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Recent research shows that a faulty or sub-optimally operating metabolic network 
can often be rescued by the targeted removal of enzyme-coding genes—the exact 
opposite of what traditional gene therapy would suggest. Predictions go as far as to 
assert that certain gene knockouts can restore the growth of otherwise nonviable 
gene-deficient cells. Many questions follow from this discovery: What are the 
underlying mechanisms? How generalizable is this effect? What are the potential 
applications? Here, I will approach these questions from the perspective of 
compensatory perturbations on networks. Relations will be drawn between such 
synthetic rescues and naturally occurring cascades of reaction inactivation, as well as 
their analogues in physical and other biological networks. I will specially discuss 
how rescue interactions can lead to the rational design of antagonistic drug 
combinations that select against resistance and how they can illuminate medical 
research on cancer, antibiotics, and metabolic diseases. 
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Introduction 
 
“When the rats were deprived of a specific fat in their diet, their body cells compensated by 
overproducing it. (...) So, maybe, we could stop Lorenzo's body from producing saturated 
C24 and C26 by loading his diet with another kind of fat... you know, one that is less... is 
less harmful”, said the character of Susan Sarandon in the true-story movie Lorenzo's Oil(1). 
The movie portraits the discovery of a treatment for the inherited metabolic disorder 
adrenoleukodystrophy (ALD) by competitive inhibition of an enzyme that forms very long-
chain fatty acids(2). How many other diseases could be treated by “less harmful” (or not 
harmful at all) compensatory perturbations?  
 
Potentially many more than previously anticipated. Contrary to what common wisdom may 
suggest, most cellular functions are carried out by the coordinated activity of multiple 
interacting elements, including genes, proteins and biochemical reactions(3,4). A perturbation 
triggered by a genetic or epigenetic defect will often propagate through the cellular network 
causing the down-regulation of some reactions and up-regulation of others. But far from 
being a problem, the integrated nature of this system may hold the key for recovery. Indeed, 
while it remains generally unclear how global network properties are affected by local ones, 
recent progress has been made by inverting this perspective and seeking instead the 
conditions that we should impose on the local network structure and/or dynamics to 
generate a desired global collective behavior(5). In the case of a defective cell, the desired 
behavior is the one that minimizes the impact of the defect.  Such rescuing interventions 
can be argued to generally exist in systems that, like living cells, are governed by large 
networks that are decentralized and enjoy a certain level of redundancy. 
 
This point is neatly illustrated by in silico studies of Escherichia coli's metabolism. For E. coli 
fully adapted to arabinose minimal medium, for example, the knockout of gene fbaA is 
observed to be lethal, owing to the inability of the mutant strain to metabolize building 
blocks of the biomass, such as phenylalanine, tyrosine and L-lysine (see Fig. 1). But the 
shutdown of biomass production is accompanied by the activation of pathways, such as 
glyoxylate, that are predicted to be inactive for the mutant strain should it be able to operate 
in a state that maximizes biomass production. This observation suggests a possible recipe 
for the design of compensatory perturbations. Indeed, the inactivation of the glyoxylate 
pathway through the knockout of gene aceA is predicted to restore the organism's ability to 
produce biomass and hence grow (Fig. 1). This inactivation up-regulates the activity of 
reactions involved in the production of biomass precursors by globally rerouting fluxes to 
effectively bypass the defect caused by the knockout of gene fbaA. Because fbaA-deficient 
mutants are unable to reproduce—a prediction supported by experiments(6)—such flux 
changes would not occur spontaneously through adaptive evolution under the given 
arabionose minimal medium, making the proposed rescue all the more interesting.  We 
refer to such knockout-based rescue interventions as synthetic rescues(5). 
 
The fact that the metabolic network operates in a decentralized way (it does not have a 
central “controller”) implies that it will generally respond to perturbations in a non-optimal 
manner with respect to any (natural or human-selected) objective function. Cells will, in 
particular, not grow as fast as they could under the constraints imposed by a perturbation 
even if the pre-perturbation state is optimal. The fact that the network is redundant (different 
metabolic states can often lead to comparable global objectives) implies that the activity of 
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certain pathways, such as glyoxylate in the example above, can be constrained without 
compromising cellular function. More important, by doing so, fluxes can be forced to be 
routed through pathways that upon perturbation, such as the knockout of gene fbaA, are 
potentially more efficient for the cellular function of interest. Therefore, decentralization 
means that there is space for improvement, and redundancy that the response of the 
system can be in fact improved. These properties are actually common to many biological, 
physical and even social networks, rendering a significant level of generality to the concept 
underlying synthetic rescues. They have implications, for example, for the control of 
network-mediated failures ranging from blackouts and traffic jams to extinction cascades. In 
the specific context of cellular processes considered in this essay, they touch upon issues 
as diverse as epistasis(7), antagonistic drug interactions(8), gene dispensability(9), and the 
very notion of gene essentiality(10). 
 
 
Restraint-Based Control of Network Response 
 
Synthetic rescues can be identified through a fairly general two-step procedure: first, identify 
the actual reaction fluxes and the reaction fluxes that correspond to the desired metabolic 
states (e.g., “optimal growth”); second, regard reactions with fluxes much larger than the 
desired ones as candidates for (total or partial) knockouts. The knockout of one or few such 
reactions, implemented through the knockout of the corresponding enzyme-coding genes, 
often brings the entire system closer to the desired state. This is precisely the criterion used 
to design the synthetic rescue of the fbaA-deficient mutant described above. Although this is 
admittedly a simplified description, it is not necessarily model-dependent as it allows for 
implementations based on experimental flux measurements using, for example, increasingly 
accurate 13C tracer techniques(11). For instance, if the desired states are the ones that 
maximize the growth rate of a sub-optimally growing strain, candidate synthetic rescues can 
be identified by measuring the reaction fluxes of the strain and those of an adaptively 
evolved copy of the same strain. Perhaps the best way to appreciate this effect is, thus, by 
first examining what nature does to achieve similar goals.  
 
Numerous metabolic reactions, such as those of the glyoxylate and Entner-Doudoroff 
pathways, are routinely observed to become dispensable or even incapable of carrying 
activity under steady genetic and environmental conditions. But recent experimental studies 
on E. coli have demonstrated that genetic(12) and environmental(13) perturbations are 
generally followed by the transient activation of a large number of latent pathways, i.e., 
pathways that, like glyoxylate in the example of Fig. 1, would not be recruited under 
unperturbed conditions. Growth, on the other hand, will tend to decrease in response to the 
same perturbation. The picture that emerges is thus the one in which a strain fully adapted 
to a certain environment will often experience a decrease in growth rate accompanied by a 
burst of reaction activity following a perturbation caused, say, by a gene knockout (see Fig. 
2A, B). If the post-perturbation organisms (albeit less fit) remain able to grow, they may fully 
adapt to the new conditions after acquiring just a handful of (regulatory) mutations in the 
course of few hundreds or thousands of generations of adaptive evolution(14). The final 
growth rate(15) and reaction activity(12) are often comparable to the original one, which 
suggests that the post-perturbation lulls are a consequence of suboptimal response as 
opposed to limitations inherent to the metabolic network.  
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This behavior has been further elucidated by the computational modeling of various single-
cell organisms (see Box 1). It has been shown(16) that organisms evolved to maximize 
growth or one out of many other linear functions of metabolic fluxes, such as the sum of all 
fluxes, will necessarily activate a number of reactions that is just slightly larger than the 
number necessary for the organisms to grow at all(17,18). It has also been shown(16) that 
typical suboptimal states necessarily recruit a much larger number of reactions. For E. coli 
fed glucose, for example, the number of active metabolic reactions in a state maximizing 
biomass production is, counter-intuitively, 50% smaller than in typical non-optimal states. 
More important, the in silico analysis identifies irreversible reactions as the root cause of 
this difference. This is so because the solutions of [1] in Box 1 under the constraints 
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irreversible reactions are binding, forcing those reactions and others coupled to them to be 
inactive. In the case of E. coli, it is estimated that over 70% of the metabolic reactions are 
irreversible under physiological conditions(19), and that some 20% others are effectively 
irreversible due to the presence of irreversible reactions in the same pathway(16). Thus, as 
the metabolic system approaches an optimal state, some of these reactions will become 
inactive and trigger a cascade of inactivation that will propagate through other reactions in 
the network. 
 
The observation that optimal states activate fewer reactions than non-optimal ones bears a 
strong relation to the rescuing effect of targeted reaction knockouts. The top candidates for 
rescue knockouts are precisely the reactions that are active in non-optimal states but 
predicted to be inactive in the desired state (see Fig. 2C). It is interesting to note that the 
larger the number of such reactions knocked out the stronger the strength of the rescue 
effect tends to be (see Fig. 3C, where this behavior is contrasted with the behavior 
observed for other forms of gene-gene interactions). 
 
What is the theoretical maximum number of reactions that can be knocked out? This 
question admits a surprisingly simple and general answer for each fixed nutrient condition. 
The key observation that a reduced number of reactions are recruited by optimal states is 
not unique to E. coli or growth rate functions but is in fact a general behavior also found in 
other organisms and for many other linear functions of fluxes. Even more compelling, for 
optimal states under growth conditions, the number of active reactions was found to be 
~300 for all typical linear functions and all four organisms—H. pylori, S. aureus, E. coli, and 
S. cerevisiae—studied in detail by Nishikawa et al.(16). Then, the rule-of-thumb answer as to 
the maximum number of knockouts is that the strongest rescue would be achieved by 
removing all except ~300 reactions. The relevant question is to identify which 300 reactions 
to leave active, which does depend on the organism, the medium conditions, and the 
objective function to be maximized. Naturally, this is meant to be interpreted within the in 
silico model and with the caveat that the model ignores unknown side effects. 
 
In all likelihood, these are instances of a general and ubiquitous behavior, which we are 
now only starting to understand. This behavior can be conceptualized in terms of a fitness 
landscape for a given objective function φ, as illustrated schematically in Fig. 3A, B. A 
network (biological or not) that responds non-optimally to a perturbation will move to a state 
characterized by a value φ1 of this function that is smaller than its optimum φ1

opt. One can 
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seek to force the network to a state closer to this optimal by eliminating states 
corresponding to small φ. By doing so, the new best state available may change to a value 
φ2

opt smaller than the original optimum φ1
opt. Nevertheless, the fitness of the system will still 

be improved if this shifts the system to a new state with fitness φ2 larger than φ1. Such an 
improvement is expected to be possible in general by constraining (rather than augmenting) 
the dynamics on the network and, in particular, by removing nodes and edges as in the 
case of reaction knockouts. This intervention only exploits resources and states originally 
available in the system. Accordingly, I refer to this intervention as a restraint-based 
approach to control the network response.  
 
In the specific case of cellular metabolism, if the reaction rates are constrained to (but not 
less than) their optimal values(5), then the optimal does not change and  φ2

opt is guaranteed 
to remain equal to φ1

opt (Fig. 3B, blue curve). By bringing the individual fluxes closer to the 
optimal fluxes we expect to bring the equilibrium of the entire system, and by implication the 
metabolic objective, closer to its optimum. It should be emphasized that because this is a 
control to a response, not all states corresponding to small φ have to be eliminated for this 
to be achieved. In fact, states in which most fluxes are zero or close to zero always exist 
simply because they are always solutions of Eq. [1] under the constraints 
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The reason I emphasize reaction knockouts is not a mere caprice. The reciprocal would be 
reaction up-regulation which, although more logical as a way to direct resources to the 
desired pathways, are not easy to be implemented in practice because the regulation of one 
reaction often requires the coordinated fine-tuned regulation of various other reactions(20)—
but see Ref. (21) for a discussion on expression systems. The insertion of a new gene to 
cover for a fault can be an exception to this since the rest of the cellular machinery, if intact, 
can coordinate such response as in the original system. (Fitness advantage may also be 
conferred by rewiring of the network circuitry at the signaling or regulatory level(22), although 
issues related to the stability and robustness of such changes have just started to be 
elucidated(23,24).) Gene expression, in particular, is not guaranteed to correlate with reaction 
activity. This illuminates another property of the metabolic network that makes this approach 
useful in practice. If the metabolic network had the property of activating most or all 
reactions in optimal states, one could still conceive a restraint-based approach to enhance 
the response of the network by partially knocking out (i.e., knocking down) the genes and 
hence reactions that are found to be over-expressed in the observed non-optimal states (cf. 
Fig. 2C). However, this would require determining the exact relation between gene 
expression and reaction flux, whereas full knockouts are properly defined without the need 
of such information. 
 
 
Design of Antagonistic Drug Combinations 
 
Two drugs may exhibit no interaction, interact synergistically, or interact antagonistically. 
The latter includes cases in which the strength of the two-drug combination is weaker than 
one of them alone.  In the case of antibiotics, for example, in the presence of one antibiotic 
the addition of a second antibiotic would increase rather than decrease bacterial growth. 
Kishony’s lab has recently demonstrated that, counter-intuitively, such suppressive drug 
combinations can select against resistant strains(25). This was demonstrated using an 
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ingenious experiment with sub-lethal doses of the antagonistically interacting antibiotics 
doxycycline and ciprofloxacin. By measuring the effect of this combination in direct 
competition between doxycycline-sensitive and doxycycline-resistant E. coli, they could 
identify a region in the concentration diagram where the growth rate of the sensitive strain 
overcomes that of the resistant mutants. This is so because mutations conferring resistance 
to doxycycline are effectively equivalent to a reduction in the concentration of this drug, 
which increases the effect of ciprofloxacin (see Fig. 4A).  
 
Similar results have been previously obtained by Blagosklonny using the anticancer drugs 
doxorubicin and paclitaxel in HL60 human leukemia cells(26). The combination was shown to 
select against doxorubicin-resistant cells due to the suppressive interaction between 
doxorubicin and paclitaxel. Resistance is in this case associated with the expression of 
transporter MRP1 and consequent efflux pump of doxorubicin. This efflux and resulting 
reduction in doxorubicin concentration elucidates how resistance equates to a reduction of 
this drug in the concentration diagram of Fig. 4A (horizontal arrow). Furthermore, recent 
evidence indicates that, when compared to synergistic interactions, antagonistic drug 
combinations are less likely to lead to the evolution of resistance in the first place(27).  
 
It is therefore of much interest to develop a rational approach to identify drug combinations 
that exhibit antagonistic and, in particular, suppressive interactions that can bias selection 
against resistance. As suggested above, this would be important not only in the 
development of antibiotics but also in the development of anticancer drugs. Many different 
mechanisms may underlie suppressive drug interactions, but given that drug interactions 
are analogous to genetic epistatic interactions, synthetic rescues certainly appear as a very 
promising candidate to be explored.  
 
Figure 4B schematically shows the analogue of Fig. 4A for synthetic rescue gene pairs, 
establishing a very important relation that has not been previously appreciated. In this case 
the axes represent the level to which the gene expression is suppressed, ranging from no 
intervention to full knockout. In this example, the knockout of gene A will select against 
strains carrying gene B, since the knockout of the latter can rescue the knockout of the 
former. This is derived under the simplifying assumption that the resulting growth rate does 
not depend on the order of the gene removals, or that they are implemented 
simultaneously. In this argument, gene B could be replaced by a function gained by 
resistance that is difficult to be targeted directly, such as transporter MRP1 in the case of 
cancer, or any other cellular function that distinguishes the target cells from “normal” cells. 
To select against these cells, the question is then reduced to the task of identifying gene 
knockouts that would (hypothetically) be rescued by the inactivation of that function.  Drugs 
that would exploit these targets would thus interact antagonistically through the effect they 
cause on the physiology of the cell as opposed to direct chemical interactions between the 
drugs. In the whole-cell scale, the same can be conceived when gene A is replaced by a set 
of multiple genes or proteins and the gene knockout is replaced by a continuous modulation 
of these components.  
 
The relation between synthetic rescues and antagonistic drug interactions is further 
strengthened by the very recent demonstration of the molecular mechanism underlying the 
suppression of DNA synthesis-inhibiting antibiotics by protein synthesis-inhibiting 
antibiotics(28).  In this case, a DNA synthesis inhibitor such as trimethoprim results in a rate 
of protein synthesis above the optimal value for maximum growth, which can be partially 
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remediated by adding a translation inhibitor such as spiramycin. The above-optimal protein 
synthesis—and the resulting suppressive interaction between the antibiotics trimethoprim 
and spiramycin—is caused by the non-optimal response of ribosomal gene expression to 
the presence of DNA stress imposed by the DNA synthesis inhibitor(28). This mechanism 
affords direct parallels with the non-optimal response to genetic perturbations that underlies 
synthetic rescues(16). 
 
Specifically in the context of cancer, the possibilities this may open for combinatorial 
therapeutics are very much in line with the recent shift in anticancer drug development from 
cytotoxic drugs to more specific agents that modulate proteins associated with cancerous 
states(29). On the other hand, a recent study of approved drugs showed that drugs acting on 
single targets appear to be the exception rather than the rule(30). But lack of selectivity is not 
necessarily an undesirable property(31) given that complex diseases, such as cancer, may 
not be effectively treated by modulating single targets, a hypothesis that is further 
corroborated by the fact that many of the most effective drugs have this property. In the 
case of antibiotics, synthetic lethality provides a basis for why this would be the case, and 
analogous effects may be at work in the case of anticancer drugs believed to act on multiple 
signaling proteins, such as imatinib and sunitinib(32). It is therefore expected that the 
combination of two or more antagonistically interacting single- or multi-target drugs will lead 
to a rational new approach to explore these possibilities, with its own advantages and 
challenges. Of utmost interest for this exploration is the need to determine the impact of 
antagonistic drug combinations on normal cells of the host organism vis-à-vis the impact of 
drug combinations exhibiting synergistic interactions or no interactions. 
 
 
Implications and Applications 
 
In addition to their role in antagonistic drug interactions, synthetic rescues and related 
concepts have the potential to provide new insights into numerous outstanding problems, 
including: 
 
1. Lethality vs. Essentiality. It has been largely assumed in the literature that a gene 
whose knockout is lethal is necessarily essential for growth, but the occurrence of synthetic 
rescues shows that this is generally true only if no other genes are concurrently knocked out 
or knocked down. Thus, the notion of gene essentiality has to be distinguished from the 
notion of lethality even when the environmental conditions are kept unchanged. This is 
illustrated in Fig. 5, where I reproduce some predictions for E. coli in glucose minimal 
medium. In this medium, gene pgk is essential because the knockout mutants are not able 
to produce biomass regardless of the expression level of the other genes. The knockout of 
gene pfkAB, on the other hand, is lethal but this gene is not essential because the knockout 
mutants are predicted to recover the ability to produce biomass upon the concurrent 
knockout of genes lpdA, gpt, gadB, gadA, tynA, aceA, gltP, gltS, and pat. (This example 
also illustrates that synthetic rescues may require multiple gene knockouts(5).) Therefore, 
while the knockout of an essential gene is guaranteed to be lethal, the converse—that lethal 
knockouts would correspond to essential genes—is generally not true. Moreover, while both 
essentiality and lethality depend on the environmental conditions, only the latter depends on 
the state of the system prior to the gene knockout. Note that this distinction between 
lethality and essentiality does not follow from usual compensatory mutations, since those 
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tend to add function to the system, nor from alternative definitions of 'synthetic rescues' that 
include growth recovery caused by mutations other than knockouts(33). 
 
2. Dependence on Initial Conditions. The impact of an environmental or genetic 
perturbation depends not only on the environmental and genetic background but also on the 
level of adaptation of the cells, as already suggested by the hypothesis of minimization of 
metabolic adjustment(34). More striking, whether a perturbation will be lethal or not depends 
critically on the specific pre-perturbation metabolic state of the cell. This otherwise subtle 
dependence may explain part of the current disagreements between different knockout 
experiments conducted under apparently similar conditions. For example, for E. coli K-12 in 
rich media, 240 out of 303 "essential gene” candidates identified in the Keio collection(35) 
had previously been tested by Gerdes et al.(36) and PEC collection(37), but only 60% of them 
were found to be essential in both of these previous studies [Natali Gulbahce, private 
communication]. If one considers genetic and environmental changes as inputs and growth 
or other integrated function as an output, the dependence on the internal state of the cell 
determined by the previous history of the strain is in many aspects analogous to hysteresis 
in physical systems. This is important given that numerous publications on growth 
experiments (including some of the most inspiring ones) do not uniquely define the initial 
state of the cells. Overnight growth in rich medium, for example, is analogous to have a 
magnetized material relaxing in a magnetic field for a certain period of time, which by itself 
does not say what state the system reached at the end of the process. This is partially 
related to the fact that, in the case of two or more gene knockouts, the order and timing of 
the knockouts may matter. 
 
 
3. Gene Dispensability Conundrum. The transient activation of latent metabolic 
reactions following a perturbation tends to involve a large number of reactions that are 
asymptotically inactive both before and after the perturbation. That is, the transient activity 
includes much more than the union of the optimal sets of reactions that would be recruited 
before and after the perturbation (up to 2 times larger for E. coli in minimal glucose 
medium(16)). Thus, the number of reactions and hence genes that are active under variable 
conditions can be significantly larger than under standard laboratory conditions. This 
provides natural new hypotheses to address the longstanding problem of gene 
dispensability—the observation that the knockout of numerous genes have negligible 
impact on growth under standard laboratory conditions(38,39) and, to a lessen degree, even 
when alternative nutrient conditions are considered(40) (but see also Ref. (41), which 
addresses the impact of chemical stress). One such hypothesis is that the presence of 
latent (otherwise dispensable) pathways facilitate adaptation and hence confer competitive 
advantage under variable conditions, which is a possibility that has not been fully explored 
in previous studies. In particular, it may be the case that apparently neutral mutations are 
not neutral after all(42). This would certainly help explain why bacteria and other highly 
optimized organisms activate latent pathways in the first place. However, there is an 
obvious problem with this argument, namely that the deletion of latent reactions has been 
found to rescue rather than aggravate growth defect(5,16). This would make them not only 
dispensable but also undesirable. This alone does not rule out the possibility that latent 
pathways may offer some benefit not captured by in silico models, but it does make the 
problem more interesting and increases the plausibility that each of these reactions is 
permanently needed for growth in at least one evolutionarily relevant condition not yet 
identified. But why are latent pathways activated when they are not permanently needed 
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after the perturbation? One possibility is that they create plasticity by generating a library of 
possible states from which the regulatory system can choose mainly by down- rather than 
up-regulating reactions. This possibility is consistent with the hypothesis that suboptimal 
states serve as standby states in variable environments, as the suboptimal growth of wild-
type organisms even in their preferred carbon source seems to suggest(43,44). 
 
4. Tolerance to Environmental Stress. Synthetic rescue interactions improve fitness at 
the expense of robustness. The rescued organisms will grow faster in the environmental 
conditions under consideration but will (presumably) lose flexibility to adapt to other 
conditions. For many applications, however, such as in the microbial production of 
compounds of industrial interest, this is a secondary problem. The primary problem is to 
improve tolerance to the specific industrial environment (e.g., tolerance to specific ethanol 
and oxygen concentration in the case of yeast). Therefore, the systematic study of synthetic 
rescues may add a new dimension to microbial optimization efforts, a field in which gene 
knockouts have been previously used to optimize production of specific metabolic 
compounds as byproducts of adaptation-induced growth optimization(45,46). 
 
  
 
Other Systems and Processes 
 
Studies of both human(47) and animal(48) cerebral cortices have shown that a significant 
fraction of the synapses created in the first stage of brain development is eliminated before 
adulthood. In the frontal human cortex, the maximum synaptic density takes place at 1-2 
years of age and is up to 50% higher than the adult mean(49). Like in the case of latent 
pathways, this transient is believed to generate plasticity, in this case by creating an 
anatomical substrate for future brain development. As such, synapse elimination is part of 
normal brain development. Interestingly, similar effect plays a role in the theoretical design 
of neural networks for pattern-recognition tasks. In the latter context, it has been shown that 
the selective elimination of network connections can improve the performance of already 
good networks while significantly reducing the number of parameters(50). This is in fact the 
basis of an elegant technique for neural network optimization known as optimal brain 
damage(50).  
 
Back to the real brain, another puzzling observation concerns the paradoxical effect of 
lesions(51). It has been found, in particular, that while certain unilateral brain lesions can lead 
to reduced spatial attention, the addition of a second lesion to the other hemisphere often 
leads to partial restoration of the lost function(52). Is it a mere coincidence that such 
disparate systems exhibit behavior so strikingly similar to the one observed in metabolic 
networks?  
 
Possibly, but it is more plausible to admit that these systems have common properties 
owing to their underlying network structure. With that in mind, one can expect that a 
restraint-based approach of the type discussed above can be used to rescue and control 
numerous networked systems, including non-biological ones. In traffic control, for example, 
congestion pricing is an efficient method to reduce congestion by surcharging users in 
periods of peak demand(53). This is effectively equivalent to constraining high-demand roads 
by stimulating users to re-route or reschedule their journey in order to shorten everyone's 



 10 

travel time. Control of overload cascading failures in power grids is another illuminating 
example. In power grids, the flows can be re-routed to minimize overloads by exploiting the 
local conservation of currents at each power station. By comparison, in metabolic networks, 
a similar conservation law—the conservation of mass—is at work in each reaction and 
underlies the re-routing of fluxes. In this analogy, knockouts and changes of medium 
conditions are tantamount to load shedding and dispatch of power generation, respectively. 
In fact, the original findings on synthetic rescues in metabolic networks were partially 
inspired by a method introduced in Ref. (54) to control cascading failures in complex 
networks. It is therefore not entirely surprising that these disparate systems exhibit similar 
phenomena. 
 
It is also tempting to compare synthetic rescues with Olson’s theory(55) that “loss of gene 
function may represent a common evolutionary response of populations undergoing a shift 
in environment and, consequently, a change in the pattern of selective pressures.” Evidence 
for this theory is provided, for example, in the recently observed high frequency of nonsense 
single-nucleotide polymorphisms (SNPs) in human populations, which suggests that 
truncation and even inactivation of some specific proteins have been advantageous in 
recent human evolution(56). In a population of 1,151 individuals, 99 genes where found with 
both copies inactivated by nonsense SNPs in at least one individual.  Such loss of gene 
function can occur in isolation. However, the existence of synthetic rescues suggests that 
the inactivation of certain genes could be compensatory, to the extent that they would be 
selected for after the inactivation of another gene even when they would be selected 
against in isolation. Therefore, in addition to the possibility identified by Olson’s theory, in 
which loss of function is driven by environmental changes, synthetic rescues indicate that 
loss of gene function may also be driven by a previous deleterious genetic modification. 
Empirical data does not exclude this possibility. In fact typical healthy individuals are found 
to have variations due to nonsense SNPs in tens of their genes(56).  
 
 
Conclusions  
 
As argued here, the response of a decentralized complex network can be largely controlled 
and optimized by constraining its structure and/or dynamics or, more generally, the 
resources available in the system. Moreover, biological networks appear to have evolved to 
operate with a mechanism of selection a posteriori. This is plausibly the case for cellular 
metabolism, which transiently activates latent pathways whenever adaptation to a new 
condition is called for, generating a library of states it can select from via down-regulation. 
This transient activation also illustrates how unlikely it is that a network will optimize any 
given objective function in the absence of adaptation. What is more, there are cases, such 
as those associated with lethal perturbations, in which adaptation alone cannot lead to the 
optimization of the (natural or human selected) function of interest. But the study of 
synthetic rescues(5) provides a clear procedure to identify compensatory perturbations 
based on constraining the reactions that are over-activated (or run in the opposite direction) 
when compared to the desired optimal state.   
 
These compensatory perturbations are by no means evident from the structure of the 
network, highlighting the importance of a modeling and experimental framework that can 
account for both the nonlinear and the system-level nature of the network response to 



 11 

perturbations. Moreover, because synthetic rescues involve the inactivation of two (and 
often more) genes, it is imperative to develop methods to systematically study the response 
of cellular networks to multiple perturbations. The expected results of this research are very 
promising, as they will address outstanding questions about collective gene interactions and 
potentially lead to new approaches for drug development that, like in the story of Lorenzo’s 
oil, involve interactions that challenge common sense. The latter can have direct 
implications for medical research related to metabolic diseases and, combined with current 
studies on antagonistic drug interactions(8), lead to a new paradigm to address drug 
resistance in antibiotic and cancer research.  This is only possible, however, if we can 
understand how the cellular network responds to multiple perturbations. 
 
Therefore, whether you call it systems biology, integrative biology, or network biology, it is 
clear that we need more of it. 
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BOX 1: Main elements of the computational modeling of cellular metabolism. 
 
Metabolic networks can be modeled using in silico reconstructions that account for 
biochemical and transport reactions, biochemical species, and reaction-enzyme-gene 
relationships(57). The state of the network is described by the vector ν = (νj) of the reaction 
fluxes. Complications due to unknown regulatory mechanisms and kinetic parameters are 
avoided by focusing on steady-state dynamics and describing the response to perturbations 
as transitions between steady states. The steady-state approximation is generally 
appropriate to describe the short-term behavior of individual cells as well as the average 
long-term behavior of large populations of cells. For a network with n fluxes and m species, 
the steady-state solutions are determined by  
 

  
    

! 

Sij
j=1

n

" # j = 0,         i =1,K,m,    [1] 

 
where S = (Sij) is the stoichiometric matrix accounting for the network structure. This matrix 
typically consists of hundreds or thousands of reactions and a large but smaller number of 
biochemical species, rendering Eq. [1] underdetermined. The individual fluxes are further 
bounded as νj

- ≤ νj ≤ νj
+ to model, for example, constraints imposed by thermodynamics, 

availability of nutrients, and maximum reaction rates(19,58). In particular, νj
± = 0 is used for 

uptake reactions of nutrients not available in the medium and νj
- = 0 for reactions that are 

irreversible. The resulting system is still underdetermined, as expected since cell regulation 
is not explicitly incorporated into the model. Phenomenological methods such as flux 
balance analysis (FBA)(59,60), minimization of metabolic adjustment (MOMA)(34), and 
regulatory on/off minimization (ROOM)(15), can then be used to implement biological 
hypotheses that predict metabolic behavior by selecting one out of the multiple solutions of 
Eq. [1]. FBA identifies a solution that optimizes a linear function of fluxes, such as biomass 
production (and hence growth rate) in the case of single-cell organisms well adapted to their 
environment. MOMA and ROOM model responses to perturbations, such as a gene 
knockout implemented by setting νj

± = 0 for the corresponding reactions. MOMA provides a 
solution compatible with the constraints imposed by the perturbation that is closest to the 
original metabolic state in the space of fluxes, while ROOM minimizes the number of 
significant flux changes. Thus, a perturbed metabolic network will generally depart from its 
optimal states.  
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Figure 1. Example of synthetic rescue in the TCA cycle of E. coli K12 MG1655 fed arabinose. 
Following the deletion of gene fbaA the cell is unable to produce phenylalanine, tyrosine and L-
lysine, which are components of the biomass. However, the deletion of gene aceA, gene sucAB, or 
both, as shown here, restores the ability of the fbaA-deficient cell to produce biomass because the 
inactivation of the aceA- and sucAB-catalyzed reactions increases the fluxes of other reactions 
involved in the production of biomass components. All relevant fluxes are shown after the rescue 
knockouts (blue lines) and the fluxes corresponding to the main flux changes are also shown before 
the rescue knockouts (red lines), where nonzero fluxes are represented by continuous lines and zero 
fluxes by dotted lines. In a state that maximizes biomass production, the reactions removed by the 
rescue knockouts would not be active and other reactions—such as the one catalyzed by gene 
sucCD—would run in the opposite direction, which illustrates that the rescue perturbations effectively 
correct for the suboptimal response to the primary perturbation. Indeed, while previous studies have 
considered the removal of competing pathways to increase microbial production of certain 
chemicals, synthetic rescues demonstrate that gene knockouts can be used to control the response 
to perturbations. The inability to produce biomass following the knockout of gene fbaA and the 
recovery of this ability upon the rescue knockouts is entirely due to the response of the network, in 
this case modeled using MOMA, since the FBA solutions—those that maximizes growth—are not 
altered by the rescue knockouts (see Box 1). (Figure adapted from Motter et al.(5), based on 
simulations of the entire metabolic network.) 
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Figure 2. Impact of perturbations on cellular growth and metabolic reaction activity. (A,B) A transient 
decrease in growth (A) is often accompanied by a transient activation of latent reactions (B). After 
adaptive evolution, the growth and reaction activity can become strikingly similar to the original one. 
(C) Reaction-flux changes over time scales shorter than those relevant for adaptive evolution, which 
also apply to cases in which adaptive evolution is not possible (e.g., in the presence of a lethal 
perturbation). The reactions can be divided into three groups: those whose fluxes will decrease (top 
red), those whose fluxes will increase (middle red), and those whose fluxes will change direction 
(bottom red) in response to the growth-suppressing perturbation.  The fluxes in all three groups can 
be partially or completely corrected by rescue knockouts implemented in the second and/or third 
group of reactions (middle and/or bottom light blue). 
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Figure 3. Impact of restraint-
based perturbations and their 
relation to gene-gene 
interactions. (A,B) Example 
fitness landscape in which the 
system is found to be in a non-
optimal state (A) and moves to a 
state that is closer to optimal after 
the elimination of some of the 
accessible states (B). While 
restraint-based perturbations 
generally represent a 
compromise between eliminating 
undesirable responses and 
keeping the objective function of 
the available states as high as 
possible, as illustrated by the 
yellow curve, the synthetic 
rescues discussed in the text are 
guaranteed not to affect the 
optimal, growth-maximizing 
states, as illustrated by the blue 
curve. (C) Rescue interactions 
relative to other epistatic gene-
gene interactions for a common 
gene-deficient mutant 
(continuous curves), where the 
no-interaction case would 
correspond to a straight line in a 
log-linear representation. In the 
same way synthetic lethality can 
be regarded as an extreme case 
of aggravating interaction, 
synthetic recovery (dotted blue 
curve)—where a nonviable gene-

deficient strain is rescued by one or more gene knockouts—can be regarded as an extreme case of 
rescue interaction (continuous blue curve). Note that classic epistatic interactions (aggravating, non-
interacting, and buffering) are determined as averages over random gene knockouts, whereas 
rescue interactions are conceived as targeted gene knockouts, indicating that they can in general 
coexist.  The rescue interaction curve is characterized by a fast increase for a small number of 
knockouts, followed by a plateau where additional knockouts have no effect because those reactions 
have been inactivated by an inactivation cascade triggered by the first ones, followed by a sudden 
drop in fitness. The latter has been predicted to correspond to a remaining set of approximately 300 
unique metabolic reactions for the several organisms and objective functions considered by 
Nishikawa et al.(16) and is in fact a close approximation to the minimal genome set. 
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Figure 4. Curves of constant growth rates for antagonistic drug interactions and synthetic rescues. 
(A) Illustration of antagonist interaction in which drug A (e.g., doxycycline or doxorubicin) suppresses 
the activity of drug B (e.g., ciprofloxacin or paclitaxel, respectively). Color lines represent equal effect 
of the two-drug combination on growth. The horizontal arrow indicates a change in growth rate due 
to resistance to drug A, illustrating that, under the concurrent action of drug B, a drug A-resistant 
strain will have lower growth rate than a non-resistant strain. The inset shows the full diagram, where 
the main figure corresponds to a portion of the dotted box region (adapted from Chait et al.(25)). (B) 
Illustration of a synthetic rescue interaction in which the knockout of gene A is rescued by the 
knockout of gene B, where the axes range from no intervention (bottom, left) to full knockouts (top, 
right). The horizontal arrow indicates a change in growth caused by the knockout of gene B, 
illustrating that the double knockout strain will have higher growth rate than the gene A-deficient 
strain. 
 
 
 
 

 
 
Figure 5. Lethality-essentiality chart for 
E. coli K12 MG1655 fed glucose. Genes 
can be naturally organized into three 
groups: those that are essential, those 
that are not essential but whose 
knockouts are lethal, and those whose 
knockouts are not lethal. Mutants 
generated by the knockout of a gene in 
the intermediate group, such as tpiA, can 
in general be synthetically rescued by the 
knockout of one or more additional 
genes. The examples given on the chart 
are consistent with in silico and 
experimental observations (Ref. (5) and 
references therein). 
 


