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Abstract. This article is a local analysis of integrable GL(2)-structures of

degree 4. A GL(2)-structure of degree n corresponds to a distribution of ratio-
nal normal cones over a manifold of dimension n+1. Integrability corresponds

to the existence of many submanifolds that are spanned by lines in the cones.
These GL(2)-structures are important because they naturally arise from a

certain family of second-order hyperbolic PDEs in three variables that are

integrable via hydrodynamic reduction. Familiar examples include the wave
equation, the first flow of the dKP equation, and the Boyer–Finley equation.

The main results are a structure theorem for integrable GL(2)-structures,

a classification for connected integrable GL(2)-structures, and an equivalence
between local integrable GL(2)-structures and Hessian hydrodynamic hyper-

bolic PDEs in three variables.

This yields natural geometric characterizations of the wave equation, the
first flow of the dKP equation, and several others. It also provides an intrin-

sic, coordinate-free infrastructure to describe a large class of hydrodynamic

integrable systems in three variables.
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2 A. D. SMITH

Introduction

A fundamental problem in analysis is to understand why some differential equa-
tions (particularly hyperbolic equations arising from wave-like equations or from
differential geometry) are integrable. This problem is compounded by the many
competing notions of integrability [32]. Informally, a PDE is called integrable if it
can be solved thanks to the existence of an infinite hierarchy of conservation laws
or of a family of invariant foliations along characteristics. Integrable PDEs of all
types are well-studied in two (1 + 1) independent variables; however, examples are
increasingly rare and poorly understood in higher dimensions.

A particularly interesting class of integrable PDEs are those that can be inte-
grated by decomposing the equation to a set of coupled first-order equations that
represent traveling waves [28]. This technique is called “integration by hydrody-
namic reduction,” and it has been extensively studied for various special classes of
second-order PDEs in three or more independent variables [29, 30, 13, 6, 14, 12, 11].

Consider a second-order hyperbolic equation of the form F (ξi, u, ui, uij) = 0 on
scalar functions u(ξ1, ξ2, ξ3). In the method of hydrodynamic reduction, one hopes
to integrate the PDE F = 0 by stipulating that the solution function u (and its
derivatives) may be written as u(R1, . . . , Rk) for an a priori unknown number k of
functions R1(ξ), . . . , Rk(ξ) whose derivatives admit the “commuting” relations

(1)
∂

∂ξ2
Ri = ρi2(R)

∂

∂ξ1
Ri,

∂

∂ξ3
Ri = ρi3(R)

∂

∂ξ1
Ri

which also imply

(2)
1

ρi2 − ρ
j
2

∂ρi2
∂Rj

=
1

ρi3 − ρ
j
3

∂ρi3
∂Rj

, ∀i 6= j.

Equations (1) and (2) can be solved by other methods [28]. The reduction of F = 0
to Equation (2) is called a k-parameter hydrodynamic reduction. The equation
F = 0 is called integrable via k-parameter hydrodynamic reduction if it admits an
infinite family of k-parameter hydrodynamic reductions and this family is itself
parametrized by k functions of one variable.. The functions Ri(ξ1, ξ2, ξ3) are called
Riemann invariants, and their level sets define the foliations along characteristics
in the informal definition above. See the works cited above, particularly [14], [12]
and [11], for examples and detailed exposition of this technique.

Many examples of these so-called hydrodynamic equations are known, such as
the wave equation u22 = u13, the dispersionless Kadomtsev–Petviashvili (dKP)
equation u22 = (u1−uu3)3, the first flow of the dKP equation u22 = u13− 1

2 (u33)2,
the Boyer–Finley equation u22 + u33 = eu11 , and some well-known integrable hi-
erarchies. Tests for hydrodynamic integrability also exist, but so far there is no
intrinsic, coordinate-free theory that classifies and generates all of these equations.

For the case of second-order hydrodynamic equations in three variables that
involve only the Hessian of the solution function, recent work by Ferapontov, et
al., reveals a connection between the integrability of the PDEs, the symplectic
contact symmetries of the equations, and the equations’ underlying degree-4 GL(2)-
structures [11]. Integrable GL(2)-structures are not well-known in the literature;
they arise in the search for exotic affine holonomies in differential geometry [4] and
a similar conformal geometry appears useful in the equivalence problem for ODEs
[22], but the application to PDEs is very recent [11, 24].
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The purpose of this article is to fully analyze the local geometry of integrable
GL(2)-structures of degree 4, with an eye towards understanding PDEs that are
integrable via hydrodynamic reduction. The main result is a natural classification
of local integrable GL(2)-structures and the associated PDEs. This is achieved
using the techniques of exterior differential systems and geometry à la Cartan.

Here is a summary of the contents of this article, including abbreviated and
non-technical versions of the main theorems:

Section 1 defines GL(2)-structures and their integrability. It also introduces the
motivating observation by Ferapontov et al. that hyperbolic PDEs in three variables
that are integrable by means of hydrodynamic reductions lead to integrable GL(2)-
structures.

Section 2 contains a description of the necessary SL(2) representation theory and
an explicit solution to the equivalence problem for GL(2)-structures. Corollary 2.2
defines a global canonical connection for GL(2)-structures that has essential torsion
in R3, R7, R9, and R11.

In Section 3, the exterior differential system establishing 2-integrability of a
GL(2)-structure is analyzed. The most important object in this article, the R9-
valued torsion, is first emphasized in Theorem 3.2.

Theorem 3.2. A GL(2)-structure is 2-integrable if and only if its torsion takes
values only in R9.

Section 4 provides Theorem 4.3, a complete local description of GL(2)-structures
that are both 2-integrable and 3-integrable. The immediate consequence of this
theorem is that the value of the torsion at a single point completely determines the
local structure of a 2,3-integrable GL(2)-structure.

Theorem 4.3. A GL(2)-structure is 2,3-integrable if and only if its structure equa-
tions are of the form

dω = −θ ∧ ω + T (ω ∧ ω)

dθ = −θ ∧ θ + T 2(ω ∧ ω)

dT = J(T )(ω, θ)

(3)

for an essential torsion T in R9 and a 9× 9 matrix J(T ).

Section 5 presents a classification of connected 2,3-integrable GL(2)-structures.
This classification is provided by a natural stratification of R9 into equivalence
classes that are defined by the matrix J(T ). These equivalence classes are explicitly
identified in Theorem 5.3.

Theorem 5.3. Every connected 2,3-integrable GL(2)-structure belongs to one of
55 equivalence classes, which are given by a stratification of R9 into the root fac-
torization types of real binary octic polynomials.

In Section 6, the structure equations from Section 4 are applied to reproduce the
integrable PDEs, yielding Theorem 6.3.

Theorem 6.3. Every local 2,3-integrable GL(2)-structure arises from a Hessian
hydrodynamic hyperbolic PDE.

Therefore, the classification in Theorem 5.3 is also a classification of Hessian
hydrodynamic hyperbolic PDEs. Some previously known examples of such PDEs
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are identified in the new classification, and several new integrable PDEs are con-
structed.

This work would have been impossible to complete without the uncanny speed
and accuracy of computer algebra software, and there is no sense in retyping dozens
of pages of formulas and identities. Thus, a reader looking for gory details may be
disappointed by this article (in which case I redirect the reader to [24]). However,
most proofs rely only on basic concepts from differential geometry, linear algebra,
and representation theory, and a reader comfortable with the standard methods
of exterior differential systems (and their various software implementations) can
readily supply the computational details. A Maple file containing the structure
equations appearing in Theorem 4.3 and the Maurer–Cartan form appearing in
Theorem 6.3 will remain available at [23] as long as possible. This file should also
be bundled with this article on arXiv.org. The content of this file allows rapid
reproduction of all results following Theorem 4.3.

Please note that the terms “hyperbolic” and “integrable” are heavily used in
slightly different contexts throughout this article. “Hyperbolic” refers to the maxi-
mal intersection of projective hyperplanes with projective varieties, to PDEs in both
two and three independent variables with appropriate leading symbol, and to ex-
terior differential systems with appropriate tableaux. The term “integrable” refers
both to PDEs that admit infinitely many exact solutions and to GL(2)-structures
that admit many secant submanifolds (which one might also call “hyperbolic”). Of
course, all of these concepts are intimately related, so the standard overloading of
these definitions is reasonable.

I owe many thanks to Robert Bryant and Niky Kamran for their clairvoyant
guidance and infinite support, to Dennis The for his many helpful comments, and
also to Jeanne Clelland, whose exquisite “Cartan” package for Maple made the
computations bearable.

1. Background

Let Vn denote the vector space of degree n homogeneous polynomials in x and
y with real coefficients. Identify Vn with Rn+1 using the terms from the binomial
theorem to produce a basis; for example, V4 → R5 by

(4) v−4 x
4 + v−2 4x3y + v0 6x2y2 + v2 4xy3 + v4 y

4 7→ (v−4, v−2, v0, v2, v4) ∈ R5.

Let M denote a 5-dimensional smooth manifold, and let F denote the V4-valued
co-frame bundle over M , so the fiber Fp is the set of all isomorphisms TpM → V4.
The co-frame bundle F is a principal right GL(V4) bundle.

Recall that Vn is the unique irreducible representation of sl(2) of dimension n+1,
and its action is generated by

(5) X = y
∂

∂x
, Y = −x ∂

∂y
, and H = x

∂

∂x
− y ∂

∂y
.

Definition 1.1. A GL(2)-structure B →M is a reduction of F with fiber group
GL(2) ⊂ GL(Vn) infinitesimally generated by X, Y , H, and the scaling action I.

Generally, a GL(2)-structure is said to have “degree n” if the base space M
has dimension n+1. The degree 3 case is thoroughly studied in [4], and various
observations are made for all n in [24]. This article considers only the degree 4 case.
The PGL(2) action generated by X, Y , and H is the symmetry group of a rational

http://arxiv.org/abs/0912.2789
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normal curve in P(V4). A rational normal curve is a curve of degree n in P(Rn+1), all
of which are PGL(n+ 1)-equivalent to {[gn : gn−1h : · · · : ghn−1 : gn]} [18]. The de-
projectivization of the rational normal curve is the rational normal cone, which has
a GL(2) symmetry group and is usually described as {(gn, gn−1h, . . . , ghn−1, hn)} ⊂
Rn+1. Thus, the geometric content of Definition 1.1 is contained in the following
lemma.

Lemma 1.1. A GL(2)-structure B →M5 is equivalent to a distribution of rational
normal cones C ⊂ TM . For any b ∈ Bp, b(Cp) = {(gx+ hy)4 : g, h ∈ R} ⊂ V4.

Definition 1.2 (Integrability). Let B →M be a GL(2)-structure.
A k-dimensional linear subspace E ⊂ TpM is k-secant if E ∩Cp is k distinct

lines. Equivalently, E is k-secant if E is spanned by vectors in Cp.
A k-dimensional submanifold N ⊂M is k-secant if TpN is a k-secant subspace

of TpM for every p ∈ N .
A GL(2)-structure is k-integrable if, for every k-secant linear subspace E ∈

Grk(TM), there exists a k-secant submanifold N with E = TpN .

Locally, 1-integrability is uninteresting, as it is simply the existence of a local
flow for a vector field. Since M has dimension 5, being 4-secant is an open condition
on E ∈ Gr4(TM); however, the condition is closed for k=2 (bi-secant) and k=3
(tri-secant). A GL(2)-structure that is both 2-integrable and 3-integrable is called
“2,3-integrable,” or simply “integrable.”

Notice that all the definitions are projectively invariant. Indeed, one could equiv-
alently study the principal right PGL(2) bundle over M defined by the symmetries
of rational normal curves in PTM . By considering the de-projectivized GL(2) ge-
ometry, one must occasionally observe an additional Z/2Z symmetry by ±I. For
the purposes of this article, it is easier to proceed with the affine geometry and deal
with this symmetry when it arises. In fact, GL(2)-structures of degree 4 induce
conformal geometries with signature (2, 3). The essentials of this relationship are
mentioned in [4] and [11]; it is examined in great detail in [17]. The simplicity of
SL(2) representation theory as compared to the Weyl tensor justifies the omission
of conformal geometry from this article.

The geometric content of this article is a complete local description and clas-
sification of GL(2)-structures of degree 4 that are 2,3-integrable. Such GL(2)-
structures are particularly interesting because of their deep connection to integrable
PDEs. The remainder of this section outlines how [11] obtains 2,3-integrable GL(2)-
structures from certain hydrodynamic PDEs.

1.1. Hessian Hydrodynamic Hyperbolic PDEs. The space of 1-jets over R3 →
R is J1 = {(ξi, z, pi)} where 1 ≤ i, j ≤ 3. The space of 2-jets is J2 = {(ξj , z, pi, Uij)}
where 1 ≤ i, j ≤ 3 and Uij = Uji. The contact system on J2 is

(6) J 2 = {dz − pidξi, dpi − Uijdξj}.
A second-order PDE on u : R3 → R is merely the level set F−1(0) of some smooth
function F : J2 → R on which the projection J2 → J1 is a submersion, and a
solution is a function u : R3 → R whose jet-graph is a subset of F−1(0). Recall
that a section of J2 is the jet-graph of a function if and only if it is integral to the
contact system.

For this article, consider only PDEs on u : R3 → R of the form

(7) F (u11, u12, u13, u22, u23, u33) = 0.
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Instead of considering the orbit of this PDE under all contact transformations,
consider only those contact transformations that preserve the Hessian-only form
of Equation (7). To understand these transformations and to fix notation, an
alternative system (J∇, σ) is more convenient than the traditional contact system
on J2.

Let J∇ denote gradient space, which is R6 with coordinates (ξ1, ξ2, ξ3, p1, p2, p3).
Gradient space admits the symplectic 2-form,

(8) σ = dp1 ∧ dξ1 + dp2 ∧ dξ2 + dp3 ∧ dξ3.

In each tangent space T(ξ,p)J∇, the symplectic 2-form defines a Lagrangian Grass-
mannian,

(9) Λ = {U ∈ Gr3(R6) : σ|U = 0},
and its non-vertical open subset

(10) Λo = {U ∈ Λ : dξ1 ∧ dξ2 ∧ dξ3|U 6= 0} = Sym2(R3).

The alternative version of the contact condition can now be expressed.

Lemma 1.2. Let N ⊂ J∇ be a submanifold of dimension three. Then N is locally
the gradient-graph of a function u : R3 → R such that ui = N∗(pi) if and only if
T(ξ,p)N ∈ Λo for all (ξ, p) ∈ N .

A solution to Equation (7) is a function u : R3 → R whose gradient-graph is ev-
erywhere tangent to F−1(0) ⊂ Λo. Thus, the contact transformations that preserve
the Hessian-only form of Equation (7) are elements of the conformal symplectic
group,

CSp(3) = {g ∈ GL(6,R) : σ(gv, gw) = λσ(v, w) ∀v, w} (any λ ∈ R∗)

=

{(
B C
A D

)
: 0 = AtB −BtA = DtC − CtD,λI3 = DtB − CtA

}
,

(11)

which naturally forms a bundle, Π : CSp(3)→ Λ. In fact, only the transformations
in CSp(3)o = Π−1(Λo) are permissible, as the condition dξ1 ∧ dξ2 ∧ dξ3 6= 0 must
be preserved. As above, one could eliminate the conformal factor and consider only
Sp(3)o actions by projectivizing, but there is little utility in doing so.

To be explicit, suppose U ∈ Λo, so dpi = Uijdx
j and Uij = Uji. Then

(12)

(
dx̂
dp̂

)
=

(
B C
A D

)(
dx
dp

)
.

The assumption that dx and dx̂ both have maximum rank when pulled-back to N
implies that (B+CU) is nonsingular. Moreover, Equation (12) shows that CSp(3)o

acts on Λo by

(13) g : U 7→ g(U) = (A+DU)(B + CU)−1.

Because I6 is in the fiber over 0 ∈ Λo, the projection Π : CSp(3)o → Λo can be
computed from Equation (13) as

(14) Π : g 7→ g(0) = AB−1.

The most important fact about Equation (7) is that M = F−1(0) admits a
natural GL(2)-structure whenever the PDE is hyperbolic. To be precise, one must
note some real algebraic geometry.
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Lemma 1.3. Let F : Λo → R be a smooth function, and suppose U ∈ Λo

such that F (U) = 0, dFU 6= 0, and ker(dFU ) is hyperbolic as a hyperplane in
TUΛo = Sym2(R3). Then there is an open 5-dimensional submanifold M ⊂ Λo

defined by F |M = 0 in a neighborhood of U , and M admits a distribution C of
rational normal cones. That is, M admits a GL(2)-structure.

Proof. Aside from the condition on hyperbolicity of the tangent space, the lemma
is simply a statement of the implicit function theorem. Here is an explanation of
hyperbolicity and its relation to GL(2)-structures.

The 6-dimensional manifold Λo admits an Sp(3)-invariant distribution of 3-
dimensional ‘Veronese’ cones defined by {P ∈ TΛo : rankP ≤ 1}. In the com-
plex case, it is easy to check that the intersection of a generic hyperplane with
the 3-dimensional Veronese cone produces a 2-dimensional rational normal cone in
C6 = Sym2(C3). The real case needed here requires a little detail to describe ac-
curately. Consider the intersection of a generic hyperplane with with the Veronese
cone. This intersection is given by the polynomial equation in Z1, Z2, Z3 such as

(15) a11(Z1)2 + a12Z1Z2 + a13Z1Z3 + a22(Z2)2 + a23Z2Z3 + a33(Z3)2 = 0.

Depending on the (real) coefficients aij , Equation (15) may or may not have real
solutions. If Equation (15) has real solutions, then the solution in P(R3) is a
real quadric surface. This quadric may or may not be degenerate. The existence
of real non-degenerate solutions is an open condition on the hyperplane in the
topology of Gr3(R6). If this condition is satisfied, the hyperplane defining {aij} is
called hyperbolic. The precise algebraic condition for hyperbolicity is that the real
symmetric matrix (aij) is nonsingular and has split signature [33]. A hyperbolic

hyperplane in Sym2(R3) intersects the Veronese cone in a rational normal cone,
and every rational normal cone in Sym2(R3) can be written this way [18].

In the context of the lemma, Equation (15) describes ker(dFU ), so the symmetric
matrix (aij) is precisely the leading symbol of F at U . Therefore, if U is a regular
point for the regular value 0 of F : Λo → R and if the PDE F = 0 is hyperbolic at
U , then F−1(0) admits a field of rational normal cones near U . �

The fact that every hyperbolic PDE of the form in Equation (7) admits a GL(2)-
structure would only be an algebraic curiosity, except that the integrability of the
PDE is intimately related to the 2,3-integrability of the GL(2)-structure.

Theorem 1.4 (Theorem 3 in [11]). Fix a hyperbolic PDE of the form in Equa-
tion (7) and its corresponding GL(2)-structure π : B →M . Then B is 2-integrable.
Moreover, the PDE is integrable via 3-parameter hydrodynamic reductions if and
only if B is also 3-integrable.

Theorem 1.4 as presented in [11] apparently requires that, for each 3-secant
N3 ⊂M5, the characteristic net defined by the intersection TN ∩C is a coordinate
net. According to Corollary 4.2, this requirement is redundant.

As discussed in [11], for PDEs in three independent variables, the existence of
3-parameter hydrodynamic reductions implies the existence of k-parameter hydro-
dynamic reductions for all k ≥ 3.

Corollary 1.5. F (uij) = 0 is integrable via k-parameter hydrodynamic reductions
for all k ≥ 2 if and only if the induced GL(2)-structure over F−1(0) is 2,3-integrable.
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For the remainder of this article, the term “Hessian hydrodynamic” describes
hyperbolic PDEs in three independent variables of the form in Equation (7) that
are integrable by 3-parameter hydrodynamic reduction.

2. A Canonical Connection

In this section, Cartan’s method of equivalence is applied to GL(2)-structures.
Cartan’s method of equivalence is a standard tool in the field of exterior differential
systems; it is an algorithm for canonically fixing a preferred connection among all
the possible pseudo-connections of a geometric structure [16, 20, 3]. (The distinction
between a connection and a pseudo-connection is simply whether it was obtained
canonically via such an algorithm.) The result of the algorithm is a canonical global
co-frame for the GL(2)-structure that splits into the semi-basic “tautological” form,
ω, and the vertical gl(2)-valued “connection” form, θ.

For a GL(2)-structure π : B → M , let ω denote the tautological 1-form defined
by ωb = b ◦ π∗ : TbB → V4. As always, ω is a globally-defined 1-form of maximum
rank 5 on B, and it is semi-basic, meaning ω|kerπ∗ = 0. A pseudo-connection on B
is a 1-form θ taking values in the non-trivial representation of gl(2) in gl(V4) such
that dω = −θ ∧ ω + T (ω ∧ ω) for some torsion T (b) : V4 ∧ V4 → V4.

The goal is to fix a particular θ that canonically minimizes the torsion T . To
carry out this process, one needs to understand the SL(2) representation theory on
Vn. The decomposition of the tensor product Vm ⊗ Vn into irreducible components
is

(16) Vm ⊗ Vn = V|m−n| ⊕ V|m−n|+2 ⊕ · · · ⊕ Vm+n−2 ⊕ Vm+n.

The projections onto the various components are given by the Clebsch–Gordan
[19, 4] pairings 〈·, ·〉p : Vm ⊗ Vn → Vm+n−2p, which are provided by the formula

(17) 〈u, v〉p =
1

p!

p∑
k=0

(−1)k
(
p

k

)
∂pu

∂xp−k∂yk
· ∂pv

∂xk∂yp−k
.

This pairing has some important properties. Notice that 〈u, v〉p = (−1)p 〈v, u〉p
and that the pairing is nontrivial for 0 ≤ p ≤ min{m,n}. Hence, the tensor
decomposition can be further refined in terms of the symmetric and alternating
tensors:

Vn ◦ Vn = V2n ⊕ V2n−4 ⊕ · · · ⊕ V0 or 2,

Vn ∧ Vn = V2n−2 ⊕ V2n−6 ⊕ · · · ⊕ V2 or 0.
(18)

Notice too that 〈·, ·〉n : Vn⊗Vn → V0 = R is a non-degenerate symmetric- or skew-
bilinear form. Hence, for fixed u ∈ Vn the map 〈u, ·〉n : Vn → V0 = R1 provides
a natural identification, Vn = V∗n, and one need never distinguish between dual
spaces when considering representations.

For any derivation over R[x, y], a Leibniz rule over the pairing holds. Because
SL(2) is infinitesimally generated by X, Y , and H, this means that the pairings are
SL(2)-equivariant. That is, α(〈u, v〉p) = 〈α(u), v〉p + 〈u, α(v)〉p for any α ∈ sl(2)

implies a · 〈u, v〉p = 〈a · u, a · v〉p for any a ∈ SL(2). The pairing is not GL(2)-
equivariant, but the scaling action is easily computed easily where required. The
geometric objects encountered here are projectively defined, so this variance in
scaling is of little concern.
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Most importantly, the pairing can be generalized to binary-polynomial-valued
alternating forms over a manifold. If u ∈ Γ(∧rT∗B⊗Vm) and v ∈ Γ(∧sT∗B⊗Vn),
then extend the definition by using the wedge-product:

(19) 〈u, v〉p =
1

p!

p∑
k=0

(−1)k
(
p

k

)
∂pu

∂xp−k∂yk
∧ ∂pv

∂xk∂yp−k
.

In this generalization, the symmetry of the pairing is further altered by the degree
of the forms: 〈u, v〉p = (−1)rs+p 〈v, u〉p. If λ is a RIm-valued 1-form, then λ ∧ u
may be written as the trivial pairing 〈λ, u〉0 = (−1)r 〈u, λ〉0 ∈ Γ(∧r+1T∗B ⊗ Vm).

As SL(2) representations, gl(2) = sl(2) ⊕ R = V2 ⊕ V0. Thus, a gl(2)-valued
pseudo-connection θ decomposes as (ϕ, λ) with ϕ ∈ Γ(T∗B⊗V2) and λ ∈ Γ(T∗B⊗
V0). The torsion of a generic θ is

T : B → V4 ⊗ (V∗4 ∧ V∗4 ) = (V2 ⊕ V4 ⊕ V6)⊕ (V2 ⊕ V4 ⊕ V6 ⊕ V8 ⊕ V10), so

T = (T 2
2 + T 2

4 + T 2
6 ) + (T 6

2 + T 6
4 + T 6

6 + T 6
8 + T 6

10).
(20)

In this notation, each T rn is a distinct irreducible component of T . The lower index
n indicates the weight of the representation in which T rn takes values, and the upper
index r indicates the factor from which it was obtained.

Thus, Cartan’s first structure equation for a GL(2)-structure may be written in
either vector form or polynomial form:

dω = −θ ∧ ω + T (ω ∧ ω)

= −〈ϕ, ω〉1 − 〈λ, ω〉0 +
〈
T 2
2 , 〈ω, ω〉3

〉
0

+
〈
T 2
4 , 〈ω, ω〉3

〉
1

+
〈
T 2
6 , 〈ω, ω〉3

〉
2

+
〈
T 6
2 , 〈ω, ω〉1

〉
2

+
〈
T 6
4 , 〈ω, ω〉1

〉
3

+
〈
T 6
6 , 〈ω, ω〉1

〉
4

+
〈
T 6
8 , 〈ω, ω〉1

〉
5

+
〈
T 6
10, 〈ω, ω〉1

〉
6
.

(21)

Explicitly, the connection term is

(22) θ ∧ ω =


8ϕ0 − λ −8ϕ−2 0 0 0

2ϕ2 4ϕ0 − λ −6ϕ−2 0 0
0 4ϕ2 −λ −4ϕ−2 0
0 0 6ϕ2 −4ϕ0 − λ −2ϕ−2
0 0 0 8ϕ2 −8ϕ0 − λ

 ∧

ω−4

ω−2

ω0

ω2

ω4

 ,

so the matrix representation of θ is (2ϕ−2X + 2ϕ0H + 2ϕ2Y + λI5), which takes
values in gl(2) ⊂ gl(V4).

Theorem 2.1. A generic GL(2)-structure π : B →M admits a two-dimensional
family of connections such that the essential torsion T decomposes irreducibly as

(23) T = T2 + T6 + T8 + T10 ∈ V2 ⊕ V6 ⊕ V8 ⊕ V10 ⊂ V4 ⊗ (V2 ⊕ V∗6 ).

Proof. Changes of pseudo-connection are of the form ϕ̂ = ϕ+P (ω) and λ̂ = λ+Q(ω)
where P ∈ V2 ⊗ V∗4 = V2 ⊕ V4 ⊕ V6 and Q ∈ V0 ⊗ V∗4 = V4. Canonical connections
are obtained by analyzing the exact sequence

(24)

0→ gl(2)(1) (V2 ⊕ V0)⊗ V∗4 V4 ⊗ (∧2V∗4 ) H0,2(gl(2))→ 0.

B

- -δ -

H
HH

H
HHY

P,Q

6
T

�
��

�
��*

[T ]
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For current purposes, gl(2)(1) and H0,2(gl(2)) are defined by the exactness of the
sequence [16]. To find the space of essential torsion, H0,2(gl(2)), one must compute
δP and δQ.

Fix P ∈ V2⊕V4⊕V6, where V2 3 P (ω) = 〈P2, ω〉2+〈P4, ω〉3+〈P6, ω〉4. Let δP ∈
V4⊗∧2(V4) have components δP = δP 2

2 +δP 2
4 +δP 2

6 +δP 6
2 +δP 6

4 +δP 6
6 +δP 6

8 +δP 6
10,

similar to the decomposition of T . Since these are irreducible components and the
action of δ must be SL(2)-equivariant, Schur’s lemma implies δ must preserve the
weights of the representations. In particular there must exist constants a2, a4, a6,
b2, b4, and b6 such that δP 2

2 = a2P2, δP 6
2 = b2P2, and so on. Thus,

0 = 〈P (ω), ω〉1 − δP (ω, ω)

= 〈〈P2, ω〉2 , ω〉1 + 〈〈P4, ω〉3 , ω〉1 + 〈〈P6, ω〉4 , ω〉1
− 〈a2P2, 〈w,w〉3〉0 − 〈a4P4, 〈w,w〉3〉1 − 〈a6P6, 〈w,w〉3〉2
− 〈b2P2, 〈w,w〉1〉2 − 〈b4P4, 〈w,w〉1〉3 − 〈b6P6, 〈w,w〉1〉4 .

(25)

Carrying out this computation shows that

(26) a2 =
3

10
, b2 =

1

5
, a4 =

1

2
, b4 = 0, a6 = −1

5
, b6 = − 1

20
.

Similarly, fix Q ∈ V4, where V0 3 Q(ω) = 〈Q4, ω〉4. Let δQ ∈ V4 ⊗ ∧2(V4) have
components δQ = δQ2

2 + δQ2
4 + δQ2

6 + δQ6
2 + δQ6

4 + δQ6
6 + δQ6

8 + δQ6
10, but again

the image must have the same weight as the domain. In particular there must exist
constants c4, and d4 such that

0 = 〈Q(ω), ω〉0 − δQ(ω, ω)

= 〈〈Q4, ω〉4 , ω〉0 − 〈c4Q4, 〈w,w〉3〉1 − 〈d4Q4, 〈w,w〉1〉3 .
(27)

Carrying out this computation shows that

(28) c4 = − 1

40
, d4 = − 1

160
.

Fix a generic pseudo-connection (ϕ, λ) with torsion T . Consider another pseudo-

connection ϕ̂ = ϕ+ P (ω), λ̂ = λ+Q(λ) with torsion T̂ . Then

T̂ (ω, ω) = dω + 〈ϕ̂, ω〉1 +
〈
λ̂, ω

〉
0

= dω + 〈ϕ, ω〉1 + 〈P (ω), ω〉1 − 〈Q(ω), ω〉0
= (T + δP + δQ)(ω, ω).

(29)
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Using Equation (26) and Equation (28), the absorption of torsion is dictated by
the solvability of the equations

T̂ 2
2 = T 2

2 +
3

10
P2,

T̂ 2
4 = T 2

4 +
1

2
P4 −

1

40
Q4,

T̂ 2
6 = T 2

6 −
1

5
P6,

T̂ 6
2 = T 6

2 +
1

5
P2,

T̂ 6
4 = T 6

4 −
1

160
Q4,

T̂ 6
6 = T 6

6 −
1

20
P6,

T̂ 6
8 = T 6

8 ,

T̂ 6
10 = T 6

10.

(30)

Generally, one may choose P2 to force exactly one linear combination of T̂ 6
2 and T̂ 2

2

to vanish. Similarly, one may choose P6 to force exactly one linear combination of
T̂ 6
6 and T̂ 2

6 to vanish. Unique Q4 and P4 eliminate T̂ 6
4 and T̂ 2

4 . All other components

of T̂ are fixed. Thus, gl(2)(1) = sl(2)(1) = 0 and H0,2(sl(2)) = V2⊕V4⊕V6⊕V8⊕V10,
while H0,2(gl(2)) = V2 ⊕ V6 ⊕ V8 ⊕ V10. �

Corollary 2.2 (Canonical GL(2) Connection). A GL(2)-structure B →M admits
a unique connection ϕ, λ such that B has first structure equation

dω = −〈ϕ, ω〉1 − 〈λ, ω〉0
+ 〈T2, 〈ω, ω〉1〉2 + 〈T6, 〈ω, ω〉1〉4
+ 〈T8, 〈ω, ω〉1〉5 + 〈T10, 〈ω, ω〉1〉6 .

(31)

Proof. Of the possible connections, choose the one that absorbs T 2
2 and T 2

6 . The
remaining essential torsion is T = T 6

2 + T 6
6 + T 6

8 + T 6
10. �

Henceforth, all references to θ, ϕ, λ, and T assume this connection. The spec-
ification of this connection over the others is arbitrary, but it does not affect any
subsequent theorems in this article.

3. 2-Integrability

Theorem 3.1. If a GL(2)-structure π : B →M is 2-integrable, then T = T8 (that
is, T2 = T6 = T10 = 0), and the bi-secant surfaces in M are parametrized by
two functions of one variable. Conversely, if B is a smooth GL(2)-structure with
T = T8, then B is 2-integrable.

Proof. To prove the theorem, one must find the conditions on B that allow an
arbitrary bi-secant plane E ∈ Gr2(TpM) to be extended to a bi-secant surface
N ⊂M .

In a neighborhood M ′ of p, let u : M ′ → B(M ′) be a section of π : B → M ;
that is, let u be a GL(2) co-frame on M ′ such that u(p) = b. Since E is bi-secant,
b(E) ⊂ V4 is spanned by (g1x−h1y)4 and (g2x−h2y)4 with g1h2 6= g2h1. Through a
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GL(2) frame adaptation redefining u, one may assume that b(E) = span{x4, y4} ⊂
V4. Let Ẽ denote the lift of E, so Ẽ = u∗(E) ∈ Gr2(TbB). Then ω−4 ∧ ω4|Ẽ 6= 0.

Consider the linear Pfaffian exterior differential system I differentially generated
by the 1-forms {w−2, w0, w2} with independence condition the ω−4 ∧ ω4 6= 0. It

suffices to prove the existence of a surface Ñ ⊂ B that is integral to I, because
u(π∗(TÑ)) = ωu(TÑ) = span{x4, y4} implies that the surface N = π(Ñ) ⊂ M ′ is
bi-secant. In fact, by adapting the moving co-frame u appropriately, every bi-secant
surface through E must arise this way.

The generating 2-forms of I are

(32) d

ω−2ω0

ω2

 ≡
−2ϕ2 0

0 0
0 2ϕ−2

 ∧ (ω−4
ω4

)
+

τ−2τ0
τ2

ω−4 ∧ ω4

modulo ω−2, ω0, ω2, where

τ−2 = 48 T2,−2 + 8640 T6,−2 + 322560 T8,−2 − 4838400 T10,−2

τ0 = −96 T2,0 + 23040 T6,0 − 4838400 T10,0

τ2 = 48 T2,2 + 8640 T6,2 − 322560 T8,2 − 4838400 T10,2

(33)

Because of the independence condition, integral elements exist only when the
torsion can be absorbed. The torsion component τ0 can never be absorbed, so
integral manifolds exist only when τ0 = 0. The condition of 2-integrability means
that every 2-secant plane is tangent to a 2-secant surface, but the GL(2) action is
transitive on 2-secant planes in TpM ; therefore, it must be true that τ0 = 0 for
every element in the GL(2) orbit of T . Under the GL(2) action, the coordinates of
the irreducible representations of T will change, so each irreducible representation
that appears in τ0 must vanish identically. Hence, 2-integrability of M by integral
manifolds implies

(34) T10 = T6 = T2 = 0.

The remaining torsion components, τ−2 and τ2, are absorbed by setting π1 =
2ϕ2 − 322560T8,−2 ω

4 and π2 = −2ϕ−2 − 322560T8,2 ω
−4, so

(35) d

ω−2ω0

ω2

 ≡
π1 0

0 0
0 π2

 ∧ (ω−4
ω4

)
, mod ω−2, ω0, ω2.

This proves the torsion condition in the theorem.
To establish existence of existence and parametrization of bi-secant surfaces, one

can apply Cartan’s test for involutivity to the tableau in Equation (35) [2, 20]. For
a generic flag of TpN obtained from generic linear combinations of ω−4 and ω4, the
tableau has Cartan characters s1 = 2 and s2 = 0. The space of integral elements
for the EDS (I, ω−4 ∧ ω4) is 2-dimensional, as parametrized by the coefficients

p1,4 and p3,−4 that appear in the pulled-back forms Ñ∗(π1) = p1,4Ñ
∗(ω4) and

Ñ∗(π2) = p3,−4Ñ
∗(ω−4). Therefore, if π : B →M is 2-integrable, then bi-secant

surfaces in M depend on two functions of one variable. With the Cartan characters
computed, Cartan’s test for involutivity applies, so integral surfaces for the linear
Pfaffian system exist in the real-analytic category.

More can be said by employing modern theorems regarding hyperbolic exterior
differential systems [31]. The characteristic variety of the tableau consists of two
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real points, and because a generic tableau is involutive with s1 = 2, Yang’s gener-
alization of the Cartan–Kähler theorem to smooth hyperbolic systems implies that
integral surfaces exist and are parametrized by two functions of one variable in the
smooth category [31, Theorem 1.19]. A special case of this observation is revisited
in Section 6.1. �

By restricting the torsion, Theorem 3.1 provides the necessary first-order condi-
tions for 2-integrability. Necessary second-order conditions for 2-integrability arise
by via the Bianchi identity.

Corollary 3.2. Suppose the GL(2)-structure π : B →M is 2-integrable with tor-
sion T . Let S = ∇(T ) denote the covariant derivative of T , and let Q = T ◦ T
denote the symmetric product of T . Then B has structure equations of the form

dω = −〈ϕ, ω〉1 − 〈λ, ω〉0 + 〈T, 〈ω, ω〉1〉5

dϕ = −1

2
〈ϕ,ϕ〉1 +

〈
R2

0, 〈ω, ω〉3
〉
0

+ 〈48Q4 + 42S4, 〈ω, ω〉3〉2
+ 〈45S6, 〈ω, ω〉1〉5 + 〈33S8, 〈ω, ω〉1〉6 + 〈−8Q4 − 12S4, 〈ω, ω〉1〉4

dλ = 960 〈S6, 〈ω, ω〉1〉6

(36)

for a scalar curvature function R2
0 : B → V0.

Proof. Write ∇ = d + θ for the covariant derivative on B defined by the connection
1-form (ϕ, λ). Second-order conditions for 2-integrability arise by via the Bianchi
identity, ∇(θ) ∧ ω = ∇(T (ω ∧ ω)). Curvature appears in ∇(θ), which splits into
R(ω∧ω) = dϕ+ 1

2 〈ϕ,ϕ〉1 and r(ω∧ω) = dλ. The covariant derivative of the torsion
two-form, ∇(T (ω∧ω)), expands as∇(T (ω∧ω)) = ∇(T )(ω∧ω)+2Q(T, T )(ω∧ω∧ω),
so the Bianchi identity for a GL(2)-structure is

(37) R(ω ∧ ω) + r(ω ∧ ω) = ∇(T )(ω ∧ ω) + 2Q(T, T )(ω ∧ ω ∧ ω).

Each of R, r, ∇(T ) and Q is a function on B to the appropriate vector space:

R : B → sl(2)⊗ (V∗4 ∧ V∗4 ),

r : B → R⊗ (V∗4 ∧ V∗4 ),

∇(T ) : B → H0,2(gl(2))⊗ V∗4 , and

Q : B → Sym2(H0,2(gl(2)) ∩ (V4 ⊗ ∧3V∗4 ).

(38)

Since B is 2-integrable, T takes values only in V8 ⊂ H0,2(gl(2)). Using the
Clebsch–Gordan decomposition, the irreducible components of these functions are
(omitting the domain B for brevity):

R = (R2
0 +R2

2 +R2
4) + (R6

4 +R6
6 +R6

8) ∈ V2 ⊗ (V2 ⊕ V6),

r = r2 + r6 ∈ V0 ⊗ (V2 ⊕ V6),

∇T = S4 + S6 + S8 + S10 + S12 ∈ V8 ⊗ V4, and

Q = Q4 +Q8 ∈ Sym2(V8) ∩ (V4 ⊗ (V2 ⊕ V6)).

(39)

Thus, Equation (37) and Schur’s lemma together imply linear relations among
the irreducible components listed in Equation (39). To find these relations, one can
expand Equation (37) using the Clebsch–Gordan pairing; for example, one of the
terms is
(40)
〈∇T, 〈ω, ω〉1〉5 = 〈〈S4, ω〉0 + 〈S6, ω〉1 + 〈S8, ω〉2 + 〈S10, ω〉3 + 〈S12, ω〉4 , 〈ω, ω〉1〉5 .
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The result is S10 = 0, R6
8 = 33S8, R6

6 = 45S6, r6 = 960S6, R6
4 = −12S4 − 8Q4,

R2
4 = 42S4 + 48Q4, r2 = 0, and R2

2 = 0. In particular, the only free curvature is
R2

0; all other components of R and r are functions of T and ∇(T ). �

4. 3-Integrability

Theorem 4.1. If an analytic GL(2)-structure π : B →M is 3-integrable, then tri-
secant 3-folds in M are locally parametrized by three functions of one variable.

For 3-integrable GL(2)-structures that arise from PDEs of hydrodynamic type
as in Theorem 1.4 (and are therefore also 2-integrable), this parametrization by
three functions of one variable confirms the computation presented in [11].

Proof. This theorem is proven by applying Cartan–Kähler theory to a differential
ideal whose integral manifolds are tri-secant 3-folds N ⊂ M through an arbitrary
tri-secant element E ∈ Gr3(TpM).

As in the proof of Theorem 3.1, consider a local GL(2) co-frame u such that
u(p) = b. Since E is tri-secant, b(E) is spanned by (g1x− h1y)4, (g2x− h2y)4, and
(g3x−h3y)4, distinct, but u can be adapted so that b(E) is spanned by x4, y4, and
(x+ y)4. Therefore
(41)
b(E) = {(A+B)x4 +B4x3y+B6x2y2 +B4xy3 + (B+C)y3 : A,B,C ∈ R} ⊂ V4.

Just as in Theorem 3.1, lift to Ẽ = u∗(E) ∈ Gr2(TbB), which is integral to the
linear Pfaffian system I generated by κ−2 = ω−2 − ω0 and κ2 = ω2 − ω0 with the
independence condition ω−4 ∧ ω0 ∧ ω4 6= 0. Again, the projection to M of any
integral 3-fold of I will be a tri-secant 3-fold that passes through E, and every
tri-secant 3-fold arises this way (up to a GL(2) frame adaptation).

The tableau and torsion of I are given by

(42) d

(
κ−2

κ2

)
≡
(
π1 π3 0
0 −π1 − π2 − π3 π2

)
∧

ω−4ω0

ω4

+ τ(ω, ω),

modulo κ−2, κ2, where π1 = −2ϕ2, π2 = 2ϕ−2, and π3 = 2ϕ−2 − 4ϕ0 + 4ϕ2.
The apparent torsion can be fully absorbed by redefining π̂i = πi − pi,aωa for the
parameters

p1,4 = −τ−2−4,4
p2,−4 = τ2−4,4

p3,4 = −τ−20,4

p3,−4 = −p1,−4 − τ2−4,4 − τ2−4,0
p2,4 = −p2,0 − p3,4 − p1,4 + τ20,4 = −p2,0 + τ−20,4 + τ−2−4,4 + τ20,4

p1,0 = p3,−4 − τ−2−4,4 = −p1,−4 − τ2−4,4 − τ2−4,0 − τ2−4,4.

(43)

The integral elements are still free up to arbitrary choice of three functions, p1,−4,
p2,0, and p3,0. Since the Cartan characters are s1 = 2, s2 = 1, and s3 = 0, but
s1 + 2s2 + 3s3 = 4 6= 3, the tableau is not involutive; prolongation is required.
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Let I(1) be the prolonged ideal, which is differentially generated by the forms
κ−2 and κ2 along with

η1 = π1 + p1,−4 ω
−4 − (p1,−4 + τ2−4,4 + τ2−4,0 + τ2−4,4) ω0 − τ−2−4,4 ω4,

η2 = π2 + τ2−4,4 ω
−4 + p2,0 ω

0 + (−p2,0 + τ−20,4 + τ−2−4,4 + τ20,4) ω4, and

η3 = π3 + (−p1,−4 − τ2−4,4 − τ2−4,0) ω−4 + p3,0 ω
0 +−τ−20,4 ω

4.

(44)

After this prolongation, the tableau and torsion are given by

(45) d


κ−2

κ2

η1

η2

η3

 ≡


0 0 0
0 0 0
π4 −π4 0
0 π5 −π5
−π4 π6 0

 ∧
ω−4ω0

ω4

+ τ (1)(η ∧ η),

modulo κ−2, κ2, η1, η2, η3. This tableau has Cartan characters s1 = 3, s2 = 0, and
s3 = 0. Applying Cartan’s test, s1 + 2s2 + 3s3 = 3, which matches the dimension
of V3(I(1)), so the tableau is involutive. When the apparent torsion τ (1) vanishes
or can be absorbed, then (in the analytic category) Cartan’s test for involutivity
implies that the integral 3-folds locally depend on three functions of one variable.

In fact, one can say more by analyzing the characteristic variety of the involu-
tive linear Pfaffian system presented in Equation (45). Given the highest non-zero
Cartan character, s1 = 3, it is clear that the complex characteristic variety has
dimension zero and degree three [2, Chapter V]. It is easy to verify that the charac-
teristic variety consists of three real points, so each 3-fold integral to I(1) is foliated
by three families of 2-folds integral to I(1). A special case of this fact is revisited
in Corollary 4.2. �

To determine sufficient conditions for existence of tri-secant 3-folds, one must
study the unabsorbable portion of the remaining torsion, τ (1). Because τ (1) is the
torsion of the prolonged system I(1), it will involve second-order invariants of the
GL(2)-structure B that appear in the Bianchi identity for B, Equation (37). Since
T is a priori valued in H0,2(gl(2)) = V2 ⊕V6 ⊕V8 ⊕V10, components of any of the
following functions may occur in τ (1):

R : B → V2 ⊗ (∧2V4),

r : B → V0 ⊗ (∧2V4),

∇T : B → (V2 ⊕ V6 ⊕ V8 ⊕ V10)⊗ V4,
Q : B → Sym2(V2 ⊕ V6 ⊕ V8 ⊕ V10) ∩ (V4 ⊗ ∧3V4).

(46)

The vanishing of the unabsorbable portion of τ (1) will place restrictions on the
various irreducible representations appearing in Equation (46). The enormity of
Q and ∇T makes decomposition of the unabsorbable portion of τ (1) extremely
difficult. Fortunately, one can make a simplifying assumption that is consistent
with the motivating PDE theory in Theorem 1.4; henceforth, all theorems discuss
only those GL(2)-structures that are both 2-integrable and 3-integrable.

Corollary 4.2. If B →M is a 2,3-integrable GL(2)-structure, then any tri-secant
N3 ⊂M is triply foliated by bi-secant surfaces. Moreover, the net defined by TN∩C
is a coordinate net.
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The triple foliation by bi-secant surfaces appears to be new, though it is not
surprising based on the description of highest-weight polynomial subspaces of Vn
seen in [10]. This foliation shows that the “holonomic characteristic net” condition
for tri-secant 3-folds seen in [11] is superfluous since 2-integrability is implied for
GL(2)-structures arising from Hessian hydrodynamic PDEs.

Proof. Without loss of generality in a contractible neighborhood in M , one may
apply a GL(2) change-of-frame so that TN = {Ax4 + B(x + y)4 + Cy4}. The
characteristic net, TN ∩C, is given by its tangent planes

K1 = span{(x+ y)4, y4},
K2 = span{x4, y4}, and

K3 = span{x4, (x+ y)4}.
(47)

Each of K1, K2, and K3 is clearly bi-secant. It suffices to prove that they are
everywhere tangent to the level sets of a coordinate system on N , as these level
sets will be bi-secant surfaces.

Recall that N is defined by an integral manifold Ñ of I(1) from Theorem 4.1. In
particular, each TpN is the projection of an integral element TbÑ that is defined
by the condition
(48)
E = ker({κ−2, κ2, η1, η2, η3, π4−P1(ω−4−ω0), π5−P2(ω0−ω4), π6−P1ω

−4+P3ω
0})

for parameters P1, P2, P3 that uniquely define TbÑ in Gr3(TbB).
Let Υ1 = ω−4 − ω0, Υ2 = ω0, and Υ3 = ω4 − ω0. Therefore, at each basepoint,

Ki ⊂ TpN is the projection of the plane ker(Ñ∗(Υi)) ⊂ TbÑ . One can easily

compute that d(Ñ∗(Υi)) ≡ 0 modulo Ñ∗(Υi) for each i; therefore, the Frobenius
theorem provides local coordinates (s1, s2, s3) on N such that Ki = ker(dsi). �

When B arises from a Hessian hydrodynamic PDE, these coordinates are called
the Riemann invariants of the hydrodynamic reduction.

Theorem 4.3 (2,3-integrable GL(2)-structure equations). A GL(2)-structure B is
2,3-integrable if and only if the torsion T of B only takes values in V8 and the
curvature is a function of T . In particular, every 2,3-integrable GL(2)-structure B
has the following structure equations

dω = −〈ϕ, ω〉1 − 〈λ, ω〉0 + 〈T, 〈ω, ω〉1〉5
dλ = 0

dϕ = −1

2
〈ϕ,ϕ〉1 − 2080 〈〈T, T 〉8 , 〈ω, ω〉3〉0 + 64 〈〈T, T 〉6 , 〈ω, ω〉3〉2

− 88

7
〈〈T, T 〉6 , 〈ω, ω〉1〉4 +

24

7
〈〈T, T 〉4 , 〈ω, ω〉1〉6

dT = J(T )

ωλ
ϕ


(49)

for a 9× 9 matrix-valued function J whose entries are linear and quadratic polyno-
mials in the coefficients of T , as provided in [23, 24].

Proof. 2-integrability implies that T = T8, so R, r, ∇(T ), and Q decompose as in
Equation (39) with the relations implied in Theorem 3.1. 3-integrability implies the
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vanishing of the GL(2) orbit of the unabsorbable portion of τ (1) in Equation (45).
The vanishing of τ (1) and the Bianchi identity (d2 = 0) together imply the addi-
tional relations S12 = 0, 7S8 = 24Q8 = 24 〈T, T 〉4, S6 = 0, 21S4 = 8Q4 = 8 〈T, T 〉6,
and R2

0 = −2080 〈T, T 〉8.
Therefore, the curvatures, R and r, are quadratic functions of T . The derivative

of torsion, dT , is also a quadratic function of T , as expressed in the matrix J(T ).
Hence, T is the only invariant of any order for 2,3-integrable GL(2)-structures. �

Definition 4.1. The notation (B,M, p) indicates a smooth 2,3-integrable GL(2)-
structure π : B →M such that p ∈M and such that M is connected.

The condition that M is connected is crucial in what follows, and pointedness is
technically useful.

Definition 4.2 (Representatives). (B,M, p) represents v ∈ V8 if v ∈ T (π−1(p)).
More generally, a 2,3-integrable GL(2)-structure B → M represents v ∈ V8 if
T (B) 3 v. Likewise, a Hessian hydrodynamic PDE represents v ∈ V8 if the
induced 2,3-integrable GL(2)-structure over M = F−1(0) represents v.

Corollary 4.4. For any v ∈ V8, there exists a real-analytic connected 2,3-integrable
GL(2)-structure B → M such that T (B) 3 v. That is, every v ∈ V8 is represented
by some real-analytic (B,M, p). Moreover, J has constant rank on any B.

Proof. Since the structure equations in Theorem 4.3 are closed under exterior deriv-
ative, this is a direct application of the existence part of Cartan’s structure theorem,
which is an generalization of Lie’s third fundamental theorem to the intransitive
case [7]. See Appendix A of [5] for a clear summary of the special case of Cartan’s
structure theorem needed here. As used here, Cartan’s structure theorem holds in
the smooth category; however, because T ◦ T and J(T ) are real-analytic (in fact,
linear and quadratic), one can use the Cartan–Kähler machinery to produce a local
real-analytic solution B of the structure equations. �

Corollary 4.5. (B,M, p) and (B̂, M̂ , p̂) admit a local GL(2)-equivalence f : M →
M̂ with f(p) = p̂ if and only if T (π−1(p)) ∩ T̂ (π̂−1(p̂)) 6= ∅. That is, the value
of T (Bp) uniquely defines (B,M, p) in a neighborhood of p, and this local GL(2)-
structure is real-analytic.

Proof. This is a direct application of the local uniqueness part of Cartan’s struc-
ture theorem. Again, the theorem applies here in the smooth category, but the
real-analyticity of the structure equations implies that any 2,3-integrable GL(2)-
structure is locally equivalent to the real-analytic GL(2)-structure produced in
Corollary 4.4. �

Corollaries 4.4 and 4.5 establish the primacy of T in the study 2,3-integrable
GL(2)-structures and the related PDEs. However, Corollary 4.5 provides only local
GL(2)-equivalence, so it is useful to have a weaker “chain-wise” notion of equiva-
lence that applies to global (but still connected) GL(2)-structures.

Definition 4.3 (Leaf-equivalence). (B0,M0, p0) and (Bk,Mk, pk) are said to be
leaf-equivalent if there exist finite sequences {(Bi,Mi, pi)} and {vi} with 1 ≤ i ≤
k−1 such that (Bi,Mi, pi) and (Bi+1,Mi+1, pi+1) both represent vi for 0 ≤ i ≤ k−1.



18 A. D. SMITH

Implied in the term “leaf-equivalence” is a foliation of V8 that separates all
possible (B,M, p)’s into equivalence classes by the value of T . This is justified by
the following lemma.

Lemma 4.6. The singular distribution on V8 defined by the columns of the matrix J
is integrable, providing a stratification of V8 into leaves that are submanifolds. That
is, for any v ∈ V8, there exists a unique submanifold OJ(v) such that TvOJ(v) =
range J(v).

Proof. This is actually an intermediate step of the application of the Cartan struc-
ture theorem as used in Corollaries 4.4 and 4.5. Alternatively, one can apply the
modern theory of Lie algebroids and smooth groupoids. In particular, the matrix
J defines the anchor map of a Lie algebroid over V8. This Lie algebroid is neither
regular nor transitive, but there exists an integrating groupoid over the base, V8.
This groupoid is smooth, but it may not be a Lie groupoid. However, the groupoid
is transitive when restricted to each of its orbits, OJ(v), and each orbit is a sub-
manifold of the base [9, 21, 25]. These orbits may be regarded as the leaves of a
(singular) foliation of V8 such that TvOJ(v) is spanned by the columns of J(v). �

By slight abuse of notation, if (B,M, p) represents v, then write OJ(B) to denote
OJ(v). Leaf-equivalence can now be rewritten more succinctly.

Theorem 4.7 (Leaf-equivalence). (B,M, p) and (B̂, M̂ , p̂) are leaf-equivalent if and

only if OJ(B) = OJ(B̂). Moreover, T : B → OJ(B) is a submersion.

Although T : B → OJ(B) is an open map, it need not be surjective.

5. The Classification

To classify connected 2,3-integrable GL(2)-structures is to explicitly identify the
leaves of the foliation of V8. To identify the leaves of the foliation is to identify con-
nected GL(2)-invariant submanifolds of V8 where the rank of J(v) is constant. This
is all ultimately achieved in Theorem 5.3 thanks to the observations in Lemmas 5.1
and 5.2.

Lemma 5.1. The determinant of J(v) is a scalar multiple of the discriminant of
the polynomial v ∈ V8. Therefore, J(v) is non-singular if and only if v has eight
distinct roots. Moreover, if v is a nontrivial polynomial with k distinct roots, then
the rank of J(v) is k+1.

Proof. The determinant statement is verified by computing the g.c.d. of the two
polynomials, det J(v) and disc(v), in Maple. The rank statement is directly veri-
fied by writing v = (g1x−h1y)(g2x−h2y) · · · (g8x−h8y), imposing multiplicity on
the hi’s and gi’s and computing the rank of J(v) directly (also using Maple). �

As it happens, a simple exercise in linear fractional transformations shows that
the multiplicity of the roots is preserved by the GL(2) action on V8.

Lemma 5.2. For v(x, y) ∈ V8, the multiplicity and complex type of the roots are
preserved under the GL(2,R) action.

Proof. For notational simplicity, instead consider P8, the space of polynomials of
degree at most 8 with real coefficients in the projective variable p. Recall that V8
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and P8 are isomorphic as SL(2) representations by v(x, y) 7→ f(p) = v(p, 1). For
some distinct g1, . . . , gk ∈ CP1, factor f(p) as

(50) f(p) = A

m∏
k=1

(p+ gk)rk , r1 + r2 + · · ·+ rm = 8.

Fix G =

(
α β
γ δ

)
∈ GL(2,R). Then

f(p) ·G = (γp+ δ)8A

m∏
k=1

((
αp+ β

γp+ δ

)
+ gk

)rk
= A

m∏
k=1

((α+ gkγ)p+ (β + gkδ))
rk

(51)

Hence, the root gk has been moved to S(gk) = δgk+β
γgk+α

∈ CP1. Since δα−βγ 6= 0,

S is a linear-fractional transformation. The lemma reduces to a few observations
from elementary complex analysis. Of course gk 6= gj implies S(gk) 6= S(gj), so the
number and multiplicity of roots is unchanged. Since the action is by GL(2,R),
real roots remain real. If there are complex-conjugate roots, gk = gj , then the

symmetry principle implies that their images are also complex-conjugate; S(gk) =
S(gk) = S(gj). �

Bearing in mind this lemma, notational shorthand for the root-type of a polyno-
mial v(x, y) ∈ V8 is useful: Suppose v(x, y) factors as (g1x−h1y)r1 · · · (gmx−hmy)rm

such that r1 ≥ r2 ≥ · · · ≥ rm and r1 + r2 + · · · + rm = 8. These exponents de-
fine a partition of 8 that is written as {r1, r2, . . . , rm}. If the roots gk/hk and
gk+1/hk+1 are complex-conjugate, then denote this by enclosing their exponents in
square-braces: {r1, . . . , [rk, rk+1], . . . , rm}. Denote the root-type containing v(x, y)
by [v(x, y)]. For example, [x4(x+ iy)2(x− iy)2] = {4, [2, 2]} ⊂ V8. Let {0} denote
the trivial root-type, the zero polynomial. There are 54 non-trivial root-types in
V8, as represented in Figure 1.

In Figure 1, arrows mean “closure contains.” Shaded nodes represent root-types
that contain exactly one GL(2) orbit. Oval nodes represent open root-types. The
square node represents the nearly-closed root-type, {8}, which (when 0 is included)
is the rational normal cone in V8. Hexagonal nodes represent root classes that
are neither closed nor open. Note that strictly real root-types actually have two
connected components (for example, {8} is comprised of the two ends of the rational
normal cone), but this is another artifact of the projective nature of the projective
action, as the two ends are in the same GL(2) orbit by the −I9 action.

Theorem 5.3 (Leaf-Equivalence Classes). The leaf-equivalence classes of connected
2,3-integrable GL(2)-structures are exactly the root-types in V8. That is, for all
v ∈ V8, OJ(v) = [v].

Proof. For each v, both OJ(v) and [v] are smooth submanifolds of V8, and by
Lemma 5.1 they have the same dimension. To prove that OJ(v) = [v], it suffices to
prove that TvOJ(v) = Tv[v] for all v ∈ V8.

Fix a root-type [v] and an arbitrary v ∈ [v]. Note that

TvOJ(B) = DTb(TbB) = range J(v).
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For each column Ji(v) of the matrix J(v), solve D(v) = Ji(v) for D(v), an arbitrary
tangent to [v] at v. As it happens, these equations are easily solvable at arbitrary
points in all 54 non-trivial root-types and for all columns of J . Because both the
leaf-equivalence classes and the root-types partition V8 by smooth submanifolds,
and because TvOJ(v) = Tv[v] for all v ∈ V8, the partitions must be identical.

To illustrate the computations, consider v = (gx + hy)8, where [v] = {8}. An
arbitrary element of Tv[v] looks like

(52) D(v) = 8(Gx+Hy)(gx+ hy)7 =



8Gg7

Hg7 + 7Ghg6

2Hhg6 + 6Gh2g5

3Hh2g5 + 5Gg4h3

4Gg3h4 + 4Hg4h3

5Hg3h4 + 3Gh5g2

6Hh5g2 + 2Gh6g
7Hh6g +Gh7

8Hh7


.

Therefore, one must solve D(v) = Ji(v) for G and H in each of the cases i = 1, . . . , 9.
In this case,

(53) J(v) =



0 0 0 0 0 g8 −16hg7 16g8 0
0 0 0 0 0 hg7 −14h2g6 12hg7 2g8

0 0 0 0 0 h2g6 −12h3g5 8h2g6 4hg7

0 0 0 0 0 h3g5 −10h4g4 4h3g5 6h2g6

0 0 0 0 0 h4g4 −8h5g3 0 8h3g5

0 0 0 0 0 h5g3 −6h6g2 −4h5g3 10h4g4

0 0 0 0 0 h6g2 −4h7g −8h6g2 12h5g1
3

0 0 0 0 0 h7g −2h8 −12h7g 14h6g2

0 0 0 0 0 h8 0 −16h8 16h7g


For each column Ji(v), it is easy to find the solutions G,H.

For the other root-types, the computations are similar but somewhat more com-
plicated. All that matters is the fact that they can be solved for arbitrary v. �

5.1. Symmetry Reduction. Geometrically, it is interesting to reduce all symme-
try from a structure. Fix (B,M, p) and v ∈ T (B). Let Bv = {b ∈ B : T (b) = v}.
This is a sub-bundle of B with fiber group Stab(v) ⊂ GL(2). If dim[v] ≤ 3, then
the stabilizer group is smooth; however, the stabilizer groups must be discrete for
all the larger root types. The stabilizer group, either smooth or discrete, must
always appear in the well-known list of GL(2,C)-stabilizers of polynomials [1]. In
the discrete case, the fiber must be therefore be either a cyclic group or a dihedral
group [24].

The structure equations for Bv show no dependence on T (as it has been fixed),
so a neighborhood in Bv is a local Lie group of dimension 9− dim[v], and M
is locally the symmetric space Bv/Stab(v). The relations defined by ker dT (v) =
ker J(v) determine the pull-backs of ω, λ, and ϕ to Bv, so one may explicitly reduce
Equation (49) to obtain structure equations for the local Lie group Bv.

If v = 0, then Stab(v) = GL(2), so the local flat 2,3-integrable GL(2)-structure
is the local Lie group of dimension 9 obtained by setting T = 0 in Equation (49).
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The root type {8} is a single GL(2) orbit, so any representative will generate all
representatives. Suppose v = x8. Then dT−8(x8) = λ+ 16ϕ0 and dT−6(x8) = 2ϕ2

while dTk = 0 for k > −6. Since dT is a vertical 1-form on B, the value of T only
varies in the fiber of B. The reduced structure equations are

dω−4 = 24 ϕ0 ∧ ω−4 − 8 ϕ−2 ∧ ω−2 + 2 · 322560 ω0 ∧ ω4,

dω−2 = 20 ϕ0 ∧ ω−2 − 6 ϕ−2 ∧ ω0 + 322560 ω2 ∧ ω4,

dω0 = 16 ϕ0 ∧ ω0 − 4 ϕ−2 ∧ ω2,

dω2 = 12 ϕ0 ∧ ω2 − 2 ϕ−2 ∧ ω4,

dω4 = 8 ϕ0 ∧ ω4,

dϕ0 = 0, dϕ−2 = 4 ϕ0 ∧ ϕ−2.

(54)

These equations can be easily integrated, so Bx8

has coordinates ξ−4, ξ−2, ξ0, ξ2,
ξ4, a, and b such that

ϕ0 = a−1 da

ϕ−2 = a4 db,

ω4 = a8 dξ4,

ω2 = a12
(
dξ2 − 2b dξ4

)
,

ω0 = a16
(
dξ0 − 4b dξ2 + 4b2 dξ4

)
,

ω−2 = a20
(
dξ−2 − 6b dξ0 + 12b2 dξ2 − 8b3 dξ4 − 322560ξ4 dξ2

)
,

ω−4 = a24
(
dξ−4 − 8b dξ−2 + 24b2 dξ0 − 32b3 dξ2 + 16b4 dξ4+

8(322560)ξ4b dξ2 − 2(322560)ξ4 dξ0
)
.

(55)

The field of rational normal cones can now be written in these local coordinates,
since Cp = {〈up(v), up(v)〉2 : v ∈ TpM} for a local section u of B.

Each of the 3-dimensional root-types is a single GL(2)-orbit. Again, T (B) = [v]
for any v in the root-type, so an arbitrary representative v may be chosen for any
(B,M, p). Each v has a 1-dimensional stabilizer, which is a Lie subgroup of GL(2).
The corresponding Lie algebras are easy to compute [24, 1]. In all cases, dT has
both vertical and semi-basic components, so the embedding of the stabilizer fiber
group varies over M . The reduced structure Bv is a 6-dimensional Lie group.

If dim[v] = 4, then Bv is a finite cover of M , but there are only eight such
structures, since each root-type with three roots is a single GL(2)-orbit. This
contrasts with the case dim[v] ≥ 5. If dim[v] ≥ 5, then Bv is a finite cover of
M , but there is no reason to believe that T (B) ⊂ [v] implies T (B) = [v] when
dim[v] ≥ 5. Consider [v] = {2, 2, 2, 2}. The quotient space {2, 2, 2, 2}/GL(2) has
orbifold singularities; for example, the point x2y2(x + y)2(x − y)2 has an eight-
element stabilizer group, but all nearby points have trivial stabilizer groups. The
existence of these orbifold singularities implies that there cannot be a surjective
smooth map M → [v]/GL(2). If T (B) is a proper subset of [v] for all B representing
v, then (trivially by the definition of [v]) a finite sequence of 2,3-integrable GL(2)-
structures connects any two points in the leaf, but infinitely many locally distinct
GL(2)-structures are required to cover the entire leaf. This behavior is closely
related to the topology of CPn with k marked points, up to GL(2,C) action, which
is a difficult and well-known problem in complex algebraic geometry. The real case
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encountered here is both harder and less well-known than the classical complex
case. The most relevant result is [8], which shows that the orbifold singularities
present in the larger leaves of V8 are so bad that they preclude the existence of
Riemannian metrics on the leaves.

In the open case, dim[v] = 9, so J(T ) has maximum rank, and T itself provides
local coordinates on B.

6. GL(2) PDEs

This section contains various conclusions regarding Hessian hydrodynamic PDEs
that can be inferred from Theorem 1.4 and Theorem 5.3. Recall that a PDE F = 0
is said to have k symmetries if the Lie algebra of point symmetries of F−1(0) has
dimension k.

Lemma 6.1. A Hessian hydrodynamic PDE F (uij) = 0 representing v ∈ V8 has k
symmetries if and only if dim[v] = 9− k.

Proof. The contact transformations by CSp(3) induce the local automorphisms on
B, but an automorphism ϕ : B → B near b is a symmetry if and only if the structure
equations are preserved by ϕ∗. This can happen if and only if T (b) is preserved
near ϕ(b). In particular, ϕ∗(dT ) = dT if and only if ϕ∗ is the identity on the range
of dT , which has dimension dim[v]. �

Corollary 6.2. There is no Hessian hydrodynamic PDE with exactly eight sym-
metries.

Proof. There is no root-type of dimension one. �

The classification provides even more bountiful information about the Hessian
hydrodynamic PDEs, because Theorem 4.3 allows a converse of Theorem 1.4.

Theorem 6.3. Every (B,M, p) is realized, locally near p, by a hydrodynamic PDE
of Hessian type.

Proof. The structure (B,M, p) is realized, locally near p, by a Hessian hydrody-
namic PDE as in Section 1 if and only if there exists a neighborhood M ′ ⊂M of p
and an embedding i : M ′ → Λo such that the distribution of rational-normal cones
i∗(C(M ′)) over i(M ′) is fixed by the fiber action of the bundle Π : CSp(3)o → Λo.

Since the fibers B are exactly the symmetries of C, it suffices to establish a
bundle immersion h : B(M ′)→ CSp(3)o covering an embedding i : M ′ → Λo.

Let µ denote the Maurer–Cartan form of CSp(3), which is of the form

(56) µ =

(
β γ
α −βt

)
, α = αt, γ = γt.

(One may assume that the conformal scaling has been incorporated into β, as it is
below.)

Recall the Fundamental Lemma of Lie Groups [20, Theorem 1.6.10]: If there
exists η : TB → csp(3) such that dη + η ∧ η = 0, then for any b ∈ B, there exists a
neighborhood B′ of b and a map h : B′ → CSp(3) such that h∗(µ) = η. Moreover,
if h∗(α) is semi-basic, then the fibers of B′ immerse into the fibers of CSp(3).

Therefore, it suffices to construct an csp(3)-valued Maurer–Cartan form η on B
such that the component h∗(α) is semi-basic on B. For brevity, the pull-backs h∗(·)
are dropped from the notation henceforth.
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The condition that α is semi-basic is that αij = Aijaω
a. Note that α : V4 →

Sym2(R3) = Sym2(V2), and recall that for u, v ∈ V2 the symmetric tensor is given
by
(57)u−2u0

v2

 ◦
v−2v0
v2

 =
1

2

u−2v−2 + v−2u−2 u−2v0 + v−2u0 u−2v2 + v−2u2

u0v−2 + v0u−2 u0v0 + v0u0 u0v2 + v0u2

u2v−2 + v2u−2 u2v0 + v2u0 u2v2 + v2u2

 .

Therefore, to respect the weights in the GL(2) representation, α must have the
following form for constants A−4, A−2, A0, A′0, A2, and A4:

(58) α =

A−4 ω−4 A−2 ω
−2 A0 ω

0

A−2 ω
−2 A′0 ω

0 A2 ω
2

A0 ω
0 A0 ω

2 A4 ω
4

 .

Writing β = βϕ(ϕ) + βλ(λ) + βT (ω), it is apparent that βϕ must be the repre-

sentation sl(2) → M3×3(R) such that the natural action of M3×3(R) on Sym2(V2)
is induced by the natural action of sl(2) on ω ∈ V4. One can now easily verify the
following formulas:

α =

ω−4 ω−2 ω0

ω−2 ω0 ω2

ω0 ω2 ω4

 ,

β =

 4ϕ0 2ϕ2 0
−4ϕ−2 0 4ϕ2

0 −2ϕ−2 −4ϕ0

− 1

2
λI3 + βT (ω).

(59)

Here, the− 1
2λI3 component of β is simply the scaling action ofGL(2) as represented

by the scaling action in CSp(3). If PGL(2) and Sp(3) were used instead, it would
not appear.

All that remains is to find βT and γ such that dη + η ∧ η = 0. This is merely
arithmetic, and solutions exist. The simplest η (the one where the undetermined
coefficients in βT are set to 0) is provided in [23]. �

Theorem 6.3 allows explicit construction of several of the most-symmetric Hes-
sian hydrodynamic PDEs. Each of the root-types with three or fewer roots is itself
closed under GL(2); hence, the torsion of any GL(2)-structure covers the entire
root-type. This allows a first step at constructing all Hessian hydrodynamic PDEs.
However, Theorem 6.3 does not say that there are only 55 Hessian hydrodynamic
PDEs up to CSp(3) actions. There is no reason to believe that the torsion map
T : B → V8 is surjective for the larger root-types. When T fails to be surjective,
there cannot be a single PDE that represents all possible torsions in its root-type.
None-the-less, the leaves of dimension at most 4 can be used to fully describe the
most symmetric Hessian hydrodynamic PDEs, as in the following theorems.

Theorem 6.4. The root-type {0} is represented by the wave equation,

(60) u22 = u13

and this representation is unique up to CSp(3). Therefore, the wave equation is the
unique Hessian hydrodynamic PDE with nine symmetries.
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Theorem 6.5. The root-type {8} is represented by the first flow of the dKP equa-
tion,

(61) u22 = u13 −
1

2
(u33)2

and this representation is unique up to CSp(3). Therefore, the first flow of the dKP
equation is the unique hydrodynamic PDE with seven symmetries.

Theorem 6.6. The root-type {7, 1} is represented by the PDE

(62) u22 = u13 −
1

48
u33 +

1

2
u33u23

and this representation is unique up to CSp(3).

Theorem 6.7. The root-type {6, 2} is represented by the PDE

(63) u22 = u13 +
7 u23

5u33 − 14

and this representation is unique up to CSp(3).

Theorem 6.8. The root-type {6, 1, 1} is represented by the PDE
(64)

u22 = u13 +
7u23 (u23 − u33)

(5u33 − 14)
+

49(−(u33)2 + 14u33 − 28)

12(5u33 − 14)
− 49

6

(
−(5u33 − 14)

14

)2/5

and this representation is unique up to CSp(3).

Theorems 6.4 through 6.8 are proven via the same technique. For illustration,
consider the simplest non-trivial case, Theorem 6.5.

Proof. Consider a 2,3-integrable GL(2)-structure π : B →M with T (b) = x8 1
322560 ,

so [T (B)] = {8}. The constant is chosen for the aesthetic appeal of the result-
ing PDE. The goal is to describe Theorem 6.3’s embedded hyper-surface i(M ′) =
{Π(h(q)) ∈ Λo : q near b} as the locus of a single equation F (U) = 0.

As CSp(3)o is a matrix group, the open set {g = h(q) : q near b} can be described
as {expI(ηb(v)) : v ∈ TbB}. Moreover, only v ∈ ker(ϕ, λ) need be considered,
since the fibers of π : B →M immerse into the fibers of Π : CSp(3)o → Λo Fix an
arbitrary v ∈ ker(ϕ, λ) ⊂ TbB and write v in components using the tautological
1-form, v ω = (v−4, v−2, v0, v2, v4) ∈ R5. Of course, v ω does not actually provide
local coordinates on B or M ; however, the matrix ηb(v) still represents a generic
point in h∗(Tb(B)), as seen here:

(65) ηb(v) =


0 0 0 0 0 0
0 0 0 0 0 0
−v4 0 0 0 0 0
v−4 v−2 v0 0 0 v4
v−2 v0 v2 0 0 0
v0 v2 v4 0 0 0

 .
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Therefore,

(66) expI(ηb(v)) =


1 0 0 0 0 0
0 1 0 0 0 0
−v4 0 1 0 0 0

v−4 − 1
6v

3
4 v−2 + 1

2v4v2 v0 + 1
2v

2
4 1 0 v4

v−2 − 1
2v4v2 v0 v2 0 1 0

v0 − 1
2v

2
4 v2 v4 0 0 1

 .

So, using Equation (14), a generic point U ∈ i(M ′) looks like
(67)

U = Π(expI(ηp(v))) =

v−4 − 1
6v

3
4 + (v0 + 1

2v
2
4)v4 v−2 + 1

2v4v2 v0 + 1
2v

2
4

v−2 + 1
2v4v2 v0 v2

v0 + 1
2v

2
4 v2 v4

 .

There is a single relation between the entries of such U :

(68) U22 = U13 −
1

2
(U33)2.

When U is interpreted as the Hessian of u : R3 → R, Equation (68) is the first flow of
the dKP equation, a well-known example of a Hessian hydrodynamic equation. �

The only change for the other root-types is that η is more complicated; hence,
its exponential is (immensely) more difficult to compute, and the relation F (U) = 0
is more difficult to recognize. Note also that U = 0 is always in the locus of the
equation obtained by this procedure. Therefore, PDEs such as the Boyer–Finley
equation, uxx+uyy = eutt (which has six symmetries and must represent one of the
3-dimensional root-types [11]), will not directly appear as representatives via this
procedure. None-the-less, every CSp(3) equivalence class of Hessian hydrodynamic
PDEs must arise this way.

6.1. Hyperbolic Planar PDEs. This section presents some preliminary but in-
triguing observations regarding the hyperbolic linear Pfaffian system I describing
bi-secant surfaces in Theorem 3.1 and its relation to hyperbolic second-order planar
PDEs,

(69) f(ξ1, ξ2, z, z1, z2, z11, z12, z22) = 0.

Equation (69) defines a 7-dimensional manifold Σf = f−1(0) ⊂ J2(R2,R) whose
structure equations are obtained by pulling back the contact system [15, 27], such
Σf admit a point-wise classification into Monge–Ampère, Goursat, or generic-type
equations.

Theorem 6.9. Consider a (B,M, p) with T (b) = v for some b ∈ Bp. Over a
neighborhood M ′ of p, there a bundle W → M ′ with 7-dimensional fiber and a
submersion f : B(U) → W such that the ideal I from Theorem 3.1 describing
the existence of bi-secant surfaces through p is the pull-back of a hyperbolic linear
Pfaffian ideal Ī on W . This W admits a co-frame (β1, . . . , β7) such that

dβ1 ≡ β2 ∧ β4 + β3 ∧ β6, mod β1

dβ2 ≡ U1 β
3 ∧ β7 + β4 ∧ β5, mod β1, β2

dβ3 ≡ U2 β
2 ∧ β5 + β6 ∧ β7, mod β1, β3.

(70)
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for U1 = −645120T−8
(µ3)

3

µ2µ1
and U2 = −645120T8

(µ2)
3

µ3µ1
for some non-zero functions

µ1, µ2, and µ3 on W .
Moreover, there is some second-order hyperbolic planar PDE f and a diffeomor-

phism ϕ : Σf → W such that these structure equations on W pull back via ϕ∗ to
the contact-induced structure equations on Σf .

Proof. Consider a 2,3-integrable GL(2)-structure (B,M, p). As in the general case
of Theorem 3.1, the linear Pfaffian system describing the existence of bi-secant
surfaces through p is differentially generated by ω−2, ω0, and ω2, and it has tableau
given by

(71) d

ω−2ω0

ω2

 =

π1 0
0 0
0 π2

 ∧ (ω−2
ω4

)
for π1 = 2ϕ2 − 322560T−2ω

4 and π2 = −2ϕ−2 − 322560T2ω
−4. The Lie algebra

A(I) of Cauchy characteristics of I is spanned by the duals of λ and ϕ0. Therefore,
the retracting space C(I) = A(I)⊥ is a rank 7 Frobenius system on B, so B admits
a foliation by 2-dimensional Cauchy characteristic surfaces [2, Section II§2] [20,
Section 6.1]. Let W denote the 7-dimensional (local) leaf space for this foliation,
so there is a submersion π̃ : B → W . Since the ω is semi-basic for the submersion
π̃, W also admits a submersion onto a neighborhood of p ∈ M . It remains to find
the structure equations for a coframing on W .

Write α1 = ω0, α2 = ω−2, α3 = ω2, α4 = π1, α5 = ω−4, α6 = π2, α7 = ω4,
α8 = ϕ0, and α9 = λ as a co-frame for B. To simplify the notation, fix the index
convention 1 ≤ i, j, k ≤ 7 and 8 ≤ r, s ≤ 9, so the forms αi are semi-basic for
the bundle B → W , and the forms αr are vertical for the bundle B → W . Write
dαi = − 1

2C
i
jkα

j ∧ αk − Cijrαj ∧ αr, where Cijk = −Cikj and Cija are functions of T

as determined by Theorem 4.3. Note that Cija = 0 if i 6= j, and

(72) C1
18 = 0, C2

28 = −4, C3
38 = 4, C4

48 = 4, C5
58 = −8, C6

68 = −4, C7
78 = 8,

(73) C1
19 = 1, C2

29 = 1, C3
39 = 1, C4

48 = 0, C5
58 = 1, C6

68 = 0, C7
78 = 1.

Corollary 2.3 of [2] and implies that there exist functions µi on B such that 1
µi
αi

is basic. Define a new co-framing (α̃i) for B by setting α̃i = 1
µi
αi (no sum) and

α̃r = αr. Thus, T∗B is (locally) split into basic 1-forms and vertical 1-forms with
respect to the bundle π̃ : B → W . Of course, α̃i = π̃∗(βi) for some independent
1-forms βi, and (β1, . . . , β7) is the desired co-framing for W . Since α̃i is basic, the
structure equations of (α̃i) and (βi) are identical.

There is a lot of freedom in the designation of µi. Write dµi = µi,jα̃
j + µi,rα̃

r.
The condition that α̃i is basic is equivalent to µi,r = µiC

i
ir for all 1 ≤ i ≤ 7 and

8 ≤ r ≤ 9, but µi,j is otherwise free, so any non-zero function fi on W may be
lifted to B in local coordinates (x1, . . . , x9) by setting µi = fi exp(Cii8x

8 + Cii9x
9).

At this point, the co-frame (βi) satisfies

dβ1 ≡ 0,

dβ2 ≡ µ4µ5

µ2
β4 ∧ β5, mod {β1, β2, β3}

dβ3 ≡ µ6µ7

µ3
β6 ∧ β7,

(74)
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so one may effectively eliminate µ5 and µ7 by redefining β5 as µ4µ5

µ2
β5 and β7 as

µ6µ7

µ3
β7. Thus, the structure equations for W satisfy

dβ1 ≡ 0,

dβ2 ≡ β4 ∧ β5, mod {β1, β2, β3}
dβ3 ≡ β6 ∧ β7.

(75)

One may now re-label the co-frame (βi) following the procedure given in Appendix
A of [27] to obtain Equation (70).

Although U1 and U2 as written in the theorem are not explicitly functions on
W , this is easily amended. As noted above, µi may be taken as the lift of fi on W .
Also, the action of α8 and α9 is diagonal on T :

(76) d



T−8
T−6
T−4
T−2
T0
T2
T4
T6
T8


≡



T−8
T−6
T−4
T−2
T0
T2
T4
T6
T8


α8 +



16T−8
12T−6
8T−4
4T−2

0
−4T2
−8T4
−12T6
−16T8


α9, mod α1, . . . , α7.

So, while there is no natural map from W to OJ(B), the local Lie group G generated
by the fiber actions of H and I9 (corresponding to α8 and α9) induce a map W →
OJ(B)/G that one could also call T .

Theorem 11.1.1 of [26] implies that any 7-dimensional manifold with structure
equations of this form must be diffeomorphic to Σf for some hyperbolic planar PDE
f . �

Corollary 6.10. For any Hessian hydrodynamic PDE, the level sets of the Rie-
mann invariants are the solutions of planar hyperbolic PDEs.

Proof. The manifold W arises from the ideal describing bi-secant surfaces in M ,
and Corollary 4.2 shows that these are the level sets of the Riemann invariants of
the Hessian hydrodynamic PDE defining B. �

This corollary is not at all surprising, since the entire point of hydrodynamic
reduction is to reduce a hyperbolic PDE in three variables to a family of hyperbolic
planar PDEs defined by the Riemann invariants.

In the case of 2,3-integrability, Corollary 6.10 also provides a more explicit justi-
fication for the claim in Theorem 3.1 that the PDE defining bi-secant surfaces can
be solved in the smooth category with smooth initial data. One naturally asks “to
which Σf is W equivalent?”

Corollary 6.11. Let Σf = f−1(0) ⊂ J2(R2,R) for a hyperbolic planar PDE f .
Suppose there is a local diffeomorphism ψ : Σf →W with π̃(b) ∈ ψ(Σf ).

(1) If x = 0 and y = 0 are both roots of T (b), then Σf is of the Monge–Ampère
type at ψ−1(π̃(b)),

(2) If exactly one of x = 0 or y = 0 is a root of T (b), then Σf is of the Goursat
type at ψ−1(π̃(b)),
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(3) If neither x = 0 nor y = 0 is a root of T (b), then Σf is of the generic type
at ψ−1(π̃(b)).

Proof. These are the three pointwise types of planar hyperbolic PDEs, and for
structure equations of the form in Equation (70), they are determined by whether
U1 and U2 vanish [15] [27]. Since U1 ∼ T−8, U1 = 0 if and only if y = 0 is a root of
T (b) ∈ V8. Similarly, U2 = 0 if and only if x = 0 is a root of T (b) ∈ V8. �

Corollary 6.11 puts interesting restrictions on which GL(2)-structures can yield
which planar PDEs. In particular, x = 0 and y = 0 can both be roots of v = T (b) if
and only if [v] is a root-type having two distinct real roots, and the strictly complex
root types cannot have x = 0 or y = 0 as roots. Notably, the type of W can change.
For example, suppose T (b) = x7y, so ψ−1(π̃(b)) is of the Monge–Ampére type but
nearby ψ−1(π̃(b′)) is of the generic type, since T (b′) = (x+ε1y)7(ε2x+y). This type-
changing does not occur for the flat structure, and it is easy to compute a change-
of-frame from the structure equations of the flat W to the structure equations of
Σf for the planar wave equation z12 = 0.

Corollary 6.12. Let (B,M, p) be a flat 2,3-integrable GL(2)-structure. Then W
is isomorphic to {z12 = 0} ⊂ J2(R2,R).

7. Concluding Remarks

The main results of this article are summarized in Figure 2. In short, Hes-
sian hydrodynamic PDEs in three independent variables are equivalent to local
2,3-integrable GL(2)-structures of degree 4, and both objects admit a geometric,
coordinate-free classification by the foliation of R9 shown in the figure.

Lemma 5.1 seems to be a miraculous coincidence. The bluntness of this rela-
tionship between v and J(v) prompted me to investigate relationships between the
roots of v and the structure of the leaf OJ(v), yielding this project’s main result,
Theorem 5.3. It appears that no such relationship holds for 2,3-integrable GL(2)-
structures of degree n ≥ 5, even though versions of Theorem 4.3 and Lemma 4.7
exist in those cases. In general, intransitive groupoids and pseudo-groups are very
poorly understood, and it is generally impossible to explicitly write down the inte-
gral manifolds of any given singular distribution. If it were not for the coincidence
in this case, the leaf-equivalence classes would have little utility in understanding
the Hessian hydrodynamic PDEs.

Of course, Hessian hydrodynamic PDEs on u : R3 → R are not the only in-
tegrable PDEs of interest in mathematics and physics. Two generalizations are
important to consider:

Q1 Integrability should be a contact-invariant property of a PDE. The Hessian-
only form F (u11, u12, u13, u22, u23, u33) = 0 is not preserved under the
full family of contact transformations. However, the associated GL(2)-
structures apparently relied on this form and its associated CSp(3) trans-
formations. How can this classification be extended to second-order PDEs
in three independent variables that also include lower derivatives? How
does the GL(2) geometry generalize to these PDEs? The observations and
computations of some recent articles may prove very useful [6] [12].
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Q2 Very few integrable PDEs are known to exist in more than three indepen-
dent variables, but equations of the form F (u11, . . . uNN ) = 0 can some-
times yield distributions of rational normal cones of degree n on hyper-
surfaces Mn = F−1(0) ⊂ Sym2(RN ) with n = 1

2N(N + 1) − 2. Results
similar to those in Section 4 are known for 2,3-integrability for degrees 5
through 20, but the foliation by groupoid orbits of Vn+4 is not understood,
and k-integrability is extremely restrictive [24]. What can integrable GL(2)
geometry say about the existence of integrable PDEs in more variables?

On a more detailed level, it would be interesting to study the foliation that
appears in the present case. Despite the significant computational difficulties, it
is important both to produce representative PDEs for each root-type and to find
the root-type of the well-known Hessian hydrodynamic PDEs. For example, if one
can produce Hessian hydrodynamic PDEs as well as contact-equivalent PDEs that
involve lower-order terms, such computations could open the door to Q1, above.
Additionally, the lack of surjectivity of T : B → OJ(B) is irritating. What is
the exact relationship between two PDEs that are leaf-equivalent but do not have
overlapping torsion?

Finally, the relationship between W , which describes bi-secant surfaces in M ,
and Σf , which arises from a planar hyperbolic PDE, is worth pursuing. What is is
the nature of the correspondence? Can every hyperbolic planar PDE appear this
way? Can this correspondence provide any new information about the Riemann
invariants of the Hessian hydrodynamic PDE?
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