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Fractal Weyl law behavior in an open, chaotic Hamiltonian system
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We numerically show fractal Weyl law behavior in an open Hamiltonian system that is described
by a smooth potential and which supports numerous above-barrier resonances. This behavior holds
even relatively far away from the classical limit. The complex resonance wave functions are found
to be localized on the fractal classical repeller.
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The classical and quantum dynamics of open Hamilto-
nian systems is relevant to a variety of topics of cur-
rent interest in macroscopic and microscopic physics.
For example, in planetary physics, the formation of bi-
naries in the Kuiper-belt may have proceeded through
the formation of transitory objects in chaotic layers of
phase space trapped close to above-barrier Kolmogorov-
Arnold-Moser (KAM) islands [1, 2, 3]. The analogs of
these states in open quantum Hamiltonians are reso-
nances (quasibound states) which, in general, are pre-
dicted to be localized on an object known as the classical
repeller [4]. The repeller is the intersection of two fractal
sets of classical trajectories one of which remains trapped
in the infinite past and the other in the infinite future,
denoted as K− and K+, respectively. The fractal na-
ture of these sets has led to the prediction of a fractal
Weyl law for flows in which the number of long-living
quantum resonances scales as ~

−(1+dH) where dH is the
partial Hausdorff dimension of the repeller [5].

In open maps the number of resonances has already
been found to obey a similar fractal Weyl law, ~

−d, ex-
cept that d is now the partial fractal dimension of the
trapped set. This relates to the original Weyl law [6] con-
ceived for closed systems which states that the number
of eigenstates up to energy E which fits into the avail-
able phase-space volume of the classical system scales as
~
−d, with d being the actual (integer) dimensionality of

quantum space. In addition, in open maps the associ-
ated quantum Husimi distributions are observed to cling
to the classical repeller [7, 8]. Although the fractal Weyl
law has been observed in particular maps like the baker
map and the kicked rotor [5, 7, 8, 9, 10, 11, 12], there
have been few previous studies of this problem in open
Hamiltonian systems [13] even though such systems are
of direct physical interest; e.g., the chaotic ionization of
hydrogen atom interacting with a circularly polarized mi-
crowave exhibits above-barrier chaotic trapping [14].

Here we present an examination of above-barrier quan-
tum resonance (Gamow) states in a model Hamilto-
nian whose classical dynamics is chaotic. The system

is described by a smooth potential and numerous above-
barrier resonances are supported. The model we use is
chosen to capture essential features of the chaotic ion-
ization dynamics of atoms in rotating fields; further, we
propose, that this mechanism may also be important in
complex formation in certain chemical reactions. We find
that, not only does the fractal Weyl law hold for a typical
(generic) open Hamiltonian system [15], but it also holds
even in the vicinity of ~ = 1, i.e., far from the classical
limit.

The investigation of a fractal law for open analytical
Hamiltonian systems is problematic for a number of tech-
nical reasons, including the larger dimensionality of phase
space N needed to observe the chaotic repeller; unlike
in unidimensional maps, for which N = 2, in an au-
tonomous Hamiltonian the repeller exists only if N ≥ 4
which compounds the computational challenges involved.
An additional computational difficulty is the calculation
of resonance eigenfunctions in the limit ~ → 0 because of
the attendant growth in the size of the basis needed to
converge the calculations. Some of these obstacles have
been overcome in a previous study which reported frac-
tal Weyl law behavior in an open Hamiltonian whose po-
tential energy surface (PES) consisted of three gaussian
bumps [13]. However, for computational reasons only a
rather limited number of resonances were included in the
analysis and the structure of the resonance eigenstates
themselves was not examined.

The model chosen here provides a realistic model of the
chaotic ionization of atoms and of resonances in chemi-
cal reactions in that the PES features a potential well
together with saddle points and, depending on the en-
ergy, the classical dynamics may be mixed (i.e., regular
and chaotic) even above the saddle points. Computation
of quantum complex (resonance) eigenvalues and quan-
tum surfaces of section (QSOS, see, e.g., Ref. [12, 16]),
based on Husimi distributions, reveals that the above-
barrier resonance energies are localized on the classical
repeller. For values of ~ away from the asymptotic limit
there is progressively more delocalization. The advan-
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FIG. 1: (Color online) Superposition of the two branches of
the repeller computed as described in the text and projected
onto the SOS defined by x = 0, ẋ < 0 and E = 1.8Es. The
bounding curve, solid line (red online), of the SOS is also
shown. Both axes have been scaled to the interval (0,1) to
allow for comparison with the Husimi plot of Fig. 3.

tage of the model used is that the calculations are more
tractable than for, say, the H atom interacting with ro-
tating fields for which the Coulomb term complicates the
computations.

The model is a modification of the Hénon-Heiles (HH)
Hamiltonian [17]

H =
1

2
(p2

x+p2
y)+

1

2
(x2+y2)+λ(x2y−

1

3
y3)−ω (xpy−ypx)

(1)
where, throughout, λ = 0.1 and ω = 0.1. The modifica-
tion is the presence of a Coriolis term - the term in ω -
which is designed to simulate the addition of, e.g., a CPM
field or a magnetic field to a Rydberg atom [18]. Because
the Hamiltonian does not have rotational symmetry this
angular-momentum-like term is not a conserved quantity.
Furthermore, the presence of the Coriolis term means
that it is no longer possible to define a potential energy
surface - instead one can resort to using the device of a
zero velocity surface (or ZVS, see, e.g., Ref. [14]). Finally,
time reversal symmetry of the system is broken. Energies
and widths are scaled by the energy of the three saddle
points in the ZVS, i.e., Es = (1 − ω2)3/6λ2 = 16.17165.

The structure of the repeller is shown in Fig. 1 for
ω = 0.1 and an energy rather high above the saddle
point energy. The repeller was computed by integrat-
ing trajectories forwards and backwards in time. The
initial conditions of trajectories which survived (i.e., did
not escape) for a time τ0 were saved. Survivors were
then reintegrated for a time 20τ0 and their intersections
with an appropriate Poincaré surface of section (SOS)
were recorded. In this case the SOS chosen is defined by
x = 0, ẋ < 0.

The effect of adding the Coriolis term is that, for
nonzero ω, relatively large KAM islands may co-exist
with - but are not part of - the repeller for energies con-
siderably above the energy of the saddle points. Here

we do not consider resonances directly associated with
these islands. However, the Coriolis terms has the effect
of bringing out the structure of the repeller more clearly
than for the pure HH system (ω = 0 [17]). Thus, varying
ω allows for the fine tuning of the dynamics in the energy
regime of interest.

The method of complex rotation was used to compute
the complex resonance energies En = Er − iΓn/2 where
Γn is the resonance width [19]. This was accomplished
by rotating the coordinates into the complex plane by an
angle θ, i.e., qi → qie

iθ and then diagonalizing the result-
ing Hamiltonian matrix in a two-dimensional isotropic
oscillator basis |n, m〉 [17]. In principle the procedure is
straightforward although care must be exercised to en-
sure that resonances are distinguished from scattering
states. This can be accomplished by examining so-called
θ-trajectories, i.e., as the angle θ is varied the resonances,
as distinct from scattering states, converge. A large num-
ber of resonances lying above the saddle points are re-
quired to achieve the quality of statistics needed to de-
termine how the number of resonances scales with ~.

The complex energy spectrum for the Hamiltonian of
eq. 1 contains resonances lying below as well as above
the saddle points. Sub-saddle states decay by tunnel-
ing. However, the states of interest lie above the saddle
points and, therefore, a large basis set must be used to
converge these resonances. As ~ is decreased the number
of states below the saddles grows and, therefore, the size
of the basis must be increased. For this reason it is diffi-
cult to access the very small values of ~ - or equivalently,
the very high-lying states - for which it is normally as-
sumed that the fractal Weyl law will hold. Working on
the observation that, in general, asymptotic expansions
often provide good agreement even outside their strict
domains of validity, we examined resonance statistics for
~ in the vicinity of ~ = 1. Numerically, resonances were
computed by direct diagonalization and also, as check,
by using the Arnoldi method which takes advantage of
the sparsity of the Hamiltonian matrix [13]. The Arnoldi
method has the twin merits that (i) a larger basis can be
employed, and (ii) it allows access to selected portions of
the spectrum. However, only a relatively small subset of
resonances can be computed in this way [20].

Distributions of resonances in the range 0.9 ≤ ~ ≤ 1
were then computed. Figure 2 shows the complex reso-
nance eigenvalues obtained for ~ = 1. By counting the
number of states, N(~), in 8 different rectangular boxes of
size (1, 1.24~) located around Er = 1.8Es and averaging
over these sets of data we were able to establish that the
number of states follow a Weyl law with d = 1.231±0.028
(see lower inset in Fig. 2 ). Similarly, and also as shown
in the figure, the dimension of the classical repeller of
Fig. 1 computed from the Poincaré map is fractal with
correlation dimension d2 = 1.442 ± 0.008 where [21]:

d2 = lim
s→0

lnC2(s)

ln s
. (2)
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FIG. 2: Frame (a) shows resonance positions (Er) and widths
(Γ) (scaled by the saddle point energy Es) for ~ = 1. In (b)
the classical quantity ln C2(s) is shown vs. ln s together with
a best fit to a line whose slope is the correlation dimension
[see eq. (2)], i.e., d2 = 1.442 ± 0.008. Frame (c) shows a
best fit to box counted quantum resonances with slope d =
1.231 ± 0.028. The quantum resonances scale as ~

−m/2 or
~
−1.22[5] where m = (1 + d2) is the dimension of the trapped

set; the quantum box counting dimension is 1.23. Despite
considering a relatively narrow range of ~, lying far from the
classical limit the classical and quantum fractal dimensions
agree well.

Here s is the edge length of an n-dimensional cube and
C2(s) is the correlation sum [21]

C2(s) = − lim
M→∞

1

M2

M
∑

k,ℓ=1

Θ (s − ||qn
k − q

n
ℓ ||) (3)

where M is the number of points in the repeller, Θ is
the Heaviside step function and qk are the points of the
repeller. The fractal dimension, m, is related to the cor-
relation dimension computed from a Poincaré map as
m = 1 + d2 [21]. Using the classical data we found that
d2 = 1.442± 0.008 which leads to a fractal dimension for
the repeller of m = 2.44.

According to Ref. [5] the quantum resonances in an en-
ergy interval should scale as ~

−m/2 where m is the dimen-
sion of the trapped set for the energies in that interval.
This is in excellent agreement with quantum box count-
ing since m/2 = 1.22 while the quantum box counting
gives d = 1.23. This prediction is borne out remarkably
well by Fig. 2 and is an illustration of the fractal Weyl law
in an open Hamiltonian system (rather than in a map).
The number of resonances in the boxes varied from 686
to 827 depending on ~.

In addition to the conjecture that for generic open sys-
tems fractal Weyl law behavior will be observed, it is also
expected that Husimi functions will coagulate onto frac-
tal sets (i.e., onto the repeller) in the limit ~ → 0 [7].
For finite ~ Husimi functions will not truly be confined
to fractal sets and will appear somewhat blurred due to
quantum effects. However, as ~ is decreased then classi-
cal structures, on progressively finer scales, will become

apparent in the Husimi functions. The ~ → 0 limit is
itself of physical interest in that this limit corresponds,
e.g., to the ionization of ultrahigh Rydberg states.

Because the Hamiltonian is complex and non-

Hermitian the left, Ψ
(i)
L , and right, Ψ

(i)
R eigenfunctions

do not satisfy the usual (Hermitian) identity Ψ
(i)
L = Ψ

(i)∗
R

and, consequently, ρi = Ψ
(i)
L Ψ

(i)∗
R is a complex quantity.

In fact, observables are associated with neither Ψ
(i)
L nor

Ψ
(i)
R but with

√

Ψ
(i)
L Ψ

(i)
R [22]. This complicates the com-

putation of Husimi distributions as has been discussed
by Buchleitner, et al. [23] who pointed out that Husimi
distributions for individual complex eigenstates have the
peculiar property that they can be negative and a sum
needs to be made, in principle, over all complex ener-
gies [23]. For this reason, and, in analogy with previous
computations in quantum maps, Husimi distributions are
averaged over an energy range of finite width. We use
the following definition of the averaged Husimi function,
whose derivation includes both left and right eigenstates,
and which is in the spirit of Bogomolny [7, 23, 24]

|〈Ω |φE〉 |2 =
1

π
Im

∑

i

〈Ψ̄L
(i)|R(θ) |Ω〉 〈Ψ̄L

(i)|R(θ) |Ω̄〉

Eiθ − E
.

(4)
Here φE represents the probability amplitude at real en-
ergy E and |Ω〉 is a coherent state; ΨL is a complex
rotated eigenstate expressible in terms of the isotropic
oscillator basis vectors; Eiθ is the complex energy of the
eigenstate and the overbar notation signifies, e.g., that
〈Ψ̄| is the complex conjugate of 〈Ψ|; R(θ) is the com-
plex rotation operator [23]. Very recently, Ermann et al.
have proposed a different, although related phase space
representation for open quantum systems [12].

For narrow resonances simplifications of eq. (4) are
possible. By projecting the states onto a basis of isotropic
oscillator functions one avoids computing basis vectors in
the complex coordinate plane, a procedure which is nu-
merically unstable since basis vectors which are oscilla-
tory along the real axis may diverge exponentially in the
complex plane [23]. In this case one then needs to com-
pute matrix elements of R(θ) in the basis used although
these matrix elements themselves ultimately diverge - the
resonance eigenfunctions are not L2 functions.

We adopted the following procedure to project the 4-
dimensional Husimi distribution onto a 2-dimensional hy-
persurface in phase space so as to generate a QSOS. A
narrow interval of energy was selected around some en-
ergy of interest E0. Equation (4) was then used with the
resonance eigenstates projected onto the isotropic oscil-
lator basis. Only resonance states with widths smaller
than some width, Γ0, were included in the summation
and the matrix elements 〈n|R(θ) |m〉 were approximated
by their lowest order (i.e., diagonal) expansion in θ. For
states with narrow widths, as is the case here, this is
an excellent approximation. The QSOS was then com-
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FIG. 3: (Color online) Contours of the averaged Husimi func-
tion calculated as described in the text superimposed on a rep-
resentation of the classical repeller. Twenty resonance states
on each side of E = 1.8Es were included. The points which
represent the classical repeller on the SOS have been kernel
smoothed which, in essence, assigns a local density of points
and then colors that section of the plot accordingly [3] - com-
pare to Fig. 1. The color scale runs from white through light
grey (yellow and light blue online) to dark grey (dark blue on-
line) and represents the density from low to high accordingly.

puted by fixing x = 0 and computing the conjugate mo-
mentum px using the classical Hamiltonian at energy E.
Because the boundary of the classically allowed region
itself changes with energy this procedure is not entirely
satisfactory when computing an average Husimi QSOS.
However, provided that the energy range is kept suffi-
ciently small the errors so introduced are expected to be
minimal and this was verified by direct computation.

Figure 3 shows a typical example of a QSOS computed
in this way. The averaged Husimi distribution is clearly
localized on the fractal repeller sets K+ and K− which
are also shown in the figure. However, this tendency for
the Husimi to coagulate onto the repeller is mitigated by
the relatively large value of ~ = 1 used in constructing
the figure. The Husimi distribution is somewhat delocal-
ized over the repeller and does not precisely follow the
contours of the fine scale classical structures. It is also
apparent in Fig. 3 that the quantum density builds up
close to the saddle point. The reason for this is that the
quantum particle senses the presence of classical turn-
ing points in the complex plane and, therefore, slows
down which leads to a build-up in probability density in
the vicinity of the saddle point. This is consistent with
the recent findings of Keating et al. who note that for
longer living states, the long lifetime allows interference
and diffraction effects to accumulate thereby washing out
the fractal structure to some extent [11].

In summary: the fractal Weyl law was found to hold in
an open Hamiltonian system. Despite working far from

the asymptotic limit ~ → 0 the resonance energies man-
ifested clear fractal behavior and averaged Husimi dis-
tributions reflected rather faithfully the structure of the
classical repeller.
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