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Abstract  
In social systems, meaning can be communicated in addition to underlying processes of 
the information exchange. Meaning processing incurs on information processing with 
hindsight, while information processing recursively follows the time axis. The sole 
assumption of social relatedness as a variable among groups of agents provides 
sufficient basis for deriving the logistic map as a first-order approximation of the social 
system. The anticipatory formulation of this equation can be derived for both 
anticipation in the interaction term and in the aggregation among subgroups. Using this 
formula in a cellular automaton, an observer is generated as a reflection of the system 
under observation. The social system of interactions among observations can improve 
on the representations entertained by each of the observing systems. 
Keywords: social systems, anticipation, observer, meaning, logistic map 

1 Introduction  

Rosen (1985) defined an anticipatory system as a system that contains a model of 
the system itself. For example, a biological system can use this internal representation 
for anticipatory adaptation, that is, to predict the survival value of the system among its 
possible manifestations at a next moment in time. Dubois (2000) distinguished between 
weak anticipation, that is, when systems use a model of themselves for computing 
future states, and strong anticipation, that is, when the system uses itself for the 
construction of its future states. In the latter case anticipation is no longer similar to 
prediction.  

In this paper we argue that the social system can be considered as anticipatory in 
the strong sense: this system constructs its future by providing the expected information 
content of the distribution of events with meaning. The anticipations can be 
communicated among the agents in a next-order network that feeds back on the 
information-processing network. However, meaning is provided with hindsight (that is, 
a posteriori), and therefore meaning processing also feeds back on the time axis within 
the system (Luhmann, 1984; Leydesdorff, 2001a).  
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The meaning processing thus adds a reflexive layer of communication to the 
information processing in social systems. (The interaction between these two layers then 
produces meaningful information.) While the historical configurations of social systems 
change in a forward mode in terms of both uncertainty and meaningful information, the 
information processing is internally subject to reflections ex post. The meaning 
processing reduces the uncertainty contained in the distributions of first-order networks 
locally.  

 

 
Figure 1: The incursive processing of meaning interacts with the recursive processing 

of information and the result is the localized production of meaningful information 
 

Providing information with meaning can be considered as a selective operation. 
Some uncertainty in the information processing is discarded as noise, and other 
uncertainty is identified as ‘meaningful information.’ Thus, the meaning processing 
structures the information processing. Meaning processing continuously reflects on the 
system of information processing under observation. The two processes can be 
considered ‘structurally coupled’ (Maturana, 1978): at the level of the social system the 
one process cannot operate without the other. Biological systems can provide meaning 
to information, but cannot exchange the meanings thus generated among themselves.1  

The reflections provide us with mirror images, but from potentially different 
perspectives. When the reflections can again be communicated, they are recursively 
built into the historical (that is, forward) development of the social system. The 
exchange of meaning adds globally to the information processing by distinguishing the 
meaningful information from the noise in terms relevant for the reproduction of the 
social system (Urry, 2003). Each communication leads to new communications, and 

                                                 
1 The psychological system is expected not only to process meaning, but also to generate identity. Unlike 
the social system, the dynamics at this level can under certain conditions become historically fixed. 

Meaning processing 
(incursive) 

meaningful information 

time 

Information processing 
(recursive) 
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thus the social system continuously reconstructs the order of expectations from a 
hindsight perspective by operating on the layers that it has generated historically.  

The purpose of this paper is: (1) to model the social as a system containing strong 
anticipation, (2) to prove the equations, and (3) to show how this system works by using 
simulations. In the next section, we first derive the anticipatory formulation of the 
logistic equation for aggregation and interaction among subgroups of the social system. 
Using these algorithms, simulations enable us subsequently to generate a reflexive 
observer within an information-processing system. Cellular automata will be used for 
the visualization of how social systems operate (Leydesdorff, 2001b and 2002).  

2 The Specification of a Social System 

The double-layeredness of the operation of a social system processing both 
information historically and meaning with hindsight can be described by using the 
incursive formulation of the logistic map as proposed by Dubois (1998):  

 
x(t)  =  a x(t-1) {1 – x(t)}                 (1a) 

or: x(t+1)  =  a x(t) {1 – x(t+1)}                       (1b) 
 
For example, the price of a commodity can be considered as its expected value on 

the market. The price codifies the value of a commodity in economic terms. The 
anticipatory formulation of the logistic curve appreciates that the price has both an 
intrinsic value and is reflected in a feedback of the market system. The intrinsic factor 
stems from the historical production process, while the feedback from the market 
originates in the present on the basis of the dynamics of current supply and demand.  

The use of the traditional—that is, only forward—format of this equation is ill-
advised, since the two subdynamics of production and diffusion are then not sufficiently 
distinguished in terms of the dynamics over time. Production proceeds historically along 
the time axis—for example, building on previous generations of a technology—while 
diffusion takes place under competitive conditions in the present. The selection 
mechanism (that is, the market) can thus be considered as an evolutionary feedback on 
the historical development (Andersen, 1994; Leydesdorff & Van den Besselaar, 1998; 
Nelson & Winter, 1982). 

The techno-economic system can be modeled using this anticipatory version of the 
logistic equation. The recursion on x(t-1) in the left-hand term of eq. 1a represents the 
axis of historical development of the technology. The system additionally selects in the 
present upon the development as declared in the right-hand term of the equation. The 
selection pressure prevailing in the present is analytically independent of the previous 
state of the system that produced the variation. Thus, the two mechanisms interact as 
subdynamics of the social system.  
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2.1 The definition of a social system  

Let us first consider two groups y and x in a social system. The behavior of these 
groups can be described by the following equations: 

 
dy(t)/dt = – ax(t)y(t) + bx(t)             (2a) 
dx(t)/dt = + ax(t)y(t) – bx(t)             (2b) 

 
Let us furthermore assume that x(t) + y(t) = Constant = C; for example, C = 1. The 
parameter b can also be taken as b = 1, without losing any generality. 

The sociological interpretation of this system of equations is as follows: the two 
groups x(t) and y(t) interact with an interaction given by the product of the two 
populations x(t)y(t) at the rate a. The interaction between the two groups x and y can be 
considered as the sociability factor of the population.  

For example, the group y may represent isolated persons, and the group x persons 
entertaining relations with each other. When there is interaction, eq. 2a specifies that the 
number of isolates decreases with the interaction term (– ax(t)y(t)), while the chance of 
interaction increases with the number of persons already pertaining relations (+ bx(t)). 
In eq. 2b, similarly, the number of already related persons increases because of this 
interaction (+ ax(t)y(t)), but the chance of further relatedness decreases (– bx(t)) when a 
larger part of the population has already been related.2  

For a = 0, x(t) becomes zero and the whole population would constituted of isolated 
persons;3 y(t) is in this case equal to 1 because x + y = 1. The parameter a can thus also 
be considered as a measure of the sociability of the population (cf. Dubois & Sabatier, 
1998).  

  

2.2 Derivation of the logistic equation  

Assuming b = 1 in eqs. 2a and 2b, the corresponding discrete system can be 
formulated as follows: 

 
y(t+1) = y(t) – ax(t)y(t) + x(t)             (3a) 
x(t+1) = x(t) + ax(t)y(t) – x(t) = ax(t)y(t)           (3b) 

 
Because  
y(t+1) + x(t+1) = y(t) + x(t) = Constant = 1           (4a) 
y(t) = 1 – x(t)               (4b) 

 
The logistic map is obtained by replacing eq. 4b into eq. 3b: 

                                                 
2 The model is known in the literature as the SIS model of Bailey (1957) which simplifies on the classical 
SIRS model for the spread of infectious diseases by Kermack & McKendrick (1927). 
3 The other root of eq. 2b is that x = -2. Since x + y = 1, y = 3 in this case. This solution does not have an 
obvious interpretation. 
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x(t+1) = ax(t){1 –  x(t)} 

 
As is well known, this model generates chaotic behavior for a = 4.  

2.3 The anticipatory version of the model  

One can consider two anticipatory versions of the above model in the case of a 
social system. First, one may expect the grouping process itself to contain anticipation. 
For example, isolated individuals may consider whether it is to their advantage to enter 
into relations. Second, one can assume that the interaction term between the two groups 
x and y contains anticipation. We will now first prove that both assumptions lead to the 
anticipatory version of the logistic map as specified above in eq. 1b. 

 
2.3.1   Anticipation in the development of y 

 
In general, the anticipatory model is an analytical result of the backward evaluation 

of the differential equation in discrete time: 
 

x(t – ∆t) = x(t) – ∆t f(x(t))               (5) 
 

Applied to eq. 3a this leads to the following model: 
 

y(t+1) = y(t) – ax(t+1)y(t+1) + x(t+1)            (6a) 
 
In this model, y—that is, the grouping of isolated persons—contains anticipation 

since the term is operating upon both its previous and its present state at the same time. 
Without the further assumption of anticipation in the interaction (see the next section), 
the development of x(t) remains unchanged (as in eq. 3b): 

 
x(t+1)=x(t) + ax(t)y(t) –  x(t) = ax(t)y(t)           (6b) 

 
Because of the anticipation in y, however, y in this case relates to the next state of x, 
and therefore: 

 
y(t) + x(t+1) = Constant = 1 
y(t) = 1 –  x(t+1)                 (7) 

 
By putting eq. 7 into 6b, one obtains: 

 
x(t+1) = ax(t)(1 – x(t+1))                (8) 
Q.e.d. 
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2.3.2 Incursion in the interaction between x with y 
 
Let us now assume that the interaction term between x and y contains the source of 

anticipation: 
 

y(t+1) = y(t) – ax(t)y(t+1) + x(t)             (9a) 
x(t+1) = x(t) + ax(t)y(t+1) – x(t) = ax(t)y(t+1)          (9b) 

 
For analytical reasons, one can also write the interaction term as a difference 

equation in relation to its previous state, as follows: 
 

x(t)y(t+1) = x(t)y(t) + x(t){y(t+1) – y(t)}         (10a) 
y(t+1) = y(t) + {y(t+1) – y(t)}          (10b) 

 
In other words, the anticipatory interaction depends on a supplementary factor 

given by the derivative of y. Since both terms are thus implied in the anticipation: 
 

y(t+1) + x(t+1) = Constant = 1 
 

and therefore:  
 

y(t+1) = 1 – x(t+1)              (11)  
 

By replacing eq. 11 into eq. 9b, one obtains again: 
 

x(t+1) = ax(t){1 – x(t+1)}             (12) 
Q.e.d. 

 
In summary, the introduction of anticipation into a very basic model of the social 

system can be shown to lead to the anticipatory formulation of the logistic equation. 
First, we argued for using this equation on theoretical grounds, and in this section we 
have derived this model of the social system from assumptions about the possible 
contingencies between two subpopulations (Parsons, 1968).  

3 The Simulations 

Social systems are based on exchange relations. In other words, social systems are 
distributed by their very nature. Cellular automata enable us to display the dynamics of 
multi-agent systems in terms of colours on the screen. Each point (x, y) on the screen 
can be considered as an agent which relates—or not—to other agents. Different colours 
can be used to indicate the phenotypical state of the various agents over time. In 
addition to this visualization, the value of each pixel can be mapped for computational 
purposes in an array (x, y) with the size of the screen.  

 208



In order to enhance the transparency, we formulate the simulation models in 
standard BASIC.4  For example, the array is defined in line 40 of Table 1 so that it can 
contain a representation of the screen in CGA-mode (200 x 320 pixels). The CGA-mode 
(line 10) was chosen in order to take full advantage of the visibility of the effects on the 
screen. A pixel—representing an agent—is selected randomly in lines 110 and 120.  
 

Table 1: Incursion and recursion in lines 140 and 150, respectively. 
1   CLS : LOCATE 10, 10: INPUT 'Parameter value'; a 
2   IF a > 4 THEN a = 4                      ' prevention of overflow 
 
10  SCREEN 7: WINDOW (0, 0)-(320, 200): CLS 
20  RANDOMIZE TIMER 
30  ' $DYNAMIC 
40  DIM scrn(321, 201) AS SINGLE 
50  FOR x = 0 TO 320 
60    FOR y = 0 TO 200 
70      scrn(x, y) = .1: PSET (x, y), (10 * scrn(x, y)) 
80    NEXT y 
90  NEXT x 
 
100 DO 
110   x = INT(RND * 320) 
120   y = INT(RND * 200) 
130   IF y > 100 GOTO 140 ELSE GOTO 150      ' split of screens 
140      scrn(x, y) = a * scrn(x, y) / (1 + a * scrn(x, y)): GOTO 160 
150      scrn(x, y) = a * scrn(x, y) * (1 - scrn(x, y)) 
160   PSET (x, y), (10 * scrn(x, y)) 
170   LOOP WHILE INKEY$ = '' 
180 END 

 
On the assumption that a social system contains the two layers of information and 

meaning processing, we use the logistic equation in the forward mode for the historical 
information processing, and in the anticipatory formulation for providing meaning to the 
information processing. In the program (Table 1) and the corresponding Figure 2, the 
screen is accordingly split into two halves (line 130).5  

In the lower half, the results of the 
logistic evaluation of the corresponding 
array value (line 150) are brought to the 
screen in line 160. In the upper half, the 
anticipatory version of the logistic equation 
is used for the evaluation, and the result of 
this evaluation is also depicted in line 160. 
The analytical rewrite of the logistic 
equation in the format used in line 140 is provided in Table 2 (Dubois, 1998). The code 
in the first line enables the user to choose the parameter value for a interactively.6

 
Table 2: Analytical rewrite of the 

anticipatory formulation of the logistic 
equation 

x(t) = ax(t-1)(1 – x(t))      (1a) 
x(t) = ax(t-1) – ax(t-1) x(t) 
x(t) + ax(t-1) x(t) = ax(t-1) 
x(t)(1 + ax(t-1)) = ax(t-1) 
x(t) = ax(t-1) / (1 + ax(t-1)) 

                                                 
4 The programs can be adapted for higher or commercial versions of Basic, and for other languages. In 
Visual Basic the programs formulated in this paper can be imported as subroutines. 
5 An interactive version of the simulations can be retrieved at http://www.leydesdorff.net/casys03 . 
6 In order to prevent overflow while running this model, values of the parameter a larger than 4 are reset 
to a = 4 (in line 2).  
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Figure 2: Upper half of the screen incursive, lower half recursive; a = 3.1 
 

Figure 2 shows that the incursive simulation leads to a transition, while the 
representation of the recursive system in the lower half of the screen exhibits the 
bifurcation as expected for the value of a = 3.1. The incursive model converges to a 
stable state (in this case, exhibited as white) because the Limx→∞ {ax/(1+ax)} = 1.  

In the next simulation (Table 3) we combine the two subdynamics of incursion and 
recursion into one single screen. In this model the choice of the incursive or recursive 
routines is randomly assigned in line 130, but the screen and the array values are no 
longer split according to the value of the vertical coordinate. 

 
Table 3: Incursion and recursion alternating randomly, but using the same data set 

[...] 
100 DO 
110   x = INT(RND * 320) 
120   y = INT(RND * 200) 
130   IF RND > .5 GOTO 140 ELSE GOTO 150 
140      scrn(x, y) = a * scrn(x, y) / (1 + a* scrn(x, y)) : GOTO 160 
150      scrn(x, y) = a * scrn(x, y) * (1 - scrn(x, y)) 
160   PSET (x, y), (10 * scrn(x, y)) 
170 LOOP WHILE INKEY$ = '' 
180 END 

 
When the incursive model operates within a recursive system of which it is also a 

part, the incursive routine tends to reduce the uncertainty produced by the recursive one, 
since incursion drives towards a transition in the long run because of the noted limit. 
The transition is visible on screen as a trend toward a dominant colour, but this 
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transition is not achieved because the incursive routine is continuously disturbed by the 
recursive one. The system therefore remains in transition. 

Note that from an (historical) actor perspective the incursive transition operates as a 
latent attractor. The longer-term prevalence of incursion over recursion, however, 
demonstrates the importance of accounting for expectations in models of the evolution 
of social systems when both subdynamics can be expected to play a role in the system. 
The emerging layers of social coordination, that is, the communication of meaning, can 
be expected to provide additional stabilities because of the selective capacity of the 
implied coding.  

For example, instantaneous selections can be selected recursively for historical 
stabilization over time. This occurs in processes like institutionalization. By using 
incursion and therefore time as another degree of freedom, some historical stabilization 
can be selected for meta-stabilization or globalization. This next-order level remains 
pending as selection pressure on the historical manifestation.  

4 The Generation of an Observer 

Can the result of the interacting dynamics of a complex system that contains both 
incursion and recursion also be decomposed into an observing and an observed sub-
system? In the model exhibited in Table 4 and Figure 3, the two routines of ‘observed’ 
and ‘observing’ are decomposed so that an observer is generated by using the incursive 
routine.7 The upper half of the screen is reserved for exhibiting the results of the 
incursive observations of the lower half of the screen, while the lower half is based on 
the recursive routines and therefore exhibits the historical development of the observed 
system.  

In order to generate an observable structure at each moment in time, a network 
effect was added to the observed system (in lines 110-120 of Table 4). This network 
effect spreads the update in the lower-level screen in the local (Von Neumann) 
neighbourhood of the affected cell. (The Von Neumann environment is defined as the 
cells above, below, to the right, and to the left of the effect.) The network effect enables 
us to appreciate on the screen the development of both the observed system and the 
relative quality of the observation depicted in the upper half of the screen. Note that the 
network effect structures the system at each moment in time and locally, whereas 
incursion and recursion are defined over the time axis of the system, that is, as an 
operation at the system’s level. 

Henceforth, we use the full range of 16 colours available in the BASIC palette in 
order to provide more details on the screen. This is achieved by changing the decimal 

                                                 
7 The subsystem entertaining the model of the system in the present state can be considered as an 
endogenous observer of the system’s history. Endogenous means here that this observer remains a result 
of the network in which the observer effect is generated (Maturana, 1978). One can consider this observer 
as an incursive subroutine of the complex system. Note that the metaphor is still biological because this 
observer is not positioned refexively in a (next-order) communication among observers (Leydesdorff, 
2000; Maturana & Varela, 1980). The observer remains completely embedded and follows the 
development in the observed system.  
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base of the above simulations to the basis of 16 (in line 43 of Table 4). Whenever 
necessary normalizations of the formulas for incursion and recursion are added by 
dividing again by 16 (for example, in lines 160 and 180). 

 
Table 4: The generation of an observer by using incursion 

1   CLS: LOCATE 10, 10: 'Parameter value for the recursion (a)'; a 
2        LOCATE 11, 10: 'Parameter value for the incursion (b)'; b 
3   IF a > 4 THEN a = 4 
 
10  SCREEN 7: WINDOW (0, 0)-(320, 200): CLS 
11  LINE (1, 100)-(320, 100) 
20  RANDOMIZE TIMER 
 
30  ' $DYNAMIC 
40  DIM scrn(321, 201) AS INTEGER 
50  FOR x = 0 TO 320                     
60      FOR y = 0 TO 200 
70          scrn(x, y) = INT(RND * 16)     ' change to 16 colours 
80          PSET (x, y), scrn(x, y)        ' (see note 4) 
90      NEXT y 

   100  NEXT x 
 

   110  DO 
   120    y = INT(RND * 200) 
   130    x = INT(RND * 320) 
   140    IF (x = 0 OR y = 0) GOTO 220         ' prevention of network errors
   150    IF y > 100 GOTO 160 ELSE GOTO 180 
   160       scrn(x, y) = b * scrn(x,y-100) / (1 + b * (scrn(x,y-100) / 16)) 
   170       GOTO 210                          ' paint upper screen 
   180       scrn(x, y) = a * (scrn(x, y) * (1 - (scrn(x, y)) / 16)) 

            ' spread new value in the Von Neumann environment 
   190          scrn(x + 1, y) = scrn(x, y): scrn(x - 1, y) = scrn(x, y) 
   200          scrn(x, y + 1) = scrn(x, y): scrn(x, y - 1) = scrn(x, y) 
   210       PSET (x, y), ABS(scrn(x, y)) 
   220  LOOP WHILE INKEY$ = '' 
   230 END 

 
Whereas the incursive and the recursive routines operated on the same initial 

configurations as in the model provided in Table 3, the feedback relation between the 
two systems changes continuously in this model. In this model, the two parameters for 
recursion (a) and incursion (b) can also be varied independently. A random attribution is 
decisive (in line 150) for whether the recursive or the incursive routine is entered. 
However, the incursive routine (line 160) operates on the value of the corresponding 
array element in the lower half of the screen by evaluating scrn(x, y-100). The result of 
this evaluation is attributed to the upper half of the screen and to the corresponding 
array value of scrn(x, y). The effect is that an observer is generated as exhibited in 
Figure 3 (a = 3.2 and b = 3.2). 
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Figure 3: Incursion and recursion with different parameter values produce observers 
with potentially different positions and corresponding blind spots (a = 3.2 and b = 3.2). 

 
By changing the parameter of the incursion, one can change the window of 

observation of an observer. High values for the incursion parameter (b) drive the 
observing system into a more homogeneous state (because of the above noted limit 
transition in the formula), while higher values of the recursive parameter (a) drive the 
historically developing system towards more chaotic bifurcations.  

5 Observing the Observers 

The possibility of generating observers with the different qualities of their 
respective observations raises the question of the possibility of interaction among the 
observers, for example, when the observers observe each other’s observations. Human 
observers can additionally interact by using more sophisticated mechanisms like a 
human language or symbolic media for the communication (Luhmann, 1982, 1997; 
Parsons, 1963a; 1963b). This further extension is the subject of a next study, but some 
expectations can be anticipated by showing the results of a single simulation.  

Figure 4 exhibits the results of two observers with different parameters b and c 
observing the recursive development in the lower left screen (with parameter a). The 
two observers additionally observe each other’s observations, and the lower right 
quadrant is used for the exhibition of the results of interactive and aggregative 
combinations of these observations. 
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The lower right quadrant shows a representation of the observed system in the lower 
left quadrant that is richer in detail than either of the observations by the individual 
observers in the two upper-half quadrants. It should be remembered that the two 
incursive observers operate at random frequencies with different parameters. 
Consequently, an interaction among the observations contains a dynamic uncertainty 
that may represent elements of the originally observed system which are lost in the 
individual reflections, while the latter focus on the observable structure and thus reduce 
the complexity. The aggregation or averaging of the different observations can be 
expected to lead to uncertainty in the delineations at each moment in time; the 
interaction of the reflections opens a phase space of possible reconstructions of the 
observed system.  

 

Figure 4: A non-linear combination of observations by two observers  
in the lower right quadrant 

6 Conclusions 

We have argued that the social system can be considered as an anticipatory system 
in the strong sense of constructing its own future. It does so by reconstructing its past in 
the present. Because this reconstruction is functional to the progressive development of 
this system, the system can be expected to differentiate increasingly and a manifold of 
meanings can be entertained. The ones which are again selected, are circulated as 
information in a system that thus remains under continuous reconstruction. 
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The exchange processes of meaning constitute a layer on top of the historical 
exchanges of information. This double layered process was modeled using the 
traditional (recursive) formulation of the logistic map for the historical process and the 
anticipatory formulation for the evolutionary process that changes the historical process 
in a distributed mode.  

The appropriateness of the approach was derived from the sole assumption of 
sociability in the social process. However, the agents should additionally be competent 
to communicate in terms of exchanging both meaning and uncertainty. Human language 
can perhaps be considered as the evolutionary achievement that enables us to entertain 
these communicative competences in relation to each other, but without the need for a 
harmonic resolution. 
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