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Abstract. The detection sensitivity (DS) of the commercial single-photon-receiver

based on InGaAs gate-mode avalanche photodiode is estimated. Instalment of a digital-

blanking-system (DBS) to reduce dark current makes the difference between DS, which

is an efficiency of the detector during its open-gate/active state, and the total/overall

detection efficiency (DE). By numerical simulations, it is found that the average

number of light-pulses, blanked by DBS, following a registered pulse is 0.333. DS

is estimated at 0.216, which can be used for estimating DE for an arbitrary photon

arriving rate and a gating frequency of the receiver.
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1. Introduction

The emergence of a commercial single-photon-receiver (SPR) would help reduce

development time to integrate quantum key distribution (QKD) system. Since QKD[1]

was firstly experimentally demonstrated[2], tremendous efforts have continued towards

QKD’s further performance improvements[3]. Many efforts have been dedicated to

the development of two essential devices which constitutes QKD, i.e., single-photon-

emitters[4, 5, 6] and SPRs[7, 11, 12, 13, 8, 14, 15, 16, 17, 9, 10]. For current QKD

systems under development, almost all of the performances depend on those of SPRs.

This is because the single-photon-emitters, the other essential device, have normally

been implemented by attenuated commercial lasers. The performances of them have

been completely characterised already, meaning that there is no room to improve. The

commercial SPR of Princeton Lightwave[18], for example, is a highly integrated one.

This SPR features not only high detection efficiencies, DEs, at telecom wavelengths and

low dark count probabilities but also a digital-blanking system (DBS) to dramatically

reduce the effect of afterpulsing on dark count.

It should be noted, however, that the given DE does not clarify about some intrinsic

figure-of-merit of the SPR concerning its sensitivity to incident single-photons. We

should have a figure-of-merit of how sensitive the SPR in its open-gate state is (which

will be designated as a detection sensitivity, DS, hereafter) while the given DE is

simply a ratio of the number of registration to that of all incident light-pulses. The

verbal definitions of these two figures follow:

DE ≡
How many light-pulses are registered

How many light-pulses hit the detector
, (1)

DS ≡
How many light-pulses are registered

How many light-pulses hit the detector in open-gate status
. (2)

Thanks to the DBS, a designated number of bias pulses for gating the detector

are neglected once a registration occurs. In this paper, DS of the commercial SPR[18]

is estimated. DS is helpful to estimate the photon registration number for various

operation conditions while DE is helpful only for a set of conditions to give the DE.

DS should be defined as a ratio of the number of registrations to that of light-pules

which hit the detector in open-gate status (Eq.(2)). Such number of light-pulses is to

be estimated by subtracting the number of light-pulses blanked by DBS, NB, from all

incident ones. The NB will be numerically estimated as below.

2. Method

DS can be derived using one experimental data and the number of light-pulses blanked

by DBS. Eq.(2) is expressed as,

DS =
NG

NA + NG

(3)

=
NG

(NA + NG + NB) − NB

, (4)
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where NG and NA designate the numbers per second of how many light-pulses are

registered, how many light-pulses hit the detector in gate-open status but are not

registered due to detector’s poor sensitiveness as a whole, respectively. The relations

among NG,NA, and NB are illustrated in FIG 1. We use an experimental data given by
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Figure 1. NA, NB, and NG in the text refer to the numbers per second of incidents

denoted by A, B, and G.

the manufacturer[19] for NG in the numerator in Eq.(4).

NB is calculated under the following experimental conditions: the light-pulse

arriving rate, NT = 250 × 103 s−1, the mean number of photons per pulse, µ = 0.1,

the triggering rate of the detector, NTR = 500× 103 s−1, the number of gatings blanked

by DBS, BL = 6. The simulation is conducted according to the following 3 steps. All

figures below are those for one second.

(i) Distribute 25000 (= NT · µ × 1 s ≡ N0) incident single-photons randomly over

250000 (= NT ×1 s) time-bins. The specific procedure is to take a random number

between 1 to 250000, for each of 25000 figures. Then, arrange the 25000 figures in

ascending order of their associated random numbers. The random numbers mean

the occupied time-bins.

(ii) Estimate how many light-pulses in average, designated as NB,AV G, are found sitting

in the consecutive 3 blanked bins following the time-bin which is actually registered.

To do this, choose randomly an occupied time-bin and count up the number of

photon-pulses in the blanked bins, resulting in NB,AV G. Repeat this procedure

until NB,AV G reaches some asymptotic number. The reason why the number of

blanked bins is not 6 (= BL) but 3 comes from the fact that the triggering rate,

NTR, is twice faster than the light-pulse arriving rate, NT . Blanking 6 time-bins

only means blanking 3 pulses.

(iii) NB is given by multiplying an experimental data value of NG by NB,AV G.
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Table 1. Results of the numerical simulation of Np and the resultant DE for several

specific combinations of the photon arrival rate and the detector triggering rate. The

mean photon number and the DBS number are fixed at 0.1 and 6, respectively.

(NT , NTR) N0 Nbin Ndist Np DE

(100 MHz,5 MHz) 500 × 103s−1 5 × 106s−1 500 × 103s−1 296 × 103s−1 0.128

(2.5,5) 250 × 103 5 × 106 250 × 103 183 × 103 0.158

(1.25,5) 125 × 103 5 × 106 125 × 103 106 × 103 0.183

(0.625,5) 62.5 × 103 5 × 106 62.5 × 103 59 × 103 0.204

(100,2.5) 250 × 103 2.5 × 106 250 × 103 153 × 103 0.132

(1.25,2.5) 125 × 103 2.5 × 106 125 × 103 93 × 103 0.161

(0.625,2.5) 62.5 × 103 2.5 × 106 62.5 × 103 52 × 103 0.180

3. Result

Numerical simulations of NB,AV G results in 0.333 s−1. With Eq.(4), DS is estimated at

0.216 as follows:

DS =
NG

(NA + NB + NG) − NG × NB,AV G

(5)

=
5033

25000 − 5033 × 0.333
= 0.216 , (6)

where NG = 5033 s−1[19] and NA + NB + NG ≡ N0.

DE for an arbitrary combination of the light-pulse arriving rate, the triggering

rate, the mean photon number per pulse, and DBS number, (NT , NTR, µ, B), can be

estimated using the constant value of DS. The numerator in the definition of DE in

Eq.(1) is decomposed as

DE ≡
Np × DS

N0

. (7)

, where Np designates the quantity of how many photons could be registered at the

maximum. For N0,

N0 =

{

NTR × µ (NT ≥ NTR)

NT × µ (NT ≤ NTR)
(8)

For Np, numerical simulations for µ = 0.1 and BL = 6 will be done as follows: Distribute

incident light-pulses, Ndist (=N0), randomly over the time-bins, Nbin (=NTR), resulting

in identifying occupied bins. Then, count up how many occupied bins can be chosen at

the maximum so that if you choose an occupied bin it is not allowed to count up any

occupied bins sitting in 6 time-bins following the chosen occupied bin to meet BL = 6.

Simulated results of Np and DE for several sets of (NT , NTR) are summarised in

Table 1 and Figure 2.

For a fixed triggering rate of the detector, Np do not decrease so rapidly as N0,

leading to the increase in DE.
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Figure 2. Plots of Detection Efficiency, DE, for several combinations of light-pulse

arriving rate, NT , and triggering rate of the detector, NTR, under µ = 0.1 and BL = 6.

DE increases with increasing NTR as long as NT ≤ NTR, reflecting decreasing in the

probability of a distributed photon being found sitting in the blanked time-bins with

increasing total time-bins. DE increases with decreasing NT for either NTR, reflecting

decreasing in the probability of a distributed photon being blanked due to the sparse

distribution.

4. Discussions

By estimating the effect of blanking on the number of photon detection registration, DS

of the detector is derived under the condition that dark count events are all neglected.

We established a method to derive DS, which is more suitable figure-of-merit to

characterise device parameters of SPADs.

The estimation shows that 0.333 light-pulse is in fact blanked by DBS in average.

This correction might look negligible in experiments. The importance of the figure,

however, does not lie in its magnitude but in that it enables us to derive the significant

performance characteristic intrinsic to the specific detector.

The intrinsic DS value enables us to estimate detection efficiencies, DE, under

arbitrary combinations of operation parameters, i.e., NT , NTG, µ, BL. For a fixed NT ,

DE increases with increasing NTR. This is because the probability of a distributed

light-pulse being sitting in the 6 time-bins (=blanked bins) following a registered pulse

decreases with increasing triggering rate as the triggering rate means the number of

time-bins. For a fixed NTG, DE increases with decreasing NT . This is because the

probability of a distributed light-pulse being sitting in the blanked bins decreases faster

than the decrease in the total number of distributed light-pulses. The discrepancy in

decreasing speed of the two quantities depends on the number of DBS setting.

In the development of optical communications systems using single photon

detectors, it is crucial to know in prior how many photons will be registered under
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the perfect operation condition. DS enables us to do this. For example, applying

DS = 0.216 to our experimental configurations: NTR = 5×106 s−1 and NT = 100×106

s−1, the total photon count for a single photon stream is estimated at 64800 s−1

(=Np × DS). This figure is helpful in the respect of system optimization because it

gives the maximum number of photon registration achievable in the configurations.

Throughout all the calculations in this paper including the derivation of DS and

the estimation of DE, the dark count event is neglected for simplicity. The legitimacy

of this approximation is able to be checked in experiments using a single photon emitter

implemented by an attenuated laser.

Even if the general characteristic of DE associated with the specific detector under

various operation conditions would be successfully verified experimentally, a potential

future research is to evaluate DS and DE more precisely with more elaborate simulation

model including dark count events.
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