{align*}
$$

with boundary condition

$$
v(a, z)=v(b, z)=v_{y}(a, z)=v_{y}(b, z)=w(a, z)=w(b, z)=0
$$

and v, w are periodic in z; and the other form

$$
\begin{align*}
& (U-c)^{2} \nabla \cdot\left\{(U-c)^{-1}\left[\epsilon\left(\Delta-k^{2}\right)-i k(U-c)\right]^{-1} \nabla p\right\}=i k p \\
& +\frac{\epsilon}{i k}\left(\Delta-k^{2}\right) \nabla \cdot\left\{\left[\epsilon\left(\Delta-k^{2}\right)-i k(U-c)\right]^{-1} \nabla p\right\} \tag{3.9}
\end{align*}
$$

the boundary condition of which is complicated.
The system (3.7)-(3.8) looks quite convenient for numerical simulations. Multiply (3.7) by \bar{v} and (3.8) by \bar{w}, integrate and add the two equations, we obtain the following expression for the eigenvalue in term of the eigenfunction:

$$
c_{i}=\frac{-1}{k R D}[A+E+H+k R \operatorname{Re}(G)], \quad c_{r}=\frac{1}{D}[B+\operatorname{Im}(G)],
$$

where

$$
\begin{aligned}
& A=\int\left[\left|\nabla v_{y}\right|^{2}+\left|\nabla w_{z}\right|^{2}+k^{2}\left|v_{y}\right|^{2}+k^{2}\left|w_{z}\right|^{2}\right] \geq 0, \\
& B=\int U\left(\left|v_{y}\right|^{2}+\left|w_{z}\right|^{2}+\bar{v}_{y} w_{z}+v_{y} \bar{w}_{z}\right. \\
& \left.+k^{2}|v|^{2}+k^{2}|w|^{2}\right), \text { real; } \\
& D=\int\left(\left|v_{y}\right|^{2}+\left|w_{z}\right|^{2}+\bar{v}_{y} w_{z}+v_{y} \bar{w}_{z}\right. \\
& \left.+k^{2}|v|^{2}+k^{2}|w|^{2}\right) \geq 0, \\
& E=\int\left[\bar{v}_{y y} w_{z y}+\bar{v}_{y z} w_{z z}+k^{2} \bar{v}_{y} w_{z}+c . c .\right], \text { real } ; \\
& G=-i \int\left(\bar{v}_{y}+\bar{w}_{z}\right)\left(v U_{y}+w U_{z}\right) \text {, complex; } \\
& H=k^{2} \int\left[|\nabla v|^{2}+|\nabla w|^{2}\right]+k^{4} \int\left[|v|^{2}+|w|^{2}\right] \geq 0 .
\end{aligned}
$$

Notice that the expression of c_{r} has no explicit dependence upon the Reynolds number R, but it does depends on R implicitly via the eigenfunction. An unstable eigenvalue corresponds to $k c_{i}>0$. Without loss of generality, assume $k>0$. Notice that $A+E \geq 0$, and

$$
|G| \leq g \int\left[\left|v_{y}\right|^{2}+\left|w_{z}\right|^{2}+|v|^{2}+|w|^{2}\right]
$$

where

$$
\begin{equation*}
g=\max \left\{\left\|U_{y}\right\|_{L^{\infty}},\left\|U_{z}\right\|_{L^{\infty}}\right\} . \tag{3.10}
\end{equation*}
$$

Then from the expression of c_{i}, one can obtain the following theorem by comparing the terms H and $k R \operatorname{Re}(G)$.

Theorem 3.1. Let g be given by (3.10), (k, c) be an eigenmode; if $R g<\min \left(k, k^{3}\right)$, $(k>0)$; then $c_{i}<0$, i.e. a stable eigenvalue.

The type of claims in Theorem 3.1 and their improvements have been investigated intensively for 2 D shears $\mathbf{1 8}, \mathbf{9}] \mathbf{1 0}$. On the other hand, as mentioned at the beginning, we are more interested in unstable eigenvalues and for large Reynolds number R as in 13 .

4. Appendix: 2D Limiting Shear Can Only Be the Classical Laminar Shear

We take the plane Couette flow as the example, for plane/pipe Poiseuille flow, the argument is the same. Assume that as the Reynolds number $R \rightarrow+\infty$, a 2D steady state of the plane Couette flow approaches the limiting shear $(U(y), 0)$. Denote by

$$
(U(y)+u(x, y), v(x, y))
$$

the steady state which is periodic in x. Assume that (u, v) and their spatial derivatives are of order $o\left(R^{-1 / 2}\right)$ as $R \rightarrow+\infty$. Then to the leading order $O\left(R^{-1}\right)$,

$$
\begin{aligned}
& U \partial_{x} u+v \partial_{y} U=-\partial_{x} p+\frac{1}{R} \partial_{y}^{2} U \\
& U \partial_{x} v=-\partial_{y} p \\
& \partial_{x} u+\partial_{y} v=0
\end{aligned}
$$

Taking an average in x-direction (over the period), we get

$$
\begin{aligned}
& \bar{v} \partial_{y} U=\frac{1}{R} \partial_{y}^{2} U, \\
& 0=-\partial_{y} \bar{p}, \\
& \partial_{y} \bar{v}=0 .
\end{aligned}
$$

By the boundary condition of v in y direction, $\bar{v}=0$. Thus

$$
\partial_{y}^{2} U=0, \quad \text { i.e. } U=c_{1}+c_{2} y
$$

That is, U has to be the laminar linear shear.
As shown in 14, the corresponding 3D limiting shear $U(y, z)$ does not have to be the linear shear, rather satisfies a constraint

$$
\int \Delta U f(U) d y d z=0
$$

for any f. In fact, the lower branch 3D limiting shear is far away from the linear shear [22] 21] 20. Does this hint that the lower branch steady state does not exist in 2D? Numerical simulations could not find any 2D steady state other than the linear shear (5).

References

[1] J. Charney, M. Stern, On the stability of internal baroclinic jets in a rotating atmosphere, J. Atmos. Sci. 19 (1962), 159-172.
[2] P. Drazin, W. Reid, Hydrodynamic Stability, Cambridge U. Press, 1981.
[3] C. Eckart, Extension of Howard's circle theorem to adiabatic jets, Phys. Fluids 6, no.8 (1963), 1042-1047.
[4] B. Eckhardt, Turbulence transition in pipe flow: some open questions, Nonlinearity 21, No. 1 (2008), T1-T11.
[5] U. Ehrenstein, M. Nagata, F. Rincon, Two-dimensional nonlinear plane Poiseuille-Couette flow homotopy revisited, Phys. Fluids 20 (2008), 064103.
[6] J. Gibson, J. Halcrow, P. Cvitanović, Visualizing the geometry of state space in plane Couette flow, J. Fluid Mech. 611(2008), 107-130.
[7] B. Hof, et al., experimental observation of nonlinear traveling waves in turbulent pipe flow, Science 305 (2004), 1594-1598.
[8] L. Howard, Note on a paper of John W. Miles, J. Fluid Mech. 10 (1961), 509-512.
[9] D. Joseph, Eigenvalue bounds for the Orr-Sommerfeld equation, J. Fluid Mech. 33 (1968), 617-621.
[10] D. Joseph, Eigenvalue bounds for the Orr-Sommerfeld equation, part II, J. Fluid Mech. 36 (1969), 721-734.
[11] R. Kerswell, Recent progress in understanding the transition to turbulence in a pipe, Nonlinearity 18, No. 6 (2005), R17-R44.
[12] Y. Lan, Y. Li, Sommerfeld paradox - A novel numerical study, in progress (2009).
[13] Y. Li, Z. Lin, A resolution of the Sommerfeld paradox, Submitted (2009).
[14] Y. Li, D. Viswanath, Exact and asymptotic conditions on traveling wave solutions of the Navier-Stokes equations, Physics of Fluids 21 (2009), 101703.
[15] C. C. Lin, On the stability of two-dimensional parallel flows, Quart. Appl. Math. 3 (1945), 117-142, 218-234; (1946), 277-301.
[16] M. Nagata, Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity, J. Fluid Mech. 217 (1990), 519-527.
[17] S. Orszag, A. Patera, Subcritical transition to turbulence in plane channel flows, Physical Review Letters 45, no. 12 (1980), 989-993.
[18] J. Synge, Hydrodynamical stability, Semi-centenn. Publ. AMS 2 (1938), 227-269.
[19] W. Tollmien, Ein allgemeines Kriterium der Instabilitat laminarer Gescgwindigkeitsverteilungen, Nachr. Wissfachgruppe, Göttingen, math. phys. 1 (1935), 79-114. English translation: General instability criterion of laminar velocity disturbances, NACA TM-792, 1936.
[20] D. Viswanath, The critical layer in pipe flow at high Reynolds number, Phil. Trans. Roy. Soc. 367 (2009), 561-576.
[21] F. Waleffe, Homotopy of exact coherent structures in plane shear flows, Phys. Fluids 15 (2003), 1517-1533.
[22] J. Wang, J. Gibson, F. Waleffe, Lower branch coherent states in shear flows: transition and control, Physical Review Letters 98 (2007), 204501.

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
E-mail address: liyan@missouri.edu

[^0]: 1991 Mathematics Subject Classification. Primary 76, 37; Secondary 35.

