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Abstract. In the present paper, we propose integrable semi-discrade fall-discrete
analogues of the short pulse (SP) equation. The key of thstreantion is the bilinear forms
and determinant structure of solutions of the SP equatiore aWslo give the determinant
formulas of N-soliton solutions of the semi-discrete and full-discratelogues of the SP
equations, from which the multi-loop and multi-breathelutons can be generated. In the
continuous limit, the full-discrete SP equation converggethe semi-discrete SP equation,
then to the continuous SP equation. Based on the semi-tisBFe equation, an integrable
numerical scheme, i.e., a self-adaptive moving mesh schesnproposed and used for the
numerical computation of the short pulse equation.
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1. Introduction

Most recently, the short pulse (SP) equation
Uxt = U+ é(us>xx (1.1)

was derived as a model equation for the propagation of ahicat optical pulses in nonlinear
media [1,/2]. Herepy = u(x,t) represents the magnitude of the electric field, the sultscrip
t and x denote partial differentiation. Apart from the context afnfinear optics, the
SP equation has also been derived as an integrable diffdrenjuation associated with
pseudospherical surfaces [3]. The SP equation has beemghdve completely integrable
[3,14,/5/6]7]. The loop soliton solutions as well as smooth@osolutions of the SP equation
were found in([8/ 9] 10]. The connection between the SP eguatnd the sine-Gordon
equation through the hodograph transformation was cldrifigl1], and then thél-soliton
solutions including multi-loop and multi-breather onegevgiven by using the Hirota bilinear
method.

Integrable discretizations of soliton equations have iveck considerable attention
recently [12| 13, 14, 15]. In our recent work, the authorppsed an integrable semi-discrete
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analogue of the Camassa-Holm (CH) equation and apply it asncal scheme, i.e., a self-
adaptive moving mesh scheme|[16} 17]. The key of the digetin is an introduction of an
nonuniform mesh, which plays a role of the hodograph transétion as in the continuous
case.

In the present paper, we attempt to construct integrablei-discrete and full-
discretizations of the SP equation by the same approachingbd CH equation. We also
attempt to use the semi-discrete analogue of the SP equetiarself-adaptive moving mesh
scheme to perform numerical simulations.

The rest of the present paper is organized as follows. In@e2t we review the bilinear
equations and determinant solutions of the SP equatioredtiid® 3, we propose an integrable
semi-discrete analogue of the SP equation, widseliton solutions are also constructed in
terms of determinant form. By using the semi-discrete anamf the SP equation as a self-
adaptive moving mesh scheme, the numerical results foramgtwo-loop solutions are also
presented. In Section 4, the full-discrete analogues ofSfheequation are proposed. The
paper is concluded by Section 5.

2. Bilinear equations and determinant solutions of the short pulse equation

In this section, the results in [11] regarding the bilinequ&tions and the solutions of the SP
equation will be briefly reviewed.
First, by introducing the new dependent variable

I’2:1+U§, (21)
the SP equation is rewritten as
1
==z : 2.2
re <2u r)x (2.2)
Introducing the hodograph transformation
1
dy= rdx+ éuzrdt, ds=dt, (2.3)
i.e.,
0_1lp0 90 0_0
ot 2 dy 0s’ ox oy’
we obtain
rs=r2uy, (2.4)
where
r?=1+r2uj.

The equation(2]4) can also be cast into a form of

(O,
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Introducing new variables

r:@, u=@s, (2.6)
Eq.(2.5) leads to the sine-Gordon equation
@ys = Sing. (2.7)
Moreover, as is shown in [18, 22], upon the dependent varimbhsformation
F*(y,9)

(p(y,s):2ilnm,

the sine-Gordon equation (2.7) leads to the following k#inequations

1

FFRys— FyFs= 21(F2—|:*2), (2.8)
* ok * % 1 *

FRs—FFs =3 (F 2_F?), (2.9)

whereF* is the complex conjugate &f. Henceforth, the solutions of the SP equation are
obtained byF andF* through the dependent variable transformation

0 0 (... F*(y,9)
) = grots) = 5 (2in S 210

In what follows, we will show that the bilinear equationsgR-(2.9) are actually obtained
as the 2-reduction of the two-dimensional Toda lattice (Rpdquations:[[19, 20, 21, 22]

1
EDYDSTn‘Tn = Tnz—anLlTnfl, (2.11)

%1, 01,01 )
YaS  aY oS Tn™ — Tnt+1Tp-1, (2.12)

whereDy is the HirotaD-operator which is defined as

. o )\
Dxf-0=ax"ay) TX9W)h=x-

Applying the 2-reduction,_1 = a~1tn,1 (0 is a constant), we obtain

Tn

%1, 01,01 > o
GYOS_Wﬁ_T” —Thi1s (2.13)

where the gauge transformation— O(gtn is used. Lettingf =19 and f= T1, we have

Tn

ffyg— fyfs= f2— 2, (2.14)
ffyg— fyfg= f2— f2. (2.15)
Under the independent variable transformatien 2Y, s= 2S, we obtain
ffys—fyfs:%(fz—P), (2.16)
Mo fyfa= 2(P— 1), (2.17)

which are bilinear equations of the SP equation.
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Next, we give the Casorati determinai-g§oliton) solution of the SP equation. It is
known that the Casorati determinant solution of the 2DTLagiqun is of the form/[[211, 22]:

w8 =y )| (2.18)

Wherqui(n) (Y,S) satisfies linear dispersive relations

oy _ gy oy
oY : ’ 0S

For example, a particular choice tpf”) (Y,9)

— ™Y, (2.19)

Vi lSing Yilsi.
W (Y,S) = g aple? TR | ¢ oqne® T Fa St (2.20)

with ¢ 1 andcj > being constants, satisfies the linear dispersive relaémsgives theN-
soliton solutions.

Applying the 2-reductior; = —p; and the change of variablgs= 2Y ands = 2S, we
obtain the determinant solution of bilinear equatidns@pdnd [(Z.117):

f(y7 S) = TO(y7 S)? f_(y7 S) = Tl(y7 S) 5
9= 0" Py (2.21)

1<0,j<N
where
1o, 1 ) 1,y 1 I
PV (y,s) = ¢ aple?PY TSt ¢ o (e 2PV 2m S o (2.22)

Sinceu is real and the dependent variable transformatioimcludes the imaginary
number, we must consider the reality conditionuof Let us introducex and 3 such that
F*=af andF = Bf, whereF andF* are complex conjugate of each other. Note thand
F* also satisfies the bilinear equatiohs (2.16) and {2.17)usecaf

o (., FN o/  af\ a/  f _ a\ o/, f
u_a—s<2|lnf)_ (2Inﬁ)_0_s<2||n?+2”nﬁ>_a_s<2”n?)' (2.23)

Thus a set of andF* gives solutions of the SP equation as well as a st ahd f. By
choosing phase constants appropriately, the functfoaad f can be made to be complex
conjugate of each other to keep the reality and regularity. ofFor example, the following
choice

o = OPe2PYH 2 S04 | (o yne=3Piy—gy senoctin/4. (2.24)

guarantees the reality and regularity of the solution.
Summarizing the above results, the determindhsgliton) solution of the SP equation

is given by
uy,s) = : (2|I :g S;) , (2.25)

x=y—2i(Inff), t=s,

f(y7 S) = To(y, S) ’ f(y7 S) = Tl<y7 S) s
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_ |-
Tn(Y;s) = W (v;9) t<ij<n

where

Na~3PY— 75 SHNGHY4

qu(n) _ pine%PiY+2—%iS+ﬂoi*i”/4+ (—pi)

3. An integrable semi-discretization of the short pulse equation and numerical
computations

Based on the above fact, we construct the integrable sjphsiadetization of the SP equation.
Consider the following Casorati determinant:

(kS = 0" kS| (3.)

Wherqui(”) satisfies the dispersion relations

np” = g™, (3.2)
o = -y Y. (3.3)
Herel is the backward difference operator with the spacing consta
A (K) = f(k)—f(k—1) '
a
Particularly, one can choose
"V (k,S) =ciip’(1—ap)” kep St L Gog(1—ag) kea Sto (3.4)

which automatically satisfies the dispersion relation@)(@&nd [3.8). The above Casorati
determinant satisfies the bilinear form of the semi-disc@DTL equation (the Backlund
transformation of the bilinear equation of 2DTL equatia®3,[22]

1
Applying 2-reduction
a=-—0,
and letting
_ N
fk=To(k), fk=T1(k)= Pt
g

we obtain

1 - —

aDkaJrl k= fip 1 fe+ fpr ik =0, (3.6)

1 - - - _
5Dsfk+1 k= ferrfe+ fepr ik =0, (3.7)
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where the gauge transformatiopn — (|‘|i’\‘:1 pi)nTn is used. Note that and f can be made
complex conjugate of each other by choosing the phase cuagtwperly. Under the change
of independent variable= 2S, Eq.(3.5) implies the following two bilinear equations

2 - —
aDsfk+1' fik — fira fc+ fr1fk =0, (3.8)
2 _ - - —
5Dsfk+1‘ fk — fkpafc+ ki fik =0, (3.9)
which can be readily shown to be equivalent to
- <§ <nﬁ) —1) - f"“fk, (3.10)
a fe /s frrafi
- <§ <nﬁ) —1) _ Teafic (3.11)
a fk /s fira i
Subtracting the above two equations, one obtains
g((n£> —(nﬁ) ) _ figafe fk+1fk. (3.12)
a fk /s fu /s firafe frpafi

Introducing the dependent variable transformatppfs) = 2iln (;E—g) , One arrives at

Per1s— Qs _ Sin(%ﬁ%) ’ (3.13)

2a 2
which is nothing but an integrable semi-discretizationhaf sine-Gordon equation. Note that
this is also known as the Backlund transformation of the$bordon equation [24, 25].

It is obvious that, from the semi-discrete sine-Gordon &qud3.13), the equation

<COS(M>)S: —Lﬂ’s_qﬁs, (3.14)

2 4a
is implied. By introducing the dependent variable transfation
_doc . (f(S) (Bt
uk_E_len (w R Ok = COS —% ) (3.15)
it then follows
A& URg— U
B, S A
ds 4 (3.16)
which is the first equation of a semi-discrete analogue oStAequation
From the facts
e (‘p‘L;(“‘) +sir? (M;(“‘) —1, (3.17)
(D1 TP Ukpr — Uk
S|n<72 ) = oa (3.18)

and
1_ % = cos(LJrl-l_(ﬂ() : (3.19)
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it follows
6& (Ukt1— Uk)z
—_— = _ 7 = 1,
a2 432
i.e.,
2
5 =a— (U1 — U)” (3.20)

4 ’

which becomes another equation of a semi-discrete anatafghe SP equation.
Summarizing the above results, we obtained an integrabiediscrete analogue of the

SP equation and its solutions

(Ukr1— uk)2 = 4(a2—6ﬁ), (3.21)
ddy UE+1 —Uf

—_ &1 X .22
ds 4 7 (3:22)

where thex-coordinate of thek-th lattice point is given byXy = Xo + z:(;16|. From the

construction, the semi-discrete analogue of the SP equdi#s the following Casorati
determinant solution:

d . f_k) a(f_kﬂﬁ fk+1fk)
U(s)=—|(2iln—), o&== + , 3.23
(o) ds( i) %72 Boaf T (3:23)

k—1
XI(:X0+26|7
1=0

f(s) = to(k,s), fi(s) =T1(k,S),
tlks) = [ W™ Yk s)

1<i,j<N’
wherey" (k,s) satisfies
qu(n)(k, S) — p:ﬂ(l_ an)—keg%iHEiO*i”/‘l_i_ (_pi)h(l_l_am)—kefz%iS+"]i0+i7'[/47

and the phase constantsrt/4 play a role of keeping the reality and regularity.
Note thata? must be always greater than or equabfdecauséuy1 — Ux)? > 0. This
can be easily verified by

The mesh size of self-adaptive meskl is always chosen as less thain
We can rewrite the semi-discrete SP equation in an altem&irm which converges to
the SP equation in the continuous limjt— 0. Multiplying Eq.[3.22) by 3, we have

2 2 2
dog 5 Uicp1 — Uk

& = <lal. (3.24)

EIiminatingBﬁ using Eql(3.21), this leads to
AU — W) _ Ok (Uk 1+ Uk) - (3.26)

ds
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Since
d (Uky1— Uk 1d(Ugr1—Uk)  Uke1 — Uc A
el XYy = — - 27
ds( Sk ) Sk ds % ds’ (3.27)
it follows that
d (U1—U) Ui+ Uk (Uks1— U\ 2
4 ( L ) — U+ L L) (3.28)

by using Eqsl(3.26) and (3.122). Equatién (3.28) gives aditrm of the semi-discrete SP
equation. In the continuous limat— 0 (dx — 0), we have

U1 — U du U1 + Uk
s T oo 7—>U,
Ok dx 2
— = — =—=Y (uf; — U —=u
0s as+j: ds 4];)( 1) = U
0X
0s =0t + —
s t+as

Consequently, Eq.(3.28) converges to

1 1
<6t — Zuzax) Uy = 2U+ éuuf.

By the scaling transformatiork2— x, one arrives

1
Ay — 0 — 21uzax,

1
Ukt = U+ U(Uy)% + éuzuxx,

which turns out to be the SP equation
1
Ut = U+ é(us)xx~

In a similar way employed in [16, 17], the semi-discrete agak of the SP equation can
be used as a novel numerical scheme, i.e., the so-calleddative moving mesh method,
to perform numerical computations for the SP equation. Hewehe first equatiori (3.21)
has ambiguity for determining the sign even if the non-umfaneshdy is solved from
the second equatiof (3122). To avoid this difficulty, weaddtice an intermediate variable
O = (P11 + @) /2, and employ the following scheme,

(U1 — Uk) = 2asin(@y),

Ao Ukis+ Uk

ds 2
which can be derived from Egs.(3118) amnd (3.15). Equati@n&9) are equivalent to the
integrable semi-discrete analogue of the SP equation, la@addlation between the non-
uniform meshdyg and@ iSO = acos(cﬁ(). Figuredll andl2 are numerical results for one-loop
and two-loop soliton solutions, respectively. The timgstee isAt = 0.01 and the number of
grid points isN = 200. The detailed numerical results by using the integrabiei-discrete
SP equation will be reported somewhere else.

(3.29)
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Figure 1. Numerical solutions for one-loop soliton solution with {&} 0.0; (b)t =10.0. The
parameters of the initial condition apg = 0.5

4. Full-discretizations of the short pulse equation

To construct a full-discrete analogue of the SP equationjntreduce one more discrete
variablel which corresponds to the discrete time variable.
It is known that the-function

(k) = 6™ (kD) (4.1)

1<ij<N’
with

"V (k1) =ciipP(1—ap) ¥ (1— b%) ) ez Stlio | cioq'(1—ag) X (1— bé) ) ez St
satisfies bilinear equations [23]

(gos— 1) T(k+ 11) - T(k, 1) + Tnea(k+ 11T 1(k 1) = O, (4.2)
and

(20Ds— 1)Tn(k, | +1) - Ty (K, 1) +Tn(k, DTnsa(k 1 +1) = 0. (4.3)

Applying the 2-reductiort, 1 = (|‘|i'\':1 piz)_lTnH, i.e., adding constraintg = —p; to the
N-soliton solution, we obtain

2
(aos— 1) T(k41,1)- Ta(k )+ Tosa(K+ L, ) Tnsa(k,1) = O, (4.4)
and

(20Ds — 1)Tn(k,1 +1) - Tnsa(k, 1) +Tn(k, ) Tnsa (k1 +1) = 0, (4.5)

where the gauge transformation— (|‘|i'\':1 pi)n'[n is used. Letting

fk,| :T0<k7|)7 f_k,| :Tl<k7|)7
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Figure 2. Numerical solutions for the collision of two-loop solitoalstion with (a)t = 0.0;
(b)t =6.0; (c)t =8.0; (d)t =10.0; (e)t = 15.0. The parameters of the initial condition are
p1 =0.5,p,=1.0.

the bilinear equation§ (4.4) ard (4.5) imply the followimyf equations

2 _ _
<5Ds— 1) fiernr - il + firr) fi) =0, (4.6)

2 _ _
<5Ds— 1) firrr - it + firr) fi) =0, (4.7)

(2bDs— 1) ficj 11 fics + fis fki 1 =0, (4.8)
(20Ds— 1) fy 1+ fict + fi fiy41 =0, (4.9)



Integrable discretizations of the short pulse equation 11

which are actually equivalent to

2 (In fk+1|) 14 fient fil 0 (4.10)
fur /o firni f .

g ( fk+ll) fk+1,l ficl -0 (4.11)
a fi s fk+1,l_fk7l , .

( fkl+1) Cqg ffa g (4.12)
fil /o fk,l+1fk,l 7 |

( fkl+1) 14 fiofiin _ g (4.13)
fil /o fraf |

Note thatf and f can be made complex conjugate of each other by choosing thgeph
constants properly. By introducing

g = <2||n f ) (4.14)
fi|

and

Xy = ka—

(In fi fiet s,

(4.15)

whereXy | is thex-coordinate of thé-th lattice point at time, we find the following relations

Uk+1,1 — Ukl
Ui | +1+ Uk =
X1l —

Xil41— Xkl =

fi) T2

_ ia(fk+1,| fid  firal fk,l)
P i fierat fil
i (fkl fk|+1 ) fk7l+1)
b\ fiivifir  firrafi
_a < ficr 11 i fk+1,| fk,l)
2 fk+1| fkl T, fic)
11 (fklfkl+1
b 2b fiia i

It is straightforward to derive
(U1 — Uiy )? = 4(a% — &) |
from Eqs[(4.1b) and (4.18) and

. 1 1)2
(Ugj+1+U) ) =4 E—(XkJ—kl—xk,l‘i‘B) :

fiiva fi

(4.16)
(4.17)
(4.18)

(4.19)

(4.20)

(4.21)

from Eqsi(4.1l7) and(4.19), whedg| = Xkt11 — Xk1. Equations[(4.20) and (4.21) give a

full-discrete analogue of the SP equation.
Let us consider another full-discrete analogue of the SRitemu From EQq<.(4.16)-

Eqgs.[4.1D), we obtain

fir1,1 fic)
fir11 fic)
fier) fi
fir1,1 fic)

:g(xk+1l X ) +1

Uk+1, — Ukl

2

o 1 Uk+1,] — Uk
- a (Xk+l| Xk| I 2 ) )

).

(4.22)

(4.23)
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fiel fir1 1 Ugl+1+ Uk
f o = (X X+ p i ) (4.24)
) + )
fie) fic 1 Ugli1+Ugg
ot =P (X Xa g T ) (4.25)
1+1Tk,
From the relationg (4.22)-(4.25), we have
Xt 11541 — Xigj 1 — | Ll
X 11 — Xig) — | ekl
_ Xk+1,|+1 - Xk+1,| + % —I Uk+1.I+E+Uk+1.I 4.26
B R L )
Equating the real part and imaginary part respectively, aweh
1 Uk+1,1+1 — Uk | +1 Uk | +1 + Uk |
(Xt 1141 — X1 +1) (Xk,l+1—xk,l + 5) 4t 5 Sl 5
1 Uic1,1+1 + Ukt1) Ukl — Ukl
= <Xk+1,l+1 — Xir1) + B) (K11 — Xiet) — L +12 = +1’2 =, (4.27)
1
(Xk,l+1 — Xl + B) (Ukt1,1+1 = Ukl +1) — (Kie114+1 — Xt +1) (Ui 1+ Ui 1)
1
= (Xk+1,|+1 — X1l + 5) (U1 — Uigt) 4 (K1, = X)) (Ukg1,1 41+ Ukl ) 5 (4.28)
which can be rearranged into the following simpler form:
1
(Rt 141 = X1 = Xl 1+ Xiet) | = = X1 + Xl 1
b
_ Ukt1i41 4 U411 — Uk |+1 — Uk | Uk+1| + Uk |+1 7 (4.29)

2 2
2
(Uk41,1 41 — Uk — Uk l4+1+ Uk)) (5 + X141 — Xera + Xel 41— XkJ)

= (Kiern 141+ X1, — X141 — Xiet) (U 1,141 + Uiy 1) + Uk 1+ U ) - (4.30)

Equations[(4.29) and (4.B0) constitute another form ofgrable full-discretization of the SP
equation. Taking the continuous linfit— O in time, we obtain

1
(X1 — Xi)s = —Z(Uk+1—uk)(uk+1+uk)a (4.31)
and
(Ukt1— Uk)s = (K1 — Xic) (U1 + Ui (4.32)

which are nothing but the semi-discrete analogue of the St [3.21) and (3.22). Here
we used% — 0sF asb — 0.

From the construction of the full-discrete analogue of tRee§uation, the determinant
solution of the full-discrete SP equation is

Okl Okl 0 ( : f_kl)
U =i|——-—=>=>)==—1(2iIn—), 4.33
. ( fiy Tk ) s i (4.33)
1/ = Okl

0 —
X = ka— > (m + m) =ka— a—s(h’] fici Tl (4.34)
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fio =To(k 1), fu =Ta(k]),
Okl = Po(k,1), a1 = pa(k,1),

w0 e ) e e
WD) WY ) e ey Nk

Tn<k7|): . . . )
Wy (k1) w“‘“)(kw NP
WPk WP e e P
Wk Wi ) e wy N Pk

Pa(k,1) = : . : : ’

W () w<””><kl> N e

wherey(" (k1) satisfies
-
k) = pr(-ap) (1-b ) et
|

— .
+«—po%1+apy*<1+b%) g SN0t
|

and the phase constantsit/4 play a role of keeping the reality and regulargys an auxiliary
parameter. Note thatl can be expressed g8 = 2051y (k,|) because the auxiliary parameter
sworks on elements of the above determinant Bg{]ﬁ’)(k,l) = wi(nfl)(k,l). In the lattice
KdV and lattice Boussinesq equations, one-fiinctions is also expressed by the derivative of
anotherm-function with respect to an auxiliary parameter|[26, 24islis a common property
of discrete soliton equations which are directly connetbetie Backlund transformations of
continuous soliton equations.

Let us consider Eq$.(4.20) aid (4.21) again. Rewriting #d&)) and[(4.21), we have

<Uk+17I2— Uk | ) i 6k| _ 2 (4.35)
Uk | +1 + Uk | 2 1\? 1
— 5 )t Xicl+1— X + o) T2 (4.36)
These equations actually give conserved quantities beedu#d 1/b? are constants.
Introducing
2
u —u
) = (%) +8, (4.37)
2 2
u +u 1
I = (%) + (Xk7l+1—xk,l +6) , (4.38)
Egs. [4.3b) and (4.36) imply the following conserved quéeti
g =22, Jg= L (4.39)

?7
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for arbitrary integer values ¢&fandl. Hence, we have
lki+1— ki =0, ks — I =0. (4.40)
A substitution of the corresponding conserved quantigasgl$ to

<Uk+1,l+1 + Uky1 — Uk 41— Uk ) (Uk+1,|+1 — U1, — Ul 4+1 + Uk )

2 2
= —(Krni+1+Xern) — Xt — X)) Ker 1141 — Kl — Xl 41+ %) (4.41)
(Uk+1,l+l + Uey11 + Uk 41+ Uk ) (Uk+1,l+l + U1, — Uil +1 — Uk )
2 2

2
=— <Xk+1,|+1 — X1l + Xigl+1 — Xl + 5) (Kerp 41— Xiepr) = Xel41+Xer) . (4.42)

It can be readily shown that the difference of Eq.(4.42) and£41) gives Ed.(4.29), whereas,
the quotient is nothing but EQ.(4]30). In summary, Eqsd#.and [4.36), which imply
conserved quantities, can also be derived from the futirdie analogue of the SP equation

(4.29) and[(4.30).

5. Conclusions

In the present paper, we proposed integrable semi-disanetéull-discrete analogues of the
short pulse equation. Thé-soliton solutions of both the continuous and discrete SR&gns
were formulated in the form of Casorati determinants, whindtude multi-loop soliton and
multi-breather solutions. Based on the semi-discrete SRitem, a self-adaptive moving
mesh method is proposed and used for the numerical solutibtiee SP equation. The
examples of one- and two-loop soliton solutions shows therdi@l of this novel method
for the numerical study of the short pulse equation.

References

[1] Schafer T and Wayne C E 20hysica D196, 90-105
[2] Chung, Jones C KR T, Schafer T and Wayne C E 2B@slinearity18, 1351-1374
[3] Robelo M L 1989Stud. Appl. Math81, 221-248
[4] Beals R, Rabelo M and Tenenblat K 1988ud. Appl. Math81, 125-151
[5] Sakovich A and Sakovich S 2005 Phys. Soc. Jpi74, 239-241
[6] Brunelli J C 2005]. Math. Phys46, 123507
[7] Brunelli J C 2006Phys. Lett. 2353, 475-478
[8] Sakovich A and Sakovich S 2006 Phys. A39, L361-367
[9] Kuetche V K, Bouetou T B and Kofane T C 2007Phys. Soc. Jpir6, 024004
[10] Kuetche V K, Bouetou T B and Kofane T C 2007Phys. A40, 5585-5596
[11] Matsuno Y 20073. Phys. Soc. Jpi76, 084003
[12] Levi D and Ragnisco O (Eds.) 198DE IlI-Symmetries and integrability of difference eqoiag, CRM
Proceedings and Lecture Notes 25, AMS, Montreal
[13] Grammaticos B, Kosmann-Schwarzbach Y and Tamizhmgiiids.) 2004Discrete Integrable Systems
Lecture Notes in Physics 644, Springer-Verlag, Berlin
[14] Suris Y B 2003 The Problem of Integrable Discretization: Hamiltonian Apach, Progress in
Mathematics 219, Birkhauser Verlag, Basel-Boston-Berli



Integrable discretizations of the short pulse equation 15

[15] Bobenko A | and Suris Y B 200Biscrete Differential GeometryGraduate Studies in Mathematics 98,
AMS, Rhode Island

[16] Ohta Y, Maruno K and Feng B F 2008 Phys. A41, 355205

[17] Feng B F, Ohta Y and Maruno K 20@9Xiv:0905.2693

[18] Hirota R 1972]. Phys. Soc. Jpr33, 1459-1463

[19] Mikhailov AV 1979 JETP Lett.30, 414-418

[20] Hirota R 1981J. Phys. Soc. Jp®0, 3785-3791

[21] Hirota R, Ito M and Kako F 1988rog. Theor. Phys. Sup#4, 42-58

[22] Hirota R, 2004The Direct Method in Soliton Thegrambridge University Press.

[23] Ohta 'Y, Kajiwara K, Matsukidaira J and Satsuma J 1998 ath. Phys34, 5190-5204

[24] Backlund A V 1880Math. Ann.17, 285-328

[25] Hirota R 1977]. Phys. Soc. Jpd3, 2079-2086

[26] Kajiwara K and Ohta Y 2008. Phys. Soc. Jpir7, 054004

[27] Maruno K and Kajiwara K 200arXiv:0908.1800


http://arxiv.org/abs/0905.2693
http://arxiv.org/abs/0908.1800

	Introduction
	Bilinear equations and determinant solutions of the short pulse equation
	An integrable semi-discretization of the short pulse equation and numerical computations
	Full-discretizations of the short pulse equation
	Conclusions

