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Abstract

We consider estimation procedures which are recursive in the sense

that each successive estimator is obtained from the previous one by a

simple adjustment. We study rate of convergence of recursive estima-

tion procedures for the general statistical model.
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1 Introduction

Let X1, . . . , Xn be random variables, with a joint distribution depending on a
real unknown parameter θ. Then an M-estimator of θ is defined as a solution
of the estimating equation

(1.1)
n
∑

i=1

ψi(v) = 0,

where ψi(v) = ψi(X
i
i−k; v) (i = 1, 2, . . . , n) are suitably chosen functions and

X i
i−k = (Xi−k, . . . , Xi) is the a vector of past and present observations at step

(time) i. For instance, if Xi’s are observations from a discrete time Markov
process, then one can assume that k = 1. If observations are i.i.d., then we
take k = 0 so that ψi(v) = ψi(Xi; v). In general, if no restrictions are made
on the dependence structure of the process Xi, one may need to consider ψ-
functions depending on the vector of all past and present observations of the
process (that is, k = i−1). If the conditional probability density function (or
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probability function) of the observationXi, given Xi−k, . . . , Xi−1, is fi(x, θ) =
fi(x, θ|Xi−k, . . . , Xi−1), then one can obtain a MLE (maximum likelihood
estimator) on choosing ψi(v) = f ′

i(Xi, v)/fi(Xi, v). Besides MLEs, the class of
M-estimators includes estimators with special properties such as robustness.
Under certain regularity and ergodicity conditions it can be proved that there
exists a consistent sequence of solutions of (1.1) which has the property of
local asymptotic linearity (See e.g., Serfling (1980), Huber (1981), Lehman
(1983). A comprehensive bibliography can be found in Launer and Wilkinson
(1979), Hampel at al (1986), Rieder (1994), and Jurečková and Sen (1996).)

If ψ-functions are nonlinear, it is rather difficult to work with the cor-
responding estimating equations. In this paper we consider estimation pro-
cedures which are recursive in the sense that each successive estimator is
obtained from the previous one by a simple adjustment. In particular, we
consider a class of estimators

(1.2) θ̂n = θ̂n−1 + Γ−1
n (θ̂n−1)ψn(θ̂n−1), n ≥ 1,

where ψn is a suitably chosen vector process, Γn is a (possibly random)
normalizing matrix process and θ̂0 ∈ R

m is some initial point. (See the intro-
duction in Sharia (2006) for a detailed discussion and a heuristic justification
of this estimation procedure.)

In i.i.d. models, estimating procedures similar to (1.2) have been stud-
ied by a number of authors using methods of stochastic approximation the-
ory (see, e.g., Khas’minskii and Nevelson (1972), Fabian (1978), Ljung and
Soderstrom (1987), Ljung, Pflug and Walk (1992), and references therein).
Some work has been done for non i.i.d. models as well. In particular, En-
glund, Holst, and Ruppert (1989) give an asymptotic representation results
for certain type of Xn processes. In Sharia (1998) theoretical results on con-
vergence, rate of convergence and the asymptotic representation are given
under certain regularity and ergodicity assumptions on the model, in the
one-dimensional case with ψn(x, θ) = ∂

∂θ
logfn(x, θ) (see also Campbell (1982),

Sharia (1997), Lazrieva and Toronjadze (1987)).
In Sharia (2006), imposing “global” restrictions on the processes ψ and

Γ, we study “global” convergence of the recursive estimators (1.2), that is,
convergence for an arbitrary starting point θ̂0. In the present paper, we
present results on rate of the convergence and demonstrate the use of these
results on some examples.
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2 Notation and preliminaries

Let Xt, t = 1, 2, . . . , be observations taking values in a measurable space
(X,B(X)) equipped with a σ-finite measure µ. Suppose that the distribution
of the process Xt depends on an unknown parameter θ ∈ Θ, where Θ is an
open subset of the m-dimensional Euclidean space R

m. Suppose also that for
each t = 1, 2, . . . , there exists a regular conditional probability density of Xt

given values of past observations of Xt−1, . . . , X2, X1, which will be denoted
by

ft(θ, xt | x
t−1
1 ) = ft(θ, xt | xt−1, . . . , x1),

where f1(θ, x1 | x0
1) = f1(θ, x1) is the probability density of the random

variable X1. Without loss of generality we assume that all random variables
are defined on a probability space (Ω,F) and denote by

{

P θ, θ ∈ Θ
}

the
family of the corresponding distributions on (Ω,F).

Let Ft = σ(X1, . . . , Xt) be the σ-field generated by the random variables
X1, . . . , Xt. By (Rm,B(Rm)) we denote the m-dimensional Euclidean space
with the Borel σ-algebra B(Rm). Transposition of matrices and vectors is
denoted by T . By (u, v) we denote the standard scalar product of u, v ∈ R

m,
that is, (u, v) = uTv.

Suppose that h is a real valued function defined on Θ ⊂ R
m. We de-

note by ḣ(θ) the row-vector of partial derivatives of h(θ) with respect to the
components of θ, that is,

ḣ(θ) =

(

∂

∂θ1
h(θ), . . . ,

∂

∂θm
h(θ)

)

.

If for each t = 1, 2, . . . , the derivative ḟt(θ, xt | x
t−1
1 ) w.r.t. θ exists, then

we can define the function

lt(θ, xt | x
t−1
1 ) =

1

ft(θ, xt | x
t−1
1 )

ḟT
t (θ, xt | x

t−1
1 )

with the convention 0/0 = 0.
The one step conditional Fisher information matrix for t = 1, 2, . . . is

defined as

it(θ | x
t−1
1 ) =

∫

lt(θ, z | x
t−1
1 )lTt (θ, z | xt−1

1 )ft(θ, z | x
t−1
1 )µ(dz).

We shall use the notation

ft(θ) = ft(θ,Xt | X
t−1
1 ), lt(θ) = lt(θ,Xt | X

t−1
1 ),

it(θ) = it(θ | X
t−1
1 ).
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Note that the process it(θ) is “predictable”, that is, the random variable it(θ),
is Ft−1 measurable for each t ≥ 1.

Note also that by definition, it(θ) is a version of the conditional expecta-
tion w.r.t. Ft−1, that is,

it(θ) = Eθ

{

lt(θ)l
T
t (θ) | Ft−1

}

.

Everywhere in the present work conditional expectations are meant to be
calculated as integrals w.r.t. the conditional probability densities.

The conditional Fisher information at time t is

It(θ) =
t
∑

s=1

is(θ), t = 1, 2, . . . .

If the Xt’s are independent random variables, It(θ) reduces to the standard
Fisher information matrix. Sometimes It(θ) is referred as the incremental
expected Fisher information. Detailed discussion of this concept and related
work appears in Barndorff-Nielsen and Sorensen (1994), and Prakasa-Rao
(1999) Ch.3.

We say that ψ = {ψt(θ, xt, xt−1, . . . , x1)}t≥1 is a sequence of estimating
functions and write ψ ∈ Ψ, if for each t ≥ 1, ψt(θ, xt, xt−1, . . . , x1) : Θ ×
Xt → R

m is a Borel function.
Note that {lt(θ, xt | x

t−1
1 )}t≥1 ∈ Ψ and a ML recursive procedure is given

by
θ̂t = θ̂t−1 + I−1

t (θ̂t−1)lt(θ̂t−1), t ≥ 1.

Convention Everywhere in the present work θ ∈ R
m is an arbitrary but

fixed value of the parameter. Convergence and all relations between random
variables are meant with probability one w.r.t. the measure P θ unless spec-
ified otherwise. A sequence of random variables (ξt)t≥1 has some property
eventually if for every ω in a set Ωθ of P θ probability 1, ξt has this property
for all t greater than some t0(ω) <∞.

3 Main results

Suppose that ψ ∈ Ψ and Γt(θ), for each θ ∈ R
m, is a predictable m × m

matrix process with det Γt(θ) 6= 0, t ≥ 1. Consider the estimator θ̂t defined
by

(3.1) θ̂t = θ̂t−1 + Γ−1
t (θ̂t−1)ψt(θ̂t−1), t ≥ 1,
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where θ̂0 ∈ R
m is arbitrary initial point.

Let θ ∈ R
m be an arbitrary but fixed value of the parameter and for any

u ∈ R
m define

bt(θ, u) = Eθ {ψt(θ + u) | Ft−1} .

Lemma 3.1 Let {Ct(θ)} be a symmetric predictable m ×m matrix process
such that Ct(θ) is non-negative definite for t = 1, 2, . . . . Denote ∆t = θ̂t − θ,
Vt(u) = (Ct(θ)u, u) and △Vt(u) = Vt(u) − Vt−1(u). Suppose that

∞
∑

t=1

(1 + Vt−1(∆t−1))
−1 [Kt(θ)]

+ <∞, P θ-a.s.,(3.2)

where

Kt(θ) = △Vt(∆t−1) + 2
(

Ct(θ)∆t−1,Γ
−1
t (θ + ∆t−1)bt(θ,∆t−1)

)

(3.3)

+Eθ

{

[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]T
Ct(θ)Γ

−1
t (θ + ∆t−1)ψt(θ + ∆t−1) | Ft−1

}

.

Then Vt(∆t) converges (P θ-a.s.) to a finite limit.

Proof. As always (see the convention in Section 2), convergence and all
relations between random variables are meant with probability one w.r.t.
the measure P θ unless specified otherwise. To simplify notation we drop the
argument or the index θ in some of the expressions below. Rewrite (3.1) in
the form

∆t = ∆t−1 + Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1).

By the Taylor expansion,

Vt(∆t) = Vt(∆t−1) + V̇t(∆t−1)Γ
−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

+
1

2

[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]T
V̈t(∆̃t)Γ

−1
t (θ + ∆t−1)ψt(θ + ∆t−1),

Since V̇t(u) = 2uTCt and V̈t(u) = 2Ct we obtain

Vt(∆t) = Vt(∆t−1) + 2
(

Ct∆t−1,Γ
−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

)

+
[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]T
CtΓ

−1
t (θ + ∆t−1)ψt(θ + ∆t−1).

Since
Vt(∆t−1) = Vt−1(∆t−1) + △Vt(∆t−1),

we have
Eθ {Vt(∆t) | Ft−1} = Vt−1(∆t−1) + Kt.
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Then, using the obvious decomposition Kt = [Kt]
+ − [Kt]

−, the previous
inequality can be rewritten as

Eθ {Vt(∆t) | Ft−1} = Vt−1(∆t−1)(1 +Bt) +Bt − [Kt]
−,

where Bt = (1 + Vt−1(∆t−1))
−1 [Kt]

+. Since, by (3.2),
∑∞

t=1 Bt < ∞, the
assertion of the lemma follows immediately on application of Lemma A1 in
Appendix A (with Xn = Vn(∆n), βn−1 = ξn−1 = Bn and ζn−1 = [Kn]−). ♦

Corollary 3.1 Let {at(θ)} be a predictable non-decreasing scalar process
such that at(θ) → ∞ as t → ∞. Denote △at(θ) = at(θ) − at−1(θ) and
suppose that

(R1)

lim
t→∞

△at(θ)

at−1(θ)
= 0, P θ-a.s.;

(R2) there exist a symmetric and non-negative definite matrix Cθ and a
predictable non-negative scalar process Pt such that

2
(

Cθ∆t−1,Γ
−1
t (θ + ∆t−1)bt(θ,∆t−1)

)

+ Pt ≤

−λt(θ) (Cθ∆t−1,∆t−1) ,(3.4)

eventually, where {λt(θ)} is a predictable scalar process, satisfying

∞
∑

s=1

[

△at(θ)

at(θ)
− λt(θ)

]+

<∞, P θ-a.s.;(3.5)

(R3) for each 0 < ε < 1 and the process Pt defined in (R2),

∞
∑

s=1

aε
t (θ)

[

Eθ

{

‖Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)‖

2 | Ft−1

}

− Pt

]+
<∞, P θ-a.s.

Then at(θ)
2δ(θ̂t − θ)TCθ(θ̂t − θ) → 0 (P θ-a.s.) for any δ ∈]0, 1/2[.

Proof. As always (see the convention in Section 2), convergence and all
relations between random variables are meant with probability one w.r.t.
the measure P θ unless specified otherwise. Let us check the conditions of
Lemma 3.1 for Ct(θ) = Cθ(at(θ))

2δ, δ ∈]0, 1/2[. To simplify notation we drop
the fixed argument or the index θ in some of the expressions below. Denote

rt = (△a2δ
t − a2δ

t λt)/a
2δ
t−1
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and
P̃t = a2δ

t (Et −Pt)

where

Et = Eθ

{

[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]T
C
[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]

| Ft−1

}

.

By (R2), for Kt defined in (3.3) we have

Kt = △a2δ
t (C∆t−1,∆t−1) + 2a2δ

t

(

C∆t−1,Γ
−1
t (θ + ∆t−1)bt(θ,∆t−1)

)

+

a2δ
t Pt + P̃t

≤
(

△a2δ
t − a2δ

t λt

)

(C∆t−1,∆t−1) + P̃t

≤ rt

(

a2δ
t−1C∆t−1,∆t−1

)

+ P̃t.

Since C is non-negative definite,

(1 + Vt−1(∆t−1))
−1 [Kt]

+ =
(

1 +
(

a2δ
t−1C∆t−1,∆t−1

))−1
[Kt]

+ ≤ [rt]
+ + [P̃t]

+.

By (R3),
∑∞

t=1[P̃t]
+ <∞ which implies that (3.2) is equivalent to

∑∞
t=1 [rt]

+ <
∞. Since △a2δ

t = a2δ
t − a2δ

t−1, we can rewrite rt as

rt =
(

ata
−1
t−1

)2δ
(1 − λt) − 1.

Also, since (1 + x)2δ = 1 + 2δx+O(x2), we have

(ata
−1
t−1)

2δ =

(

1 +
△at

at−1

)2δ

= 1 + 2δ
△at

at−1

+ δ
(1)
t ,

where, by (R1), δ
(1)
t = O (△at/at−1)

2 → 0 as t→ ∞. Denote

ηt = △at/at − λt.

Then simple calculations show that

rt ≤
(

ata
−1
t−1

)2δ
(

1 + ηt
+ −

△at

at

)

− 1

= −(1 − 2δ)
△at

at−1
+ δ

(1)
t + η+

t + 2δη+
t

△at

at−1
+ η+

t δ
(1)
t +

(1 − 2δ)
△at

at

△at

at−1
−

△at

at
δ
(1)
t

=
△at

at−1

(

−(1 − 2δ) + δ
(2)
t

)

+ δ
(3)
t

7



where

δ
(2)
t =

(

△at

at−1

)−1

δ
(1)
t (1 −

△at

at
) + (1 − 2δ)

△at

at
,

δ
(3)
t = η+

t + 2δη+
t

△at

at−1
+ η+

t δ
(1)
t .

From (R1) and (R2), δ
(2)
t → 0 and

∑∞
t=1 |δ

(3)
t | <∞. Then, since 1−2d > 0, we

obtain that [rt]
+ ≤ |δ(3)

t |. It therefore follows that the conditions of Lemma
3.1 are satisfied implying that a2δ

t ‖θ̂t−θ)‖2 converges to a finite limit. Finally,
since this holds for an arbitrary δ ∈]0, 1/2[ and at → ∞, the result follows.
♦

Remark 3.1 Note the that the first term in the left hand side of (3.4) is
usually negative and assuming that Pt = 0 the positive parts in (3.5) are
usually zero (or quite small) in many examples. On the other hand, the
choice Pt = 0 means that (R3) becomes more restrictive imposing stronger
probabilistic restrictions on the model. The choice Pt = 0 is natural in
the iid case since all the required probabilistic conditions are in this case
automatically satisfied. (see also Remark 3.2). Now, if the first term in the
left hand side of (3.4) is negative with a “high enough” absolute value, then
it may be possible to introduce a non-zero Pt without jeopardising (3.5). One
possibility might be Pt = ‖Γ−1

t (θ+∆t−1)bt(θ,∆t−1)‖2. Also, in this case, since
bt(θ, u) = Eθ{ψt(θ+ u) | Ft−1} and Γ−1

t (θ+ u) are predictable processes, the
condition in (R3) can be rewritten as

∞
∑

s=1

aε
t (θ)Eθ

{

‖Γ−1
t (θ + ∆t−1) {ψt(θ + ∆t−1) − bt(θ,∆t−1)} ‖

2 | Ft−1

}

<∞.

Remark 3.2 Consider the i.i.d. case with

ft(θ, z | x
t−1
1 ) = f(θ, z), ψt(θ) = ψ(θ, z)|z=Xt

,

where
∫

ψ(θ, z)f(θ, z)µ(dz) = 0 and Γt(θ) = tγ(θ) for some invertible non-
random matrix γ(θ). Then

bt(θ, u) = b(θ, u) =

∫

ψ(θ + u, z)f(θ, z)µ( dz),

implying that bt(θ, 0) = 0. Denote ∆t = θ̂t − θ and rewrite (3.1) in the form

(3.6) ∆t = ∆t−1 +
1

t

(

γ−1(θ + ∆t−1)b(θ,∆t−1) + εθ
t

)

,

8



where
εθ

t = γ−1(θ + ∆t−1) {ψ(θ + ∆t−1, Xt) − b(θ,∆t−1)} .

Equation (3.6) defines a Robbins-Monro stochastic approximation procedure
that converges to the solution of the equation

Rθ(u) := γ−1(θ + u)b(θ, u) = 0,

when the values of the function Rθ(u) can only be observed with zero ex-
pectation errors εθ

t . Note that in general, recursion (3.1) cannot be con-
sidered in the framework of classical stochastic approximation theory (see
Lazrieva, Sharia, and Toronjadze (1997, 2003) for the generalized Robbins-
Monro stochastic approximations procedures). For the i.i.d. case, conditions
of Corollary 3.1 can be written as (B1) and (B2) in Corollary 4.1 (see also
Remark 4.1), which are standard assumptions for stochastic approximation
procedures of type (3.6) (see, e.g., Robbins and Monro (1951), Gladyshev
(1965), Khas’minskii and Nevelson (1972), Ljung and Soderstrom (1987),
Ljung, Pflug and Walk (1992)).

4 SPECIAL MODELS AND EXAMPLES

1. The i.i.d. scheme. Consider the classical scheme of i.i.d. observations
X1, X2, . . . , with a common probability density/mass function f(θ, x), θ ∈
R

m. Suppose that ψ(θ, z) is an estimating function with

∫

ψ(θ, z)f(θ, z)µ(dz) = 0.

Let us define the recursive estimator θ̂t by

(4.1) θ̂t = θ̂t−1 +
1

t
γ−1(θ̂t−1)ψ(θ̂t−1, Xt), t ≥ 1,

where γ(θ) is a non-random matrix such that γ−1(θ) exists for any θ ∈ R
m

and θ̂0 ∈ R
m is any initial value.

Corollary 4.1 Suppose that θ̂ → θ (P θ-a.s.) and

(B1) there exists a symmetric and non-negative definite matrix Cθ such that

(

Cθu, γ
−1(θ + u)Eθψ(θ + u,X1)

)

≤ −
1

2
(Cθu, u) ,

for small u’s;

9



(B2) Eθ‖γ−1(θ + u)ψ(θ + u)‖2 = O(1) as u→ 0.

Then tδ(θ̂t − θ)TCθ(θ̂t − θ) → 0 (P θ-a.s.) for any δ ∈]0, 1/2[.

Proof. The result follows immediately if we take at(θ) = t, Pt = 0 and
λt(θ) = 1/t in Corollary 3.1. ♦

Remark 4.1 As it was mentioned in Remark 3.2, for the i.i.d. case the
recursive procedures can be studied in the framework of stochastic approx-
imation theory. For stochastic approximation procedures of this type, con-
ditions which guarantee a good rate of convergence are expressed in terms
of stability of matrices. Recall that a matrix A is called stable if the real
parts of its eigenvalues are negative. A standard requirement in stochastic
approximation theory is the existence of the representation (see Remark 3.1
for the notation)

(4.2) Rθ(u) = Bθu+ o(‖u‖) as u → 0,

where the matrix Sθ = Bθ+ 1
2
1 is stable. It is easy to see that this assumption

implies (B1). Indeed, it follows from the stability of Sθ that the maximum
of the real parts of the eigenvalues of Bθ is less than −1/2. This implies
(see, e.g., Khas’minskii and Nevelson (1972), Ch.6, §3, Corollary 3.1), that
there exists a symmetric and positive definite matrix Cθ such that

(Cθu,Bθu) < −
1

2
(Cθu, u) ,

which, together with (4.2), implies (B1).

As a particular example, consider

f(θ, x) =
1

π (1 + (x− θ)2)
,

the probability density function of the Cauchy distribution with mean θ.
Simple calculations show that

ḟ

f
(θ, x) =

2(x− θ)

1 + (x− θ)2
and

∂2

∂θ2
log f(θ, x) =

2(x− θ)2 − 2

(1 + (x− θ)2)2
.

Now, using tables of standard integrals, it is easy to check that

i(θ) = −

∫

∂2

∂θ2
log f(θ, x)f(θ, x) dx =

1

2
.
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So, a ML recursive procedure is

θ̂t = θ̂t−1 −
1

t

2(Xt − θ̂t−1)

1 + (Xt − θ̂t−1)2
, t ≥ 1.

Using tables of standard integrals and simple algebra,

b(θ, u) =
2

π

∫

x− u

1 + (x− u)2

1

1 + x2
dx = −

2u

4 + u2
,

and

∫

(

ḟ

f
(θ + u, x)

)2

f(θ, x) dx =
4

π

∫
(

x− u

1 + (x− u)2

)2
1

1 + x2
dx =

2(4 + 3u2)

(4 + u2)2
.

Now, it is easy to check that conditions (I) and (II) of Corollary 4.1 in Sharia
(2006) (or in Sharia (1998)) are satisfied, implying that θ̂t → θ (P θ-
a.s.). Let us check the conditions of Corollary 4.1. It follows from the above
calculations that (B2) holds. Then, for arbitrary 0 < ε < 1/2 we have

i−1(θ)b(θ, u)

u
= −

4

4 + u2
= −1 +

u2

4 + u2
≤ −1 + ε

for small u’s, which yields that (B1) is satisfied with Cθ = 1. Therefore,
tδ(θ̂t − θ) → 0 (P θ-a.s.) for any 0 < δ < 1/2.
2 Exponential family of Markov processes Consider a conditional
exponential family of Markov processes in the sense of Feigin (1981) (see also
Barndorf-Nielson (1988)). This is a time homogeneous Markov chain with
the one-step transition density

f(y; θ, x) = h(x, y) exp
(

θTm(y, x) − β(θ; x)
)

,

where m(y, x) is am-dimensional vector and β(θ; x) is one dimensional. Then
in our notation ft(θ) = f(Xt; θ,Xt−1) and

lt(θ) =
d

dθ
log ft(θ) = m(Xt, Xt−1) − β̇T (θ;Xt−1).

It follows from standard exponential family theory (see, e.g., Feigin (1981))
that lt(θ) is a martingale-difference and the conditional Fisher information is

It(θ) =

t
∑

s=1

β̈(θ;Xs−1).

11



So, a maximum likelihood type recursive procedure can be defined as

θ̂t = θ̂t−1 +

(

t
∑

s=1

β̈(θ̂t−1;Xs−1)

)−1
(

m(Xt, Xt−1) − β̇T (θ̂t−1;Xt−1)
)

, t ≥ 1.

Let us find the functions appearing in the conditions of our theorems for the
case ψt = lt and Γt = It. Since Eθ {lt(θ) | Ft−1} = 0 we have

Eθ {m(Xt, Xt−1) | Ft−1} = β̇T (θ;Xt−1)

and also,

β̈(θ;Xt−1) = it(θ) = Eθ

{

lt(θ)l
T
t (θ) | Ft−1

}

= Eθ

{

m(Xt, Xt−1)m
T (Xt, Xt−1) | Ft−1

}

− β̇T (θ;Xt−1)β̇(θ;Xt−1),

which implies that
(4.3)
Eθ

{

m(Xt, Xt−1)m
T (Xt, Xt−1) | Ft−1

}

= β̈(θ;Xt−1) + β̇T (θ;Xt−1)β̇(θ;Xt−1).

Now, it is a simple matter to check that

bt(θ, u) = Eθ {lt(θ + u) | Ft−1} = β̇T (θ;Xt−1) − β̇T (θ + u;Xt−1).(4.4)

Using (4.3) (since trace(vvT ) = vTv and trace(A+B) =trace A+traceB),

Eθ

{

‖lt(θ + u)‖2 | Ft−1

}

= traceβ̈(θ;Xt−1) + ‖β̇T (θ;Xt−1) − β̇T (θ + u;Xt−1)‖
2

= traceβ̈(θ;Xt−1) + ‖bt(θ, u)‖
2.(4.5)

Using these expressions one can check conditions of the relevant theorems
for different choices of functions m and β.

Now suppose that θ is one dimensional and consider the class of condi-
tionally additive exponential families, that is,

f(y; θ, x) = h(x, y) exp (θm(y, x) − β(θ; x)) ,

with

β(θ; x) = γ(θ)h(x)(4.6)

where h(·) ≥ 0 and γ̈(·) ≥ 0 (see Feigin (1981)). Then,

It(θ) = γ̈(θ)Ht where Ht =
t
∑

s=1

h(Xs−1).

12



Assuming that γ̈(θ) 6= 0, the likelihood recursive procedure is

θ̂t = θ̂t−1 +
1

γ̈(θ̂t−1)Ht

(

m(Xt, Xt−1) − γ̇(θ̂t−1)h(Xt−1)
)

.(4.7)

The following result gives sufficient conditions for the convergence of
(4.7).

Proposition 4.1 Suppose that Ht → ∞ (P θ-a.s.) and either γ̇ is a linear
function, or the following conditions are satisfied:

(M1)
h(Xt−1)

Ht

→ 0, P θ-a.s.;

(M2) for any finite a and b,

0 < inf
u∈[a,b]

γ̈(u) ≤ sup
u∈[a,b]

γ̈(u) <∞;

(M3) there exists a constant B such that

1 + γ̇2(u)

γ̈2(u)
≤ B(1 + u2)

for each u ∈ R.

Then θ̂t defined by (4.7) is strongly consistent (i.e., θ̂t → θ P θ-a.s.) for any
initial value θ̂0 .

Proof. See Appendix B.

In the next statement we assume that the recursive procedure converges
and study the rate of convergence.

Corollary 4.2 Suppose that θ̂t defined by (4.7) is strongly consistent (i.e.,
θ̂t → θ P θ-a.s.). Suppose also that

(1) Ht → ∞, P θ-a.s.;

(2)
h(Xt)

Ht

→ 0, P θ-a.s.;

(3) γ̈(·) is a continuous positive function.

13



Then Hδ
t (θ̂t − θ) → 0 (P θ-a.s.) for any δ ∈]0, 1/2[.

Proof. As always (see the convention in Section 2), convergence and all
relations between random variables are meant with probability one w.r.t.
the measure P θ unless specified otherwise. By (4.4),

(4.8) bt(θ, u) = h(Xt−1) (γ̇(θ) − γ̇(θ + u)) .

Let us check that the conditions of Corollary 3.1 are satisfied with ψt(θ) =
lt(θ) = m(Xt, Xt−1) − γ̇(θ)h(Xt−1), Γt(θ) = It(θ) = Htγ̈(θ), at(θ) = Ht,
Cθ = 1 and Pt = H−2

t γ̈−2(θ + ∆t−1)b
2
t (θ,∆t−1). Since ∆Ht = h(Xt−1), (R1)

is obviously translated into (2). Since γ̇(θ) − γ̇(θ + u) = −γ̈(θ + ũ)u where
|ũ| ≤ |u|, the left hand side of (3.4) is

−2
h(Xt−1)

Ht

γ̈(θ + ∆̃t−1)

γ̈(θ + ∆t−1)
∆2

t−1 +
h2(Xt−1)

H2
t

(

γ̈(θ + ∆̃t−1)

γ̈(θ + ∆t−1)

)2

∆2
t−1

Since γ̈(·) is continuous and ∆t−1 = θ̂t − θ → 0, for any small ε̃ > 0 (which
may depend on θ), 1− ε̃ < γ̈(θ + ∆̃t−1)/γ̈(θ + ∆t−1) < 1+ ε̃ for large t’s. So,
(3.4) holds with

λt(θ) = 2(1 − ε̃)
h(Xt−1)

Ht
− (1 + ε̃)2h

2(Xt−1)

H2
t

.

To check (3.5), consider

h(Xt−1)

Ht
− λt(θ) =

h(Xt−1)

Ht

(

−1 + 2ε̃+ (1 + ε̃)2h(Xt−1)

Ht

)

(4.9)

Now, since ε̃ is arbitrary, we can assume that −1 + 2ε̃ < 0. Also, it follows
from (2) that h(Xt−1)/Ht → 0. Therefore, (4.9) is negative for large t’s,
implying that (3.5) holds true.

To check (R3) note that by (4.5),

(4.10) Eθ

{

l2t (θ + u) | Ft−1

}

= γ̈(θ)h(Xt−1) + b2t (θ, u)

and so,

Hε
t

(

Eθ

{

H−2
t γ̈−2(θ + ∆t−1)l

2
t (θ + ∆t−1) | Ft−1

}

− Pt

)

=
h(Xt−1)

H2−ε
t

γ̈(θ)

γ̈2(θ + ∆t−1)
.

Now, (R3) follows from (3) and Proposition A2 in Appendix A. ♦
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A particular example of conditional additive exponential family is the
Gaussian autoregressive model defined by

Xt = θXt−1 + Zt, t = 1, 2, . . . ,

where θ ∈ R, X0 = 0 and Zt’s are independent random variables with the
standard normal distribution. In this model m(y, x) = xy and β(θ, x) =
1
2
x2θ2 so that we can assume that γ(θ) = θ2/2 and h(x) = x2. Then

lt(θ) = XtXt−1 −X2
t−1θ, It = It(θ) =

t
∑

s=1

X2
s−1.

Therefore,

θ̂t = θ̂t−1 +
1

It

(

XtXt−1 −X2
t−1θ̂t−1

)

(4.11)

It = It−1 +X2
t−1.

Note that the rate of the conditional Fisher information It varies for the
different values of θ. Suppose

(4.12) κt(θ) =







t(1 − θ2)−1 for |θ| < 1
1
2
t2 for |θ| = 1
θ2t(θ2 − 1)−2 for |θ| > 1.

For |θ| < 1, It/κt(θ) → 1 in probability as t → ∞, whereas It/κt(θ) →
W ∼ χ2(1) almost surely in the case |θ| > 1 (non-ergodic case). In the case
|θ| = 1, the ratio It/κt(θ) converges in distribution, but not in probability
(for details, see White (1958) and Anderson (1959)). It is also well known
that It → ∞ almost surely for any θ ∈ R (see, e.g, Shiryayev (1984), Ch.VII,
5.5). Also, since γ̇(θ) is linear and Ht = It, the conditions of Proposition 4.1
are trivially satisfied. Therefore, for any θ ∈ R, the recursive estimator θ̂t is
strongly consistent for any choice of the initial θ̂0.

To establish the rate of convergence we assume that the process is (strongly)
stationary and ergodic. So, |θ| < 1 and and it follows from the ergodic the-
orem for stationary processes that the limit

(4.13) lim
t→∞

1

t
It

exist P θ-a.s. and is finite (it can be proved this holds without assumption of
strong stationarity.) Now, taking Ht = It, we obtain that

∆It
It−1

=
It
It−1

− 1 =
t

t− 1
dt − 1 → 0,
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since dt = ((t − 1)/It−1)(It/t) → 1. This implies that (2) of Corollary 4.2
holds. (Note that for the non-ergodic case |θ| > 1, we do not expect (2) to
hold since in this case ∆κt/κt−1 = θ2 − 1 6→ 0.)

So, the conditions of Corollary 4.2 are satisfied implying that tδ(θ̂t−θ) →
0 for any 0 < δ < 1/2.

APPENDIX A

Lemma A1 Let F0,F1, . . . be a non-decreasing sequence of σ-algebras and
Xn, βn, ξn, ζn ∈ Fn, n ≥ 0, are nonnegative r.v.’s such that

E(Xn|Fn−1) ≤ Xn−1(1 + βn−1) + ξn−1 − ζn−1, n ≥ 1

eventually. Then

{
∞
∑

i=1

ξi−1 <∞} ∩ {
∞
∑

i=1

βi−1 <∞} ⊆ {X →} ∩ {
∞
∑

i=1

ζi−1 <∞} (P -a.s.),

where {X →} denotes the set where limn→∞Xn exists and is finite.

Remark Proof can be found in Robbins and Siegmund (1971). Note also
that this lemma is a special case of the theorem on the convergence sets non-
negative semimartingales (see, e.g., Lazrieva, Sharia, and Toronjadze (1997)).

Proposition A2 If dn is a nondecreasing sequence of positive numbers such
that dn → +∞, then

∞
∑

n=1

△dn/dn = +∞

and
∞
∑

n=1

△dn/d
1+ε
n < +∞

for any ε > 0.

Proof The first claim is easily obtained by contradiction from the Kronecker
lemma (see, e.g., Lemma 2, §3, Ch. IV in Shiryayev (1984)). The second one
is proved by the following argument

0 ≤
N
∑

n=1

△dn

d1+ε
n

≤
N
∑

n=1

∫ 1

0

△dn

(dn−1 + t△dn)1+ε
dt =

N
∑

n=1

1

ε

(

1

dε
n−1

−
1

dε
n

)

=
1

ε

(

1

dε
0

−
1

dε
N

)

→
1

εdε
0

< +∞.

♦
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APPENDIX B

Theorem B1 (Sharia (2007), Theorem 3.2) Suppose that for θ ∈ R
m there

exists a real valued nonnegative function Vθ(u) : R
m −→ R having continuous

and bounded partial second derivatives and

(G1) Vθ(0) = 0, and for each ε ∈ (0, 1),

inf
‖u‖≥ε

Vθ(u) > 0;

(G2) there exists a set A ∈ F with P θ(A) > 0 such that for each ε ∈ (0, 1),

∞
∑

t=1

inf
ε≤Vθ(u)≤1/ε

[Nt(u)]
− = ∞

on A, where

Nt(u) = V̇θ(u)Γ
−1
t (θ + u)Eθ {ψt(θ + u) | Ft−1}

+
1

2
sup

v
‖V̈θ(v)‖Eθ

{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}

,

(G3) for ∆t = θ̂t − θ,

∞
∑

t=1

(1 + Vθ(∆t−1))
−1 [Nt(∆t−1)]

+ <∞, P θ-a.s..

Then θ̂t → θ (P θ-a.s.) for any initial value θ̂0, where θ̂t is defined by
3.1.

Proof of Proposition 4.2 As always (see the convention in Section 2), con-
vergence and all relations between random variables are meant with prob-
ability one w.r.t. the measure P θ unless specified otherwise. Let us check
that the conditions of Theorem B1 above are satisfied with ψt(θ) = lt(θ) =
m(Xt, Xt−1) − γ̇(θ)h(Xt−1), Γt(θ) = It(θ) = Htγ̈(θ), and Vt = u2. Using
(4.8) and (4.10), we have

Nt(u) = 2u
1

Htγ̈(θ + u)
bt(θ, u) +

1

H2
t γ̈

2(θ + u)
Eθ

{

l2t (θ + u) | Ft−1

}

=
h(Xt−1)

Ht

γ̇(θ) − γ̇(θ + u)

γ̈(θ + u)
u

(

2 +
h(Xt−1)

Ht

γ̇(θ) − γ̇(θ + u)

uγ̈(θ + u)

)

+
h(Xt−1)

H2
t

γ̈(θ)

γ̈2(θ + u)

=: N1t(u) + N2t(u),(4.14)
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with the convention that 0/0 = 0. Let us show that for large t’s,

(4.15) 2 +
h(Xt−1)

Ht

γ̇(θ) − γ̇(θ + u)

uγ̈(θ + u)
≥ 1.

If γ̇ is linear, the above inequality trivially holds since h(Xt−1)/Ht = ∆Ht/Ht ≤
1. For a non-linear case we have (assuming that u 6= 0),

(4.16) |(γ̇(θ) − γ̇(θ + u))/uγ̈(θ + u)| = γ̈(θ + ũ)/γ̈(θ + u)

where |ũ| ≤ |u|. Suppose now that |u| ≤ M where 0 < M < ∞. Then
it follows from (M2) that the left hand side of (4.16) is bounded by some
positive constant. Also, using the obvious inequality (a − b)2 ≤ 2a2 + 2b2

and (M3), we obtain that (γ̇(θ) − γ̇(θ + u))2/γ̈2(θ + u) ≤ B̃(1 + u2) for any
u (where B̃ may depend on θ). So, the left hand side of (4.16) is less than

or equal to
√

B̃(1 + u2)/u2 =
√

B̃(1/u2 + 1) which is bounded by a positive

constant if |u| ≥M. So, the left hand side of (4.16) is bounded by a constant
(which may depend on θ) for any u. So, because of (M1) it follows that (4.15)
holds for large t’s. This implies that N1t(u) ≤ 0 for large t’s (recall that γ̈(·)
is positive). So, using (M3) we obtain that for large t′s,

1

(1 + u2)
[Nt(u)]

+ ≤
1

(1 + u2)
[N2t(u)]

+ ≤
h(Xt−1)

H2
t

B1,

for some constant B1 which may depend on θ. Now, since
∑∞

t=1 h(Xt−1)/H
2
t <

∞ (see Proposition A2 in Appendix A), condition (G3) of Theorem B1 is
satisfied. To check condition (G2), note that (γ̇(θ)− γ̇(θ+ u))u ≤ 0, use the
obvious inequality [x]− ≥ −x, and (4.15) to obtain that for large t’s

[Nt(u)]
− ≥ −N1t(u) −N2t(u) ≥ −

h(Xt−1)

Ht

γ̇(θ) − γ̇(θ + u)

γ̈(θ + u)
u−N2t(u)

=
h(Xt−1)

Ht

γ̈(θ + ũ)

γ̈(θ + u)
u2 −

h(Xt−1)

H2
t

γ̈(θ)

γ̈2(θ + u)

where |ũ| ≤ |u|. Then, it follows from (M2) that supε≤|u|≤1/ε γ̈(θ)/γ̈
2(θ + u) <

R and infε≤|u|≤1/ε γ̈(θ + ũ)u2/γ̈(θ + u) > r > 0 (where the positive constants
R and r may depend on θ). Note also that these inequalities trivially hold
for the linear case. Therefore, using once more Proposition A2 in Appendix
A we obtain that

∑∞
t=1 infε≤|u|≤1/ε [Nt(u)]

− = ∞ which completes the proof.
♦
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Jurečková, J. and Sen, P.K. (1996). Robust Statistical Procedures - Asymp-
totics and Interrelations. Wiley, New York.

Khas’minskii, R.Z. and Nevelson, M.B. (1972). Stochastic Approximation
and Recursive Estimation. Nauka, Moscow.

Launer, R.L. and Wilkinson, G.N. (1979). Robustness in Statistics. Aca-
demic Press, New York.

Lazrieva, N., Sharia, T. and Toronjadze, T. (1997). The Robbins-Monro
type stochastic differential equations. I. Convergence of solutions. Stochas-
tics and Stochastic Reports 61, 67–87.

19



Lazrieva, N., Sharia, T. and Toronjadze, T. (2003). The Robbins-Monro
type stochastic differential equations. II. Asymptotic behaviour of so-
lutions. Stochastics and Stochastic Reports 75, 153–180.

Lazrieva, N. and Toronjadze, T. (1987). Ito-Ventzel’s formula for semi-
martingales, asymptotic properties of MLE and recursive estimation.
Lect. Notes in Control and Inform. Sciences, 96, Stochast. diff. sys-
tems, H.J, Engelbert, W. Schmidt (Eds.), Springer 346–355.

Lehmann, E.L. (1983). Theory of Point Estimation. Wiley, New York.

Ljung, L. Pflug, G. and Walk, H. (1992). Stochastic Approximation and
Optimization of Random Systems. Birkhäuser, Basel.
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