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Abstract. Using a survey of wrist-watch synchronization from a randomly
selected group of independent volunteers, we model the system as a Kuramoto-
type coupled oscillator network. Based on the phase data both the order
parameter and likely size of the coupling is derived and the possibilities for similar
research to deduce topology from dynamics are discussed.
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1. Introduction

One of the most pressing problems in complex systems and science of complex networks
is the relationship between network topology and the dynamics which operate over the
network topology over time. For one, the growth and development of the topology and
dynamics, while undoubtedly linked, usually occur on vastly separated timescales with
fluctuations of the internal dynamics changing rapidly over short timescales, though
perhaps with long-term trends, and with the topology often growing and developing
over timescales much longer than those influenced by the key dynamic drivers. The
complete answer to this question is still unresolved.

One of the most promising avenues for investigating the relationship between
topology and dynamics is the synthesis of complex network topologies with network
oscillator synchronization models such as those based on the well-studied Kuramoto
coupled oscillator mean-field models. The model’s basic development is well chronicled
by Strogatz in [1] from Winfree’s first mathematical exposition to the work by
Kuramoto on the dominant model of collective synchronization. In a series of papers,
[2, 3, 4, 5] Kuramoto developed a mean-field solution for a system of all-to-all coupled
oscillators coupled according to the relation

θ̇i = ωi +
K

N

N
∑

j=1

sin(θj − θi), i = 1 . . .N (1)

coupled through a global coupling strength K. What was realized that by
increasing K past a critical threshold, Kc, the oscillators began to exhibit collective
synchronization and oscillate in phase. The phase synchronization of the oscillators is
measured by the order parameter, r,

reiψ =
1

N

N
∑

j=1

eiθj (2)

where θi is the phase of ith oscillator and ψ is the average phase among all the
oscillators. In the model, the synchronization is represented by r = 0 for K < Kc and
r > 0 for K ≥ Kc.

The development and analysis of the Kuramoto model usually follows an
exposition of the synchronization dynamics of the oscillators using theoretical
argument or simulations. A particular focus is the value of Kc or a plot of r vs. K,
under various conditions such as scale-free network topologies [6] or modified dynamics.
For a review see [7].

In this paper, the reverse approach will be investigated, in particular, using real-
world data from a hypothesized oscillator network to back out characteristics of the
network coupling, and hopefully, structure.

2. System description & experimental setup

In modern society, we take it for granted that everyone knows how to be on time.
With the availability of inexpensive, portable, and relatively accurate timepieces
such as watches and increasingly cell phones and PDAs, the fact that everyone’s
watch is “synchronized to a certain extent is of seemingly trivial interest. However,
historically it has not always been so and even though clocks have existed for centuries,
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modern standard times and time zones only emerged with the advances of long-
range telecommunications and transportation in the 19th century. It can be readily
acknowledged that there are “references that time can be based on. Accurate time
measurements can originate from organizations such as NIST and its broadcasts on
5000 kHz and other related frequencies. However, this is rarely directly accessed by the
average person. In addition, the rise of cell phones, which often have their time beamed
from the cell-tower’s synchronized clock, also helps provide accuracy. However, despite
these it is the author’s contention that much of the synchronization of timepieces to
such close precision is due to a coordination among multiple independent actors who
realize that a valuable social consensus “being on time is important and is largely a
relative measurement.

In order to see if this coordination could be measured as a real effect and related
to synchronized dynamics, the author performed a survey experiment to measure the
synchronization amongst watches for a group of random and independent people.
On September 19, 2009 the author set up a survey booth for five hours at the
Rochester Public Market in Rochester, NY. The Rochester Public Market is a large and
popular open air market selling produce and crafts that is held weekly on Saturdays in
Rochester and allowed an easily accessible and random group of strangers. From the
survey booth, the author solicited volunteers for a quick experiment. With a laptop
and web camera setup, the author quickly explained the goals of the experiment and
invited the volunteer to allow his or her watch to have its face captured by the web
camera. As mentioned earlier, cell phones were not deemed acceptable since they are
automatically synchronized.

The web camera created a JPEG image file which had an exact timestamp
recording the time of the picture capture. Once the survey had ended, the time on the
face of the watch and its deviation, positive or negative, from the hour and minute on
the file timestep was recorded with a precision of ± 1 minute. This deviation is the
phase difference between the watch and the clock and the collected phase differences
amongst all the watches is used to investigate the synchronization of the network. The
watches are all assumed to be oscillators with an identical frequency ω = 2π

60
.

It was determined that using the most general model, the Kuramoto model, the
mean coupling of the hypothesized oscillator network could be derived to give a general
idea of the strength of coupling in the watch synchronization network.

3. Calculations and results

A total of N = 35 people volunteered for the experiment. A larger sample size was
made difficult due to the surprising absence of wrist-watches amongst many solicited
volunteers (everyone uses cell phones) and the reticence of others to participate. The
distribution of the deviations by minute from the computer clock time are shown in
figure 2. The error of each measurement is assumed to be ±1. In order to test for
the confidence of the mean and variance of the measurements in the sample versus
the hypothetical population, the mean and its 95% confidence interval were calculated
using a 1000 sample bootstrap and a two-sided t-statistic with df=34. The bootstrap
mean phase was -0.13, a bias of 0.01 versus the sample mean and the standard error
was 0.001 so the 95% confidence interval of the mean phase is -0.124 to -0.128. This
range is below the phase difference for the one minute error uncertainty of 0.16 and
shows that the sample is likely a close representation of the whole population. To
estimate the standard deviation a simple jacknife procedure was used. The sample
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Figure 1. The count (not proportional) phase density plot of the measurements
of watch time phase difference from the computer timestamp as measured in the
experiment.
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Figure 2. The distribution of the mean phase from a 1000 sample bootstrap.

standard deviation was 0.25 while the jacknife standard deviation returned 0.24 with
a standard deviation of this estimate being 0.006. Given the normality of the original
data, these tight estimates give us a reasonably reliable confidence that the phase
distribution is close to that of the population the sample was drawn from.

Next, the order parameter, r, was calculated and given the propagation of the
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Figure 3. The plot whose slope = −K used to determine the Kuramoto coupling

parameter. x are the values of ∂
∂θ

[

ρ
∫

2π

0
sin(θ

′

− θ)ρ(θ
′

, t, 0)dθ
′

] while y are the

values of ω ∂ρ

∂θ

measurement error r was determined to be 0.97 ± 0.02. Next the mean coupling
was derived assuming that the measurements represented a sample of an infinite-N
Kuramoto coupled oscillator network with a phase density, ρ where

∫

2π

0

ρ(θ, t, ω)dθ = 1 (3)

A continuity equation between ρ and the instantaneous velocity of the oscillators
v is given by

∂ρ

∂t
= −

∂

∂θ
(ρv) (4)

Strogatz and Mirollo determined in [8, 9] the relationship between the phase
density and the oscillator frequency distribution g(ω) can be given by

∂ρ

∂t
= −

∂

∂θ

[

ρ

(

ω+K

∫

2π

0

∫

∞

−∞

sin(θ
′

−θ)ρ(θ
′

, t, ω
′

)g(ω
′

)dω
′

dθ
′

)]

(5)

Since all the oscillators have the same frequency, g(ω) can be modeled by a Dirac
delta distribution δω − ω0 and the equation changes to

∂ρ

∂t
= −

∂

∂θ

[

ρ

(

ω+K

∫

2π

0

∫

∞

−∞

sin(θ
′

−θ)ρ(θ
′

, t, ω
′

)δ(ω
′

−ω0)dω
′

dθ
′

)]

(6)

Integrating the delta distribution we simplify to

0 = −
∂

∂θ

[

ρ

(

ω +K

∫

2π

0

sin(θ
′

− θ)ρ(θ
′

, t, 0))dθ
′

)]

(7)
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And finally

ω
∂ρ

∂θ
= −K

∂

∂θ

(

ρ

∫

2π

0

sin(θ
′

− θ)ρ(θ
′

, t, 0)dθ
′

)

(8)

From this final equation we can then use the data collected to determine the phase
density and to calculate the derivatives and integrals by differences or summations
over multiple 1 minute (2π

60
) phase steps. Finally by plotting the derivative on the

left and the expression on the right, we get a curve whose slope is equal to −K. In
figure 3 the quantities are plotted using the phase data derived from the experimental
observations. The value of K is estimated at 0.36 with an R2 of 0.37 and a 95%
confidence interval of [0.24,0.49]. This estimated K combined with the calculated r

compares favorably for example with numerical simulations of r and K on scale-free
networks [6] where r = 0.97 at approximate K ≈ 0.4. In addition for a Dirac delta
distribution, the calculation of Kc

Kc =
2

πg(0)
(9)

gives a result of Kc = 0 so any amount of coupling would lead to a collective
synchronization in the watch network.

4. Discussion

The Kuramoto model is the simplest model of oscillator networks with no direct regard
to complex topologies. In more complex networks, the network of interactions does
matter and can affect the speed of the onset of synchronization stability as well as
the critical coupling and behavior near the critical coupling point [7]. In order to
move beyond using dynamics to derive a value for the coupling under the Kuramoto
model, it would be necessary to demonstrate deviations in the obtained data from
‘ideal Kuramoto behavior under the constraints defined for the system. However, this
is more easily done by being able to view networks at various states of synchronization
and coupling rather than network dynamics already at steady state as shown in this
paper. In particular, observing the onset of the critical coupling in a real network and
comparing it to its Kuramoto ideal can allow you to extract valuable information such
as the index eigenvalue which can provide an bounds on the diameter of the network
following spectral graph theory.

Unfortunately, such rich data was not available in this study and thus only a
tentative measure of the Kuramoto coupling was established. In the future, the hope
is that detailed measures of network synchronization over time, for example in power
grids, neurons, or organisms, can allow us to derive a rough idea of the topology
of interaction amongst the given components. With this information, deductive
reasoning can be employed to link the likely structure with function and interaction
mechanisms. Thus the loop will be closed and a key question about the interactions
of topology and dynamics will bear fruit.
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