
ar
X

iv
:0

70
5.

17
66

v1
  [

m
at

h.
ST

] 
 1

2 
M

ay
 2

00
7

Recursive Parameter Estimation: Convergence

Teo Sharia

Department of Mathematics
Royal Holloway, University of London

Egham, Surrey TW20 0EX
e-mail: t.sharia@rhul.ac.uk

Abstract

We consider estimation procedures which are recursive in the sense
that each successive estimator is obtained from the previous one by a
simple adjustment. We propose a wide class of recursive estimation
procedures for the general statistical model and study convergence.
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1 Introduction

Let X1, . . . , Xn be independent identically distributed (i.i.d.) random vari-
ables (r.v.’s) with a common distribution function Fθ with a real unknown pa-
rameter θ. An M-estimator of θ is defined as a statistic θ̂n = θ̂n(X1, . . . , Xn),
which is a solution w.r.t. v of the estimating equation

(1.1)
n
∑

i=1

ψ(Xi; v) = 0,

where ψ is a suitably chosen function. For example, if θ is a location param-
eter in the normal family of distribution functions, the choice ψ(x, v) = x−v
gives the MLE (maximum likelihood estimator). For the same problem,
if ψ(x, v) = sign(x − v), the solution of (1.1) reduces to the median of
X1, . . . , Xn. In general, if f(x, θ) is the probability density function (or
probability function) of Fθ(x) (w.r.t. a σ-finite measure µ) then the choice
ψ(x, v) = f ′(x, v)/f(x, v) yields the MLE.
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Suppose now that X1, . . . , Xn are not necessarily independent or identi-
cally distributed r.v’s, with a joint distribution depending on a real param-
eter θ. Then an M-estimator of θ is defined as a solution of the estimating
equation

(1.2)

n
∑

i=1

ψi(v) = 0,

where ψi(v) = ψi(X
i
i−k; v) with X i

i−k = (Xi−k, . . . , Xi). So, the ψ-functions
may now depend on the past observations as well. For instance, if Xi’s are
observations from a discrete time Markov process, then one can assume that
k = 1. In general, if no restrictions are placed on the dependence structure
of the process Xi, one may need to consider ψ-functions depending on the
vector of all past and present observations of the process (that is, k = i− 1).
If the conditional probability density function (or probability function) of
the observationXi, givenXi−k, . . . , Xi−1, is fi(x, θ) = fi(x, θ|Xi−k, . . . , Xi−1),
then one can obtain the MLE on choosing ψi(v) = f ′

i(Xi, v)/fi(Xi, v). Besides
MLEs, the class of M-estimators includes estimators with special properties
such as robustness. Under certain regularity and ergodicity conditions it can
be proved that there exists a consistent sequence of solutions of (1.2) which
has the property of local asymptotic linearity. (See e.g., Serfling [24], Huber
[9], Lehman [16]. A comprehensive bibliography can be found in Launer and
Wilkinson [12], Hampel at al [7], Rieder [21], and Jurečková and Sen [10].)

If ψ-functions are nonlinear, it is rather difficult to work with the cor-
responding estimating equations, especially if for every sample size n (when
new data are acquired), an estimator has to be computed afresh. In this pa-
per we consider estimation procedures which are recursive in the sense that
each successive estimator is obtained from the previous one by a simple ad-
justment. Note that for a linear estimator, e.g., for the sample mean, θ̂n = X̄n

we have X̄n = (n − 1)X̄n−1/n + Xn/n, that is θ̂n = θ̂n−1(n − 1)/n + Xn/n,
indicating that the estimator θ̂n at each step n can be obtained recursively
using the estimator at the previous step θ̂n−1 and the new information Xn.
Such an exact recursive relation may not hold for nonlinear estimators (see,
e.g., the case of the median).

In general, the following heuristic argument can be used to establish a
possible form of an approximate recursive relation (see also Jurečková and
Sen [10], Khas’minskii and Nevelson [11], Lazrieva and Toronjadze [15]).
Since θ̂n is defined as a root of the estimating equation (1.2), denoting the
left hand side of (1.2) by Mn(v) we have Mn(θ̂n) = 0 and Mn−1(θ̂n−1) = 0.
Assuming that the difference θ̂n − θ̂n−1 is “small” we can write

0 = Mn(θ̂n)−Mn−1(θ̂n−1) = Mn

(

θ̂n−1 + (θ̂n − θ̂n−1)
)

−Mn−1(θ̂n−1)
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≈Mn(θ̂n−1) +M ′
n(θ̂n−1)(θ̂n − θ̂n−1)−Mn−1(θ̂n−1)

= M ′
n(θ̂n−1)(θ̂n − θ̂n−1) + ψn(θ̂n−1).

Therefore,

θ̂n ≈ θ̂n−1 −
ψn(θ̂n−1)

M ′
n(θ̂n−1)

,

where M ′
n(θ) =

∑n
i=1 ψ

′
i(θ). Now, depending on the nature of the underlying

model, M ′
n(θ) can be replaced by a simpler expression. For instance, in i.i.d.

models with ψ(x, v) = f ′(x, v)/f(x, v) (the MLE case), by the strong law of
large numbers,

M ′
n(θ)

n
=

1

n

n
∑

i=1

(f ′(Xi, θ)/f(Xi, θ))
′ ≈ Eθ

[

(f ′(X1, θ)/f(X1, θ))
′]

= −i(θ)

for large n’s, where i(θ) is the one-step Fisher information. So, in this case,
one can use the recursion

(1.3) θ̂n = θ̂n−1 +
1

n i(θ̂n−1)

f ′(Xn, θ̂n−1)

f(Xn, θ̂n−1)
, n ≥ 1,

to construct an estimator which is “asymptotically equivalent” to the MLE.
Motivated by the above argument, we consider a class of estimators

(1.4) θ̂n = θ̂n−1 + Γ−1
n (θ̂n−1)ψn(θ̂n−1), n ≥ 1,

where ψn is a suitably chosen vector process, Γn is a (possibly random)
normalizing matrix process and θ̂0 ∈ R

m is some initial value. Note that while
the main goal is to study recursive procedures with non-linear ψn functions,
it is worth mentioning that any linear estimator can be written in the form
(1.4) with linear, w.r.t. θ, ψn functions. Indeed, if θ̂n = Γ−1

n

∑n
k=1 hk(Xk),

where Γk and hk(Xk) are matrix and vector processes of suitable dimensions,
then (see Section 4.2 for details)

θ̂n = θ̂n−1 + Γ−1
n

(

hn(Xn)− (Γn − Γn−1)θ̂n−1

)

,

which is obviously of the form (1.4) with ψn(θ) = hn(Xn)− (Γn − Γn−1)θ.
It should be noted that at first glance, recursions (1.3) and (1.4) resemble

the Newton-Raphson iterative procedure of numerical optimisation. In the
i.i.d. case, the Newton-Raphson iteration for the likelihood equation is

(1.5) ϑk = ϑk−1 + J−1(ϑk−1)

n
∑

i=1

f ′(Xi, ϑk−1)

f(Xi, ϑk−1)
, k ≥ 1,
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where J(v) is minus the second logarithmic derivative of the log-likelihood
function, that is, −∑n

i=1
∂
∂v

(f ′(Xi, v)/f(Xi, v)) or its expectation, that is,
the information matrix ni(v). In the latter case, the iterative scheme is often
called the method of scoring, see e.g., Harvey [8]. (We do not consider the
so called one-step Newton-Raphson method since it requires an auxiliary
consistent estimator). The main feature of the scheme (1.5) is that ϑk, at
each step k = 1, 2, . . . , is σ(X1, . . . , Xn) - measurable (where σ(X1, . . . , Xn) is
the σ-field generated by the random variables X1, . . . , Xn). In other words,
(1.5) is a deterministic procedure to find a root, say θ̃n, of the likelihood
equation
∑n

i=1 (f ′(Xi, v)/f(Xi, v)) = 0. On the other hand the random variable θ̂n

derived from (1.3) is an estimator of θ for each n=1,2,. . . (is σ(X1, . . . , Xn)-
measurable at each n). Note also that in the iid case, (1.3) can be regarded
as a stochastic iterative scheme, i.e., a classical stochastic approximation
procedure, to detect the root of an unknown function when the latter can only
be observed with random errors (see Remark 3.1). A theoretical implication
of this is that by studying the procedures (1.3), or in general (1.4), we study
asymptotic behaviour of the estimator of the unknown parameter. As far
as applications are concerned, there are several advantages in using (1.4).
Firstly, these procedures are easy to use since each successive estimator is
obtained from the previous one by a simple adjustment and without storing
all the data unnecessarily. This is especially convenient when the data come
sequentially. Another potential benefit of using (1.4) is that it allows one
to monitor and detect certain changes in probabilistic characteristics of the
underlying process such as change of the value of the unknown parameter.
So, there may be a benefit in using these procedures in linear cases as well.

In i.i.d. models, estimating procedures similar to (1.4) have been studied
by a number of authors using methods of stochastic approximation theory
(see, e.g., Khas’minskii and Nevelson [11], Fabian [4], Ljung and Soderstrom
[19], Ljung et al [18], and references therein). Some work has been done for
non i.i.d. models as well. In particular, Englund et al [3] give an asymp-
totic representation results for certain type of Xn processes. In Sharia [25]
theoretical results on convergence, rate of convergence and the asymptotic
representation are given under certain regularity and ergodicity assumptions
on the model, in the one-dimensional case with ψn(x, θ) = ∂

∂θ
logfn(x, θ) (see

also Campbell [2], Sharia [26] and Lazrieva et al [13]).
In the present paper, we study multidimensional estimation procedures

of type (1.4) for the general statistical model. Section 2 introduces the basic
model, objects and notation. In Section 3, imposing “global” restrictions
on the processes ψ and Γ, we study “global” convergence of the recursive
estimators, that is the convergence for an arbitrary starting point θ̂0. In
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Section 4, we demonstrate the use of these results on some examples. (Results
on rate of convergence, asymptotic linearity and efficiency, and numerical
simulations will appear in subsequent publications, see Sharia [27], [28].)

2 Basic model, notation and preliminaries

Let Xt, t = 1, 2, . . . , be observations taking values in a measurable space
(X,B(X)) equipped with a σ-finite measure µ. Suppose that the distribution
of the process Xt depends on an unknown parameter θ ∈ Θ, where Θ is an
open subset of the m-dimensional Euclidean space R

m. Suppose also that for
each t = 1, 2, . . . , there exists a regular conditional probability density of Xt

given values of past observations of Xt−1, . . . , X2, X1, which will be denoted
by

ft(θ, xt | xt−1
1 ) = ft(θ, xt | xt−1, . . . , x1),

where f1(θ, x1 | x0
1) = f1(θ, x1) is the probability density of the random

variable X1. Without loss of generality we assume that all random variables
are defined on a probability space (Ω,F) and denote by

{

P θ, θ ∈ Θ
}

the
family of the corresponding distributions on (Ω,F).

Let Ft = σ(X1, . . . , Xt) be the σ-field generated by the random variables
X1, . . . , Xt. By (Rm,B(Rm)) we denote the m-dimensional Euclidean space
with the Borel σ-algebra B(Rm). Transposition of matrices and vectors is
denoted by T . By (u, v) we denote the standard scalar product of u, v ∈ R

m,
that is, (u, v) = uTv.

Suppose that h is a real valued function defined on Θ ⊂ R
m. We de-

note by ḣ(θ) the row-vector of partial derivatives of h(θ) with respect to the
components of θ, that is,

ḣ(θ) =

(

∂

∂θ1
h(θ), . . . ,

∂

∂θm
h(θ)

)

.

Also we denote by ḧ(θ) the matrix of second partial derivatives. The m×m
identity matrix is denoted by 1.

If for each t = 1, 2, . . . , the derivative ḟt(θ, xt | xt−1
1 ) w.r.t. θ exists, then

we can define the function

lt(θ, xt | xt−1
1 ) =

1

ft(θ, xt | xt−1
1 )

ḟT
t (θ, xt | xt−1

1 )

with the convention 0/0 = 0.
The one step conditional Fisher information matrix for t = 1, 2, . . . is

defined as

it(θ | xt−1
1 ) =

∫

lt(θ, z | xt−1
1 )lTt (θ, z | xt−1

1 )ft(θ, z | xt−1
1 )µ(dz).
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We shall use the notation

ft(θ) = ft(θ,Xt | X t−1
1 ), lt(θ) = lt(θ,Xt | X t−1

1 ),

it(θ) = it(θ | X t−1
1 ).

Note that the process it(θ) is “predictable”, that is, the random variable it(θ),
is Ft−1 measurable for each t ≥ 1.

Note also that by definition, it(θ) is a version of the conditional expecta-
tion w.r.t. Ft−1, that is,

it(θ) = Eθ

{

lt(θ)l
T
t (θ) | Ft−1

}

.

Everywhere in the present work conditional expectations are meant to be
calculated as integrals w.r.t. the conditional probability densities.

The conditional Fisher information at time t is

It(θ) =

t
∑

s=1

is(θ), t = 1, 2, . . . .

If the Xt’s are independent random variables, It(θ) reduces to the standard
Fisher information matrix. Sometimes It(θ) is referred as the incremental
expected Fisher information. Detailed discussion of this concept and related
work appears in Barndorff-Nielsen and Sorensen [1], Prakasa-Rao [20] Ch.3,
and Hall and Heyde [6].

We say that ψ = {ψt(θ, xt, xt−1, . . . , x1)}t≥1 is a sequence of estimating
functions and write ψ ∈ Ψ, if for each t ≥ 1, ψt(θ, xt, xt−1, . . . , x1) : Θ ×
Xt → R

m is a Borel function.
Let ψ ∈ Ψ and denote ψt(θ) = ψt(θ,Xt, Xt−1, . . . , X1). We write ψ ∈

ΨM if ψt(θ) is a martingale-difference process for each θ ∈ Θ, i.e., if
Eθ {ψt(θ) | Ft−1} = 0 for each t = 1, 2, . . . (we assume that the conditional
expectations above are well-defined and F0 is the trivial σ-algebra).

Note that if differentiation of the equation

1 =

∫

ft(θ, z | xt−1
1 )µ(dz)

is allowed under the integral sign, then {lt(θ,Xt | X t−1
1 )}t≥1 ∈ ΨM.

Convention Everywhere in the present work θ ∈ R
m is an arbitrary but

fixed value of the parameter. Convergence and all relations between random
variables are meant with probability one w.r.t. the measure P θ unless spec-
ified otherwise. A sequence of random variables (ξt)t≥1 has some property
eventually if for every ω in a set Ωθ of P θ probability 1, ξt has this property
for all t greater than some t0(ω) <∞.
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3 Main results

Suppose that ψ ∈ Ψ and Γt(θ), for each θ ∈ R
m, is a predictable m × m

matrix process with det Γt(θ) 6= 0, t ≥ 1. Consider the estimator θ̂t defined
by

(3.1) θ̂t = θ̂t−1 + Γ−1
t (θ̂t−1)ψt(θ̂t−1), t ≥ 1,

where θ̂0 ∈ R
m is an arbitrary initial point.

Let θ ∈ R
m be an arbitrary but fixed value of the parameter and for any

u ∈ R
m define

bt(θ, u) = Eθ {ψt(θ + u) | Ft−1} , t ≥ 1.

Theorem 3.1 Suppose that

(C1) uT Γ−1
t (θ + u)bt(θ, u) < 0 for each u 6= 0, P θ-a.s.1;

(C2) for each ε ∈ (0, 1),

∞
∑

t=1

inf
ε≤‖u‖≤1/ε

|uT Γ−1
t (θ + u)bt(θ, u)| =∞, P θ-a.s.;

(C3) there exists a predictable scalar process (Bθ
t )t≥1 such that

Eθ

{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}

≤ Bθ
t (1 + ‖u‖2)

for each u ∈ R
m, P θ-a.s., and

∞
∑

t=1

Bθ
t <∞, P θ-a.s..

Then θ̂t is strongly consistent (i.e., θ̂t → θ P θ-a.s.) for any initial value θ̂0 .

We will derive this theorem from a more general result (see the end of the
section). Let us first comment on the conditions used here.

1Note that the set of P θ probability 0 where the inequalities in (C1) and (C3) are not
valid should not depend on u.

7



Remark 3.1 Conditions (C1), (C2), and (C3) are natural analogues of the
corresponding assumptions in theory of stochastic approximation. Indeed,
let us consider the i.i.d. case with

ft(θ, z | xt−1
1 ) = f(θ, z), ψt(θ) = ψ(θ, z)|z=Xt

,

where
∫

ψ(θ, z)f(θ, z)µ(dz) = 0 and Γt(θ) = tγ(θ) for some invertible non-
random matrix γ(θ). Then

bt(θ, u) = b(θ, u) =

∫

ψ(θ + u, z)f(θ, z)µ( dz),

implying that b(θ, 0) = 0. Denote ∆t = θ̂t − θ and rewrite (3.1) in the form

(3.2) ∆t = ∆t−1 +
1

t

(

γ−1(θ + ∆t−1)b(θ,∆t−1) + εθ
t

)

,

where
εθ

t = γ−1(θ + ∆t−1) {ψ(θ + ∆t−1, Xt)− b(θ,∆t−1)} .
Equation (3.2) defines a Robbins-Monro stochastic approximation procedure
that converges to the solution of the equation

Rθ(u) := γ−1(θ + u)b(θ, u) = 0,

when the values of the function Rθ(u) can only be observed with zero expec-
tation errors εθ

t . Note that in general, recursion (3.1) cannot be considered in
the framework of classical stochastic approximation theory (see Lazrieva et al
[13], [14] for the generalized Robbins-Monro stochastic approximations pro-
cedures). For the i.i.d. case, conditions (C1), (C2) and (C3) can be written
as (I) and (II) in Section 4, which are standard assumptions for stochastic
approximation procedures of type (3.2) (see, e.g., Robbins and Monro [22],
Gladyshev [5], Khas’minskii and Nevelson [11], Ljung and Soderstrom [19],
Ljung et al [18]).

Remark 3.2 To understand how the procedure works, consider the one-
dimensional case, denote ∆t = θ̂t − θ and rewrite (3.1) in the form

∆t = ∆t−1 + Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1).

Then,

Eθ

{

θ̂t − θ̂t−1 | Ft−1

}

= Eθ {∆t −∆t−1 | Ft−1} = Γ−1
t (θ + ∆t−1)bt(θ,∆t−1).

8



Suppose now that at time t−1, θ̂t−1 < θ, that is, ∆t−1 < 0. Then, by (C1),

Γ−1
t (θ + ∆t−1)bt(θ,∆t−1) > 0 implying that Eθ

{

θ̂t − θ̂t−1 | Ft−1

}

> 0. So,

the next step θ̂t will be in the direction of θ. If at time t− 1, θ̂t−1 > θ, by

the same reason, Eθ

{

θ̂t − θ̂t−1 | Ft−1

}

< 0. So, the condition (C1) ensures

that, on average, at each step the procedure moves towards θ. However,
the magnitude of the jumps θ̂t − θ̂t−1 should decrease, for otherwise, θ̂t may
oscillate around θ without approaching it. This is guaranteed by (C3). On
the other hand, (C2) ensures that the jumps do not decrease too rapidly to
avoid failure of θ̂t to reach θ.

Now, let us consider a maximum likelihood type recursive estimator

θ̂t = θ̂t−1 + I−1
t (θ̂t−1)lt(θ̂t−1), t ≥ 1,

where lt(θ) = ḟT
t (θ,Xt | X t−1

1 )/ft(θ,Xt | X t−1
1 ) and It(θ) is the conditional

Fisher information with det It(θ) 6= 0 (see also (1.3) for the i.i.d. case). By
Theorem 3.1, θ̂t is strongly consistent if conditions (C1), (C2) and (C3) are
satisfied with lt(θ) and It(θ) replacing ψt(θ) and Γt(θ) respectively. On the
other hand, if e.g., in the one-dimensional case, bt(θ, u) is differentiable at
u = 0 and the differentiation is allowed under the integral sign, then

∂

∂u
bt(θ, u) |u=0= Eθ

{

l̇t(θ) | Ft−1

}

.

So, if the differentiation w.r.t. θ of Eθ {lt(θ) | Ft−1} = 0 is allowed under
the integral sign, ∂

∂u
bt(θ, u) |u=0= −it(θ) implying that (C1) always holds for

small values of u 6= 0.

Condition (C2) in the i.i.d. case is a requirement that the function γ−1(θ +
u)b(θ, u) is separated from zero on each finite interval that does not contain
0. For the i.i.d. case with continuous w.r.t u functions b(θ, u) and i(θ + u),
condition (C2) is an easy consequence of (C1).

Condition (C3) is a boundedness type assumption which restricts the growth
of ψt(θ) w.r.t. θ with certain uniformity w.r.t. t.

We denote by η+ (respectively η−) the positive (respectively negative)
part of η.

Theorem 3.2 Suppose that for θ ∈ R
m there exists a real valued nonnegative

function Vθ(u) : R
m −→ R having continuous and bounded partial second

derivatives and

9



(G1) Vθ(0) = 0, and for each ε ∈ (0, 1),

inf
‖u‖≥ε

Vθ(u) > 0;

(G2) there exists a set A ∈ F with P θ(A) > 0 such that for each ε ∈ (0, 1),

∞
∑

t=1

inf
ε≤Vθ(u)≤1/ε

[Nt(u)]
− =∞

on A, where

Nt(u) = V̇θ(u)Γ
−1
t (θ + u)bt(θ, u)

+
1

2
sup

v
‖V̈θ(v)‖Eθ

{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}

,

(G3) for ∆t = θ̂t − θ,
∞
∑

t=1

(1 + Vθ(∆t−1))
−1 [Nt(∆t−1)]

+ <∞, P θ-a.s..

Then θ̂t → θ (P θ-a.s.) for any initial value θ̂0.

Proof. As always (see the convention in Section 2), convergence and all
relations between random variables are meant with probability one w.r.t.
the measure P θ unless specified otherwise. Rewrite (3.1) in the form

∆t = ∆t−1 + Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1).

By the Taylor expansion,

Vθ(∆t) = Vθ(∆t−1) + V̇θ(∆t−1)Γ
−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

+
1

2

[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]T
V̈θ(∆̃t)Γ

−1
t (θ + ∆t−1)ψt(θ + ∆t−1),

where ∆̃t ∈ R
m. Taking the conditional expectation w.r.t. Ft−1 yields

Eθ {Vθ(∆t) | Ft−1} ≤ Vθ(∆t−1) +Nt(∆t−1).

Using the obvious decomposition Nt(∆t−1) = [Nt(∆t−1)]
+− [Nt(∆t−1)]

−, the
previous inequality can be rewritten as

(3.3) Eθ {Vθ(∆t) | Ft−1} ≤ Vθ(∆t−1)(1 +Bt) +Bt − [Nt(∆t−1)]
−,

10



where
Bt = (1 + Vθ(∆t−1))

−1 [Nt(∆t−1)]
+.

By condition (G3),

(3.4)
∞
∑

t=1

Bt <∞.

According to Lemma A1 in Appendix A (with Xn = Vθ(∆n), βn−1 = ξn−1 =
Bn and ζn−1 = [Nn(∆n−1)]

−), inequalities (3.3) and (3.4) imply that the
processes Vθ(∆t) and

Yt =

t
∑

s=1

[Ns(∆s−1)]
−

converge to some finite limits. It therefore follows that Vθ(∆t) → r ≥ 0.
Suppose that {r > 0}. Then there exists ε > 0 such that ε ≤ Vθ(∆t) ≤ 1/ε
eventually. Because of (G2), this implies that for some (possibly random) t0,

∞
∑

s=t0

[Ns(∆s−1)]
− ≥

∞
∑

s=t0

inf
ε≤Vθ(u)≤1/ε

[Ns(u)]
− =∞

on the set A with P θ(A) > 0, which contradicts the existence of a finite limit
of Yt. Hence, r = 0 and so, Vθ(∆t) → 0. Now, ∆t → 0 follows from (G1)
(otherwise there would exist a sequence tk → ∞ such that ‖∆tk‖ ≥ ε for
some ε > 0, and (G1) would imply that infk Vθ(∆tk) > 0). ♦
Proof of Theorem 3.1. As always (see the convention in Section 2), con-
vergence and all relations between random variables are meant with prob-
ability one w.r.t. the measure P θ unless specified otherwise. Let us show
that the conditions of Theorem 3.1 imply those in Theorem 3.2 with Vθ(u) =
(u, u) = uTu = ‖u‖2. Condition (G1) trivially holds. Since V̇θ(u) = 2uT and
V̈θ(u) = 2× 1, it follows that

(3.5) Nt(u) = 2uTΓ−1
t (θ+ u)bt(θ, u) +Eθ

{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}

.

Then, by (C1) and (C3),

∞
∑

t=1

(1 + ‖∆t−1‖2)−1 [Nt(∆t−1)]
+

≤
∞
∑

t=1

(1 + ‖∆t−1‖2)−1Eθ

{

‖Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1‖2 | Ft−1

}

≤
∞
∑

t=1

Bt <∞.(3.6)
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So, (G3) holds. To derive (G2), using the obvious inequality [a]− ≥ −a and
(C1), we write

inf [Nt(u)]
− ≥ inf

[

−2uT Γ−1
t (θ + u)bt(θ, u)

−Eθ

{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}]

≥ inf
∣

∣2uT Γ−1
t (θ + u)bt(θ, u)

∣

∣

− sup
[

Eθ

{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}]

,

where inf’s and sup’s are taken over {u : ε ≤ ‖u‖2 ≤ 1/ε}. From (C3),

sup
[

Eθ

{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}]

≤ Bt(1 + 1/ε2)

and
∑∞

t=1 Bt <∞. Now, using (C2), we finally obtain

∞
∑

t=1

inf [Nt(u)]
− ≥

∞
∑

t=1

inf
∣

∣2uTΓ−1
t (θ + u)bt(θ, u)

∣

∣− (1 + 1/ε2)
∞
∑

t=1

Bt =∞,

which implies (G2). So, Theorem 3.1 follows on application of Theorem 3.2.
♦

Remark 3.3 It follows from the proof of Theorem 3.2 that if conditions
(G1) and (G3) are satisfied then (θ̂t − θ)2 converges (P θ-a.s.) to a finite
limit, for any initial value θ̂0. In particular, to guarantee this convergence,
it suffices to require conditions (C1) and (C3) of Theorem 3.1 (this can be
seen by taking Vθ(u) = (u, u) = uTu = ‖u‖2 and (3.6)).

4 SPECIAL MODELS AND EXAMPLES

4.1 The i.i.d. scheme.

Consider the classical scheme of i.i.d. observations X1, X2, . . . , with a com-
mon probability density/mass function f(θ, x), θ ∈ R

m. Suppose that
ψ(θ, z) is an estimating function with

∫

ψ(θ, z)f(θ, z)µ(dz) = 0.

Let us define the recursive estimator θ̂t by

(4.1) θ̂t = θ̂t−1 +
1

t
γ−1(θ̂t−1)ψ(θ̂t−1, Xt), t ≥ 1,

where γ(θ) is a non-random matrix such that γ−1(θ) exists for any θ ∈ R
m

and θ̂0 ∈ R
m is any initial value.

12



Corollary 4.1 Suppose that for any θ ∈ R
m, the following conditions hold.

(I) For any 0 < ε < 1,

sup
ε≤‖u‖≤ 1

ε

uT γ−1(θ + u)

∫

ψ(θ + u, x)f(θ, x)µ( dx) < 0.

(II) For each u ∈ R
m,

∫

∥

∥γ−1(θ + u)ψ(θ + u, x)
∥

∥

2
f(θ, x)µ( dx) ≤ Kθ(1 + ‖u‖2)

for some constant Kθ.

Then the estimator θ̂t is strongly consistent for any initial value θ̂0.

Proof Since bt(θ, u) = b(θ, u) =
∫

ψ(θ+u, z)f(θ, z)µ( dz) and Γt(θ) = tγ(θ),
it is easy to see that (I) and (II) imply (C1), (C2) and (C3) from Theorem
3.1 which yields (θ̂t − θ)→ 0 (P θ-a.s.).

Similar results (for i.i.d. schemes) were obtained by Khas’minskii and
Nevelson [11] Ch.8, §4, and Fabian [4]. Note that conditions (I) and (II) are
derived from Theorem 3.1 and are sufficient conditions for the convergence
of (4.1). Applying Theorem 3.2 to (4.1), one can obtain various alternative
sufficient conditions analogous to those given in Fabian (1978). Note also
that, in (4.1), the normalising sequence is Γt(θ) = tγ(θ), but Theorems 3.1
and 4.1 allow to consider procedures with arbitrary predictable Γt(θ).

4.2 Linear procedures.

Consider the recursion

(4.2) θ̂t = θ̂t−1 + Γ−1
t

(

ht − γtθ̂n−1

)

, t ≥ 1,

where the Γt and γt are predictable processes, ht is an adapted process (i.e., ht

is Ft-measurable for t ≥ 1) and all three are independent of θ. The following
result gives a sets of sufficient conditions for the convergence of (4.2) in the
case when the linear ψt(θ) = ht − γtθ is a martingale-difference.

Corollary 4.2 Suppose that for any θ ∈ R,

(a) Eθ {ht | Ft−1} = γtθ, for t ≥ 1, P θ-a.s.,

13



(b) 0 ≤ γt/Γt ≤ 2− δ eventually for some δ > 0, and

∞
∑

t=1

γt/Γt =∞,

on a set A of positive probability P θ.

(c)
∞
∑

t=1

Eθ {(ht − θγt)
2 | Ft−1}

Γ2
t

<∞, P θ-a.s..

Then θ̂t → θ (P θ-a.s.) for any initial value θ̂0 ∈ R .

Proof. We need to check that the conditions of Theorem 3.2 hold for for
Vθ(u) = u2. Using (a) we obtain

bt(θ, u) = Eθ {(ht − (θ + u)γt) | Ft−1} = −uγt

and
Eθ

{

(ψt(θ + u))2 | Ft−1

}

= Eθ

{

(ht − (θ + u)γt)
2 | Ft−1

}

= Eθ

{

(ht − θγt)
2 | Ft−1

}

+ u2γ2
t = Pθ

t + u2γ2
t ,

where Pθ
t = Eθ {(ht − θγt)

2 | Ft−1} . Now, using (3.5),

Nt(u) = −2u2γtΓ
−1
t + Γ−2

t Pθ
t + u2γ2

t Γ
−2
t

= −δu2γtΓ
−1
t − u2γtΓ

−1
t

(

(2− δ)− γtΓ
−1
t

)

+ Γ−2
t Pθ

t .

To derive (G2), we use the obvious inequality [a]− ≥ −a (for any a), condi-
tions (b) and (c), and write

∞
∑

t=1

inf
ε≤u2≤1/ε

[Nt(u)]
− ≥

∞
∑

t=1

inf
ε≤u2≤1/ε

(

δu2γtΓ
−1
t − Γ−2

t Pθ
t

)

=∞

on A. To check (G3) we write

∞
∑

t=1

(1 + ∆2
t−1)

−1 [Nt(∆t−1)]
+ ≤

∞
∑

t=1

[Nt(∆t−1)]
+ ≤

∞
∑

t=1

Γ−2
t Pθ

t <∞

(P θ-a.s.), which completes the proof. ♦
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Remark 4.1 Suppose that ∆Γt = γt. Then

(4.3) θ̂t = Γ−1
t

(

θ̂0 +
t
∑

s=1

hs(Xs)

)

.

This can be easily seen by inspecting the difference θ̂t− θ̂t−1 for the sequence
(4.3), to check that (4.2) holds. It is also interesting to observe that since in
this case, Γt =

∑t
s=1 γs,

θ̂t = Γ−1
t θ̂0 + Γ−1

t

t
∑

s=1

(hs(Xs)− γsθ) + θ = Γ−1
t θ̂0 + Γ−1

t Mθ
t + θ

where, Mθ
t =

∑t
s=1 (hs(Xs)− γsθ) is a P θ martingale. Now, if Γt → ∞, a

necessary and sufficient condition for the convergence to θ is the convergence
to zero of the sequence Γ−1

t Mθ
t . Condition (c) in Corollary 4.2 is a standard

sufficient condition in martingale theory to guarantee Γ−1
t Mθ

t → 0 (see e.g.,
Shiryayev [29], Ch.VII, §5 Theorem 4). The first part of (b) will trivially
hold if γt = ∆Γt ≥ 0. Also, in this case, Γt →∞ implies

∑∞
t=1 ∆Γt/Γt =∞

(see Proposition A3 in Appendix A).

Remark 4.2 As a particular example, consider the process

Xt = θXt−1 + ξt, t ≥ 1,

where, ξt is a P θ martingale-difference with Dt = Eθ {ξ2
t | Ft−1} > 0. The

choice ht = D−1
t Xt−1Xt and ∆Γt = γt = D−1

t X2
t−1, in (4.2) yields the least

square estimator of θ. It is easy to verify that (a) holds. Also, since

Eθ

{

(ht − γtθ)
2 | Ft−1

}

= D−2
t X2

t−1Eθ

{

ξ2
t | Ft−1

}

= D−1
t X2

t−1 = ∆Γt,

it follows that (c) in Corollary 4.2 is equivalent to
∑∞

t=1 ∆Γt/Γ
2
t <∞. This,

as well as (b) hold if Γt → ∞ (see Proposition A3 in Appendix A). So, if
Γt →∞ the least square procedure is strongly consistent. If, e.g., ξt are i.i.d.
r.v.’s, then Γt →∞ for all values of θ ∈ R (see, e.g, Shiryayev [29], Ch.VII,
5.5).

4.3 AR(m) process

Consider an AR(m) process

Xi = θ1Xi−1 + · · ·+ θmXi−m + ξi = θTX i−1
i−m + ξi,
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where X i−1
i−m = (Xi−1, . . . , Xi−m)T , θ = (θ1, . . . , θm)T and ξi is a sequence of

i.i.d. random variables.
A reasonable class of procedures in this model should have a form

(4.4) θ̂t = θ̂t−1 + Γ−1
t (θ̂t−1)ψt(Xt − θ̂T

t−1X
t−1
t−m),

where ψt(z) and Γ−1
t (z) (z ∈ R

m) are respectively vector and matrix processes
meeting conditions of the previous section. Suppose that the probability
density function of ξt w.r.t. Lebesgue’s measure is g(x). Then the conditional
probability density function is ft(θ, xt | xt−1

1 ) = g(xt− θTxt−1
t−m). So, denoting

(4.5) ψt(z) = −g
′(z)

g(z)
X t−1

t−m,

it is easy to see that

ψt(Xt − θTX t−1
t−m) =

ḟT
t (θ,Xt | X t−1

1 )

ft(θ,Xt | X t−1
1 )

and (4.4) becomes a likelihood recursive procedure. A possible choice of Γt(z)
in this case would be the conditional Fisher information matrix

It = ig
t
∑

s=1

X t−1
t−m(X t−1

t−m)T

where

ig =

∫
(

g′(z)

g(z)

)2

g(z) dz.

An interesting class of recursive estimators for strongly stationary AR(m)
processes is studied in Campbell [2]. These estimators are recursive versions
of robust modifications of the least squares method and are defined as

(4.6) θ̂t = θ̂t−1 + atγ(X
t−1
t−m)φ(Xt − θ̂T

t−1X
t−1
t−m),

where at is a sequence of a positive numbers with at → 0, φ is a bounded
scalar function and γ(u) is a vector function of the form uh(u) for some non-
negative function h of u (See also Leonov [17]). The class of procedures of
type (4.6) is clearly a subclass of that defined by (4.4) and therefore can be
studies using the results of the previous section.

Suppose that ξi are i.i.d. random variables with a bell-shaped, symmetric
about zero probability density function g(z) (that is, g(−z) = g(z), and g ↓ 0
on R+). Suppose also that φ(x) is an odd, continuous in zero function. Let
us write conditions of Theorem 3.1 for

(4.7) Γ(θ) = a−1
t 1 and ψt(θ) = X t−1

t−mh
(

X t−1
t−m

)

φ
(

Xt − θTX t−1
t−m

)

.
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We have

Eθ

{

φ
(

Xt − (θ + u)TX t−1
t−m

)

| Fs−1

}

= Eθ

{

φ
(

ξt − uTX t−1
t−m

)

| Fs−1

}

=

∫

φ
(

z − uTX t−1
t−m

)

g(z)dz.

It follows from Lemma A2 in Appendix A that if w 6= 0,

G(w) = −w
∫ ∞

−∞

φ (z − w) g(z)dz > 0.

Therefore,

uT Γ−1
t (θ + u)bt(θ, u) = atu

TX t−1
t−mh(X

t−1
t−m)Eθ

{

φ(ξt − uTX t−1
t−m) | Fs−1

}

= −at h
(

X t−1
t−m

)

G(uTX t−1
t−m) ≤ 0.(4.8)

Also, since φ is a bounded function,

Eθ

{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}

≤ Cθa2
t‖X t−1

t−m‖2h2(X t−1
t−m)

for some positive constant Cθ. Therefore, conditions of Theorem 3.1 hold if
(P θ-a.s.),

(4.9)
∞
∑

t=1

ath
(

X t−1
t−m

)

inf
ε≤‖u‖≤1/ε

G(uTX t−1
t−m) =∞

and

(4.10)

∞
∑

t=1

a2
t‖X t−1

t−m‖2h2(X t−1
t−m) <∞.

If Xt is a stationary process, these conditions can be verified using limit
theorems for stationary processes. Suppose, e.g., that at = 1/t, h(x) 6= 0
for any x 6= 0, and g(z) is continuous. Then h(x) infε≤‖u‖≤1/εG(uTx) > 0
for any x 6= 0 (see Appendix A, Lemma A2). Therefore, it follows from an
ergodic theorem for stationary processes that in probability P θ,

(4.11) lim
t→∞

1

t

t
∑

s=1

h
(

Xs−1
s−m

)

inf
ε≤‖u‖≤1/ε

G(uTXs−1
s−m) > 0.

Now, (4.9) follows from Proposition A4, in Appendix A.
Examples of the procedures of type (4.6) as well as some simulation results

are presented in Campbell [2].
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4.4 An explicit example

As a particular example of (4.4), consider the process

Xt = θXt−1 + ξt, t ≥ 1,

where, ξt, t ≥ 1, are independent Student random variables with degrees
of freedom α. So, the probability density functions of ξt is

g(x) = Cα

(

1 +
x2

α

)−α+1

2

where Cα = Γ((α + 1)/2)/(
√
πα Γ(α/2)).

Since
g′(z)

g(z)
= −(α + 1)

z

α + z2

(see also (4.5)),

ḟt(θ,Xt | Xt−1)

ft(θ,Xt | Xt−1)
= −Xt−1

g′

g
(Xt − θXt−1) = (α + 1)Xt−1

Xt − θXt−1

α + (Xt − θXt−1)2

and the conditional Fisher information is

It = ig
t
∑

s=1

X2
t−1

where

ig =

∫
(

g′(z)

g(z)

)2

g(z) dz = Cα(α + 1)2

∫

z2 dz

(α+ z2)2(1 + z2

α
)

α+1

2

= Cα
(α + 1)2

√
α

∫

z2 dz

(1 + z2)
α+5

2

= Cα
(α + 1)2

√
α

√
πΓ((α + 5)/2− 3/2)

2Γ((α + 5)/2)

=
2(α+ 1)

α + 3
.

Therefore, a likelihood recursive procedure is

(4.12) θ̂t = θ̂t−1 + I−1
t (θ̂t−1)(α+ 1)Xt−1

Xt − θ̂t−1Xt−1

α + (Xt − θ̂t−1Xt−1)2
, t ≥ 1,
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where θ̂0 is any starting point. Note that It can also be derived recursively
by

It = It−1 + igX2
t−1.

Clearly, (4.12) is a recursive procedure of type (4.6) but with a stochastic
normalizing sequence at = I−1

t . Now, ψt is of a form of (4.7) with h(u) = 1
and φ(z) = (α+1)z/(α + z2), and g(z) is a bell-shaped and symmetric about
zero. Therefore, to show convergence to θ, it suffices to check conditions (4.9)
and (4.10), which, in this case can be written as

(4.13)

∞
∑

t=1

1

It
inf

ε≤|u|≤1/ε
G(uXt−1) =∞

and

(4.14)

∞
∑

t=1

X2
t−1

I2
t

<∞,

(P θ-a.s.). We have, It → ∞ for any θ ∈ R (see, e.g, Shiryayev [29], Ch.VII,
5.5). Since ∆It = ig(Xt−1)

2, we obtain that (4.14) follows from Proposition
A3 in Appendix A. Let us assume now that |θ| < 1. By Lemma A2 in
Appendix A, infε≤|u|≤1/εG(ux) > 0 for any x 6= 0. Then if we assume that
the the process is strongly stationary, it follows from the ergodic theorem
that in probability P θ,

lim
t→∞

1

t
It > 0 and lim

t→∞

1

t

t
∑

s=1

inf
ε≤|u|≤1/ε

G(uXs−1) > 0.

(It can be proved that these hold without assumption of strong stationar-
ity.) Therefore, in probability P θ, lim 1

It

∑t
s=1 infε≤|u|≤1/εG(uXs−1) > 0 and

(4.13) now follows on application of Proposition A4 in Appendix A.

Remark 4.3 We have shown above that the recursive estimator (4.12) is
strongly consistent, i.e., converges to θ a.s., if |θ| < 1. It is worth mentioning
that (4.14), and therefore, (4.10) holds for any θ ∈ R, which guarantees
(C3) of Theorem 3.1. Also, (4.8) implies that (C1) of Theorem 3.1 holds as
well. Therefore, according to Remark 3.3, we obtain that |θ̂t − θ| converges
(P θ-a.s.) to a finite limit for any θ ∈ R.

Remark 4.4 Note that conditions (4.13) and (4.14) will still hold if we
replace It by ctIt where ct is a sequence of non-negative r.v.’s such that
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Figure 1: Realisations of (4.12) for α = 3 and θ = 0.5 for three different starting
values θ0 = −0.2, 0, 1 and 0.7. The number of observations is 40.

ct = 1 eventually. So, the procedure (4.12) will remain consistent if It is
replaced by ctIt, i.e., if tuning constants are introduced. We have shown that
the procedure is consistent, i.e., the recursive estimator is close to the value of
the unknown parameter for the large t’s. But in practice, the tuning constants
may be useful to control the behaviour of a recursion at the “beginning” of
the procedure. Fig.1 shows realisations of (4.12) for α = 3 and θ = 0.5 for
three different starting values. The number of observations is 40. As we
can see from these graphs, the recursive procedure, at each step moves in the
direction of the parameter (see also Remark 3.2), but oscillates quite violently
for the first ten steps and then settles down nicely after another ten steps.
This oscillation is due to the small values of the normalising sequence for
the first several steps and can be dealt with by introducing tuning constants.
On other occasions, it may be desirable to lower the value of the normalising
sequence for the first several steps. This happens when a procedure settles
down too quickly without any, or little oscillation (before reaching the actual
value of the parameter). The detailed discussion of these and related topics
will appear elsewhere.

APPENDIX A

Lemma A1 Let F0,F1, . . . be a non-decreasing sequence of σ-algebras and
Xn, βn, ξn, ζn ∈ Fn, n ≥ 0, are nonnegative r.v.’s such that

E(Xn|Fn−1) ≤ Xn−1(1 + βn−1) + ξn−1 − ζn−1, n ≥ 1
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eventually. Then

{
∞
∑

i=1

ξi−1 <∞} ∩ {
∞
∑

i=1

βi−1 <∞} ⊆ {X →} ∩ {
∞
∑

i=1

ζi−1 <∞} (P -a.s.),

where {X →} denotes the set where limn→∞Xn exists and is finite.

Remark Proof can be found in Robbins and Siegmund [23]. Note also that
this lemma is a special case of the theorem on the convergence sets nonneg-
ative semimartingales (see, e.g., Lazrieva et al [13]).

Lemma A2 Suppose that g 6≡ 0 is a nonnegative even function on R and
g ↓ 0 on R+. Suppose also that φ is a measurable odd function on R such
that φ(z) > 0 for z > 0 and

∫

R
|φ(z − w)|g(z)dz <∞ for all w ∈ R. Then

(A1) w

∫ ∞

−∞

φ (z − w) g(z)dz < 0

for any w 6= 0. Furthermore, if g(z) is continuous, then for any ε ∈ (0, 1)

(A2) sup
ε≤|w|≤1/ε

w

∫ ∞

−∞

φ (z − w) g(z)dz < 0.

Proof Denote

(A3) Φ(w) =

∫ ∞

−∞

φ (z − w) g(z)dz =

∫ ∞

−∞

φ(z)g(z + w)dz.

Using the change of variable z ←→ −z in the integral over (−∞, 0) and the
equalities φ(−z) = −φ(z) and g(−z + w) = g(z − w), we obtain

Φ(w) =

∫ 0

−∞

φ(z)g(z + w)dz +

∫ ∞

0

φ(z)g(z + w)dz

=

∫ ∞

0

φ(z) (g(z + w)− g(−z + w))dz

=

∫ ∞

0

φ(z) (g(z + w)− g(z − w)) dz.

Suppose now that w > 0. Then z − w is closer to 0 than z + w, and the
properties of g imply that g(z+w)− g(z−w) ≤ 0. Since φ(z) > 0 for z > 0,
Φ(w) ≤ 0. The equality Φ(w) = 0 would imply that g(z+w)− g(z−w) = 0
for all z ∈ (0,+∞) since, being monotone, g has right and left limits at each
point of (0,+∞). The last equality, however, contradicts the restrictions on
g. Therefore, (A1) holds. Similarly, if w < 0, then z + w is closer to 0 than
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z − w, and g(z + w) − g(z − w) ≥ 0. Hence w (g(z + w)− g(z − w)) ≤ 0,
which yields (A1) as before.

To prove (A2) note that the continuity of g implies that g(z+w)−g(z−w)
is a continuous functions of w and (A2) will follow from (A1) if one proves
that Φ(w) is also continuous in w. So, it is sufficient to show that the
integral in (A3) is uniformly convergent for ε ≤ |w| ≤ 1/ε. It follows from
the restrictions we have placed on g that there exists δ > 0 such that g ≥ δ
in a neighbourhood of 0. Then the condition
∫ ∞

0

φ(z) (g(z + w) + g(z − w)) dz =

∫ ∞

−∞

|φ(z − w)|g(z)dz <∞, ∀w ∈ R

implies that φ is locally integrable on R. It is easy to see that, for any
ε ∈ (0, 1),

g(z ± w) ≤ g(0)χε(z) + g(z − 1/ε), z ≥ 0, ε ≤ |w| ≤ 1/ε,

where χε is the indicator function of the interval [0, 1/ε]. Since the function
φ(·) (g(0)χε + g(· − 1/ε)) is integrable on (0,+∞) and does not depend on
w, we conclude that the integral in (A3) is indeed uniformly convergent for
ε ≤ |w| ≤ 1/ε. ♦
Proposition A3 If dn is a nondecreasing sequence of positive numbers such
that dn → +∞, then

∞
∑

n=1

△dn/dn = +∞

and
∞
∑

n=1

△dn/d
2
n < +∞.

Proof The first claim is easily obtained by contradiction from the Kronecker
lemma (see, e.g., Lemma 2, §3, Ch. IV in Shiryayev [29]). The second one is
proved by the following argument

0 ≤
N
∑

n=1

△dn

d2
n

≤
N
∑

n=1

△dn

dn−1dn

=
N
∑

n=1

(

1

dn−1

− 1

dn

)

=
1

d0

− 1

dN

→ 1

d0

< +∞.

♦
Proposition A4 Suppose that dn, cn, and c are random variables, such that,
with probability 1, dn > 0, cn ≥ 0, c > 0 and dn → +∞ as n→∞. Then

1

dn

n
∑

i=1

ci → c in probability
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implies
∞
∑

n=1

cn
dn

=∞ with probability 1.

Proof Denote ξn = 1
dn

∑n
i=1 ci. Since ξn → c in probability, it follows that

there exists a subsequence ξin of ξn with the property that ξin → c with
probability 1. Now, assume that

∑∞
n=1 cn/dn < ∞ on a set A of positive

probability. Then, it follows from the Kronecker lemma, (see, e.g., Lemma 2,
§3, Ch. IV in Shiryayev [29]) that ξn → 0 on A. Then it follows that ξin → 0
on A as well, implying that c = 0 on A which contradicts the assumptions
that c > 0 with probability 1. ♦
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