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Abstract
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homogeneous Poisson process with rate 0. In this paper, we consider
a change point estimation problem for the rate of the unaweylyoisson
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1 Introduction

The telegraph process describes a random motion with fiaiteity and it is usu-
ally proposed as an alternative to classical diffusion (e Goldstein, 1951
and Kac, 1974). The process defines the position of a patitially located at
the origin of the real line and moving alternatively with stent velocity+v or
—v. The changes of direction are governed by an homogeneossdPoprocess
with rate A > 0. The telegraph process talegrapher’sprocess is defined as

X(t) = V(0) /Ot(—l)N(s)ds, t >0, (1.1)

whereV(0) is the initial velocity taking valuestv with equal probability and
independently of the Poisson process(t),t > 0}. Many authors analyzed
probabilistic properties of the process over the yearsf(eexample Orsingher,
1990, 1995; Foong and Kanno, 1994; Stadje and Zacks, 200gksZ2004).
Di Crescenzo and Pellerey (2002) proposed the geometagreghh process as
a model to describe the dynamics of the price of risky assk&seX (¢) replaces
the standard Brownian motion of the original Black-Schaé¥erton model. Con-
versely to the geometric Brownian motion, given thatt) is of bounded varia-
tion, so is the geometric telegraph process. This seemdistieaay to model
paths of assets in the financial markets. Mazza and RullZ9€4) linked the
process[(1]1) and the ruin processes in the context of rekryh Di Masiet al.
(1994) proposed to model the volatility of financial markietserms of the tele-
graph process. Ratanov (2004, 2005) proposed to model falanarkets using
a telegraph process with two intensities and two velocities.. The telegraph
process has also been used in ecology to model populati@ndga (see Holmes
et al, 1994) and the displacement of wild animals on the soil. Ini@aar, this
model is chosen because it preserves the property of anicadeve at finite ve-
locity and for a certain period along one direction (see Blgimes, 1993, for an
account).

For the telegraph proce$s (¢),0 < ¢t < T'} observed at equidistant discrete
times0 =ty < ... < t,,witht;, =iA,,i=0,...,n,nA, =T andA, — 0as
n — oo, De Gregorio and lacus (2006) proposed pseudo-maximuiihidad and
implicit moment based estimators for the ratef the telegraph process. Under
the additional conditionA, — oo asn — oo, lacus and Yoshida (2007) studied
the asymptotic properties of explicit moment type estimsasnd further propose
a consistent, asymptotically gaussian and asymptotieéfiljient estimator based
on the increments of the process.

In this paper we suppose that for a telegraph process ocewrisch of the rate
from \; to A\, at some time instarty, € [0, 7] and the interest is in the estimation
of the change poirty and both\; and ;.
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The change point estimation theory has been employed wiielpeans of
the likelihood function (see Csorgd and Horvath, 1997hfortunately, the like-
lihood function for the telegraph process is not known aredpbseudo likelihood
proposed in De Gregorio and lacus (2006) is not easy to tnethiis framework.
We will then proceed using the alternative method basedast s&gjuares proposed
in Bai (1994, 1997) and used in different contexts by manpanstincluding Hsu
(1977, 1979) for the i.i.d. case and Chetnal. (2005) for the mixing case. Our
model is peculiar in itself for the properties &f(¢) described in the above, be-
cause\ is a parameter related to the mean and the variance of theddqisocess
and because the meal, plays a role in the definition of the rate of convergence
of our estimators.

The paper is organized as follows. Secfidn 2 describes thieinthe obser-
vation scheme and the change point estimator. The consystérchange point
estimator is discussed in Sectidn 3 and distributionallteswe presented in Sec-
tion[4. Finally, Sectiofi5 contains an application of our Inogk to real data: we
will reanalyze the classical change point data sets of Domed weekly closing
(see Hsu, 1977, 1979) and IBM stock prices (see Box and Jenkav0).

2 Observation scheme and least squares estimator

We consider a telegraph proceSs (¢),0 < ¢t < T < oo} defined as in[(1]1)
and assume to observe its trajectory onlynint 1 equidistant discrete times
0<t; <...<ty,witht; =iA,,i=1,...,nandnA, = T. We assume that
a rate of changes of direction shift occurs during the irgtfy 7' at an unknown
timed, = 71, 7 € (0,1). Therefore the changes of direction are governed by
an inhomogeneous Poisson process with paraméter= A\ 1<py + Aa2lpsa,)
where the positive values;, A, and the change point (or 6,) are unknown and
to be estimated given the observatioXi&; ), X (ts), ..., X(¢,). In order to sim-
plify the formulas we use the following notatiok (¢;) = X (iA,) = X;. The
asymptotic framework is the following\,, — 0 andnA,, =T — oo asn — oc.
The telegraph process is not Markovian and, as mentionéaimtroduction,
itis not possible to derive the explicit likelihood funatiof the observation’;’s,
therefore we can not apply the statistical methods basdusdikelihood function.
To work out our estimation problem, we shall follow the apgio developed in
Bai (1994), which involves least squares-type estimafbing. same point of view
has been applied by Chenal, 2005, in a context of financial time series. For our
model, the time incremenmnk,, plays an active role in the study of the asymptotics
of our estimators so the proofs, although in some cases dlangines of Bai
(1994) require some technical, but crucial, adjustments.



In order to obtain our estimator we introduce some basictioois. Let

_ Lmi<worny

)/i ) - 17 *y 9
A, "
wheren;, = X; — X;_; is the increment betwekenAtwo consecutive observations. We
indicate the mean value of with v, = =" = X, + o(1), m = 1,2. We

observe that the random variablgsare indeToendent and identically distributed
because depend by the increments lacus and Yoshida (2007) proved that the
estimators

] — . 1
Yy=—> Y, and A, =—-—1log(l —4,A,
A n; A log(1 =)

are consistent, gaussian and asymptotically efficientnestirs ofy and\ respec-
tively. We will use these properties in the following withmecessarily mention-
ing them.

We assume that the change occurs exactly at time ¢, = kyA,, = 6y,
thereforek, = [n7], 7 € (0,1), where[ -] represents the integer-valued function.
The change point estimator is obtained as follows

]%O = argmkin <min {Z(YZ — 71)2 + Z (Yz _ 72)2})

71,72

=1 i=k+1
k n
ST PUCER TS ST S SR
=1 i=k+1
where
k 1 k
Y; - 2 - 7 Y; Y )
min Y (Vi =)’ = T > Yi=Y,
R L et

We indicate the sum of the squares of residuals in the foligwmanner

k n
U =) (=Y + > (Yi—Yip)’, (2.2)
=1 i=k+1
then
ko = arg mkin Uz, (2.3)
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andy, = Y; , 92 = Y,_;, are respectively the least squares estimatorg aihd
~. This gives the two estimators

R 1 . . 1 .

By settingY,, = Ly Y, S, =", Y, simple algebra leads to

Y Wi-Y)P=U;+nV?, 1<k<n-—1,

i=1

where
k(n—k) , - _ 1
Vi = ——— (Y, — Vi) = ————=5,Ds, 2.5
i — (Yoo — V) TR (2.5)
and v g
Dy =—— =k (2.6)
n n
Therefore, formula (2]3) implies that
ko = arg max V2 = arg max |Dg| = arg max Vk(n —E)|[Vi|. (2.7)

Our first result concerns the asymptotic distributionkgfunder the null hy-
pothesis thak; = \,. This permits us to test if a shift has taken place during the
interval[0, T7.

Theorem 2.1. UnderH,, i.e. \s = A\ = A\¢, we have thatfor\,, — 0,n4, — o
asn — oo the following result hods

nl\,
VoDl 1B (@), (2.8)
0

where{B°(t),0 < ¢ < 1} is a Brownian bridge.

Proof. Let¢& = Y; — 70, %0 = BY; = 12572 = Ao + o(1). Then,E¢; = 0 and
—e‘AOAn)e_

o2 =Var(g) =4 ~ %" We introduce the following function

1 1
Xn(t) = ms[m} + (nt — [”t])mf[m]ﬂ, 0<t<l,

with S, = > | &. We note that

fnt) [nt)
L YL yelng (2.9)
=1

Tan/n on/It] =



and

[nt] [nt]
Var ( ﬂ[ ]Z@) Var( A ZAn@) (2.10)

n o4=1

[nt] _
_ 3 L{jpj<vnny — (1 —e20%n)
nt n =1 v An

L{jn;l<van}— (1= 0%n)

Since L < \/1A_n the Lindeberg condition is true
[nt]

pa Anop([nt])?
Then from [2.9),[(Z.10) and{2.]11) we can conclude that

1
Tn\/1

Now, by applying Donsker’s theorem (invariance principhe are able to
write that

Spi] = N(0, ). (2.12)

X,(t) % B(t)
(X, (1) — tX, (1)} % B(t),

with B(t) and B°(t) representing respectively a standard Brownian motion and a
Brownian bridge. Let: = [nt], we can write

Xo() — 1X,(1) = O_nlﬁ [Sk - %3} 4ot jﬁt] Eontn
= O—n];/ﬁ Z(Yz — %) — %;(Yz - Vo)]

We observe that
k n

> (Yi—m) - %Z(Yz — %) = —DkZYi,

i=1 =1
and consequently

/| Dy — 2z Y :'Xnu)—txn(l) nt—ntl,

(1—3A0An)eA0An O_n\/_

. (2.13)
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It is easy to see (by Chebyshev inequality) that

nt — [nt]

P
S —&n 0.
up O—n\/ﬁ 5[ f+1] —

t

By the law of large numbe} S°7 | Y; = \g, while % — Vo
Therefore from[(2.13) follows that

nAn d
=D |B2(0).
0

L]
Corollary 2.1. The same convergence result of the Thedrem 2.1 follows wiaen w

consider
Vnl\,
VAo

where), is any consistent estimator fog.

|Dk‘7

Remark 2.1. From Theorem 2]1 we derive immediately thatfar (0,1/2)

A,
Voo sw DS swp [B'(1)] (2.14)
0 on<k<(1-8)n 5<t<(1-6)
A,
Dy WS sp G- RO (219
0 n<k<(1-d)n 0<t<(1-9)

The last asymptotic results are useful to test if doesndtexchange point. In
particular it is possible to obtain the asymptotic criticadlues for the distribution
(2.18)by means of the same arguments used iorgfsand Honath (1997), pag.
25.

3 Theconsistency properties of the estimator

We shall study the consistency and the rate of convergenteeathange point
estimator[(2.[7). It is convenient to note that the rate ofeogence is particularly
important not only to describe how fast the estimator cayeeto the true value,
but also to get the limiting distribution. The next Theoregpnesents our first
result on the consistency.

Theorem 3.1. The estimatof = ’“—; satisfies
|7 — 7] = (nAn) 2 (12 — 1) 'O, (\/log n) (3.1)
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Proof. By the same arguments of Bai (1994), Section 3 and by usinipthrilas
(10)-(14) therein, we have that

|7 — 7| < Cr(72 —71)_181]1p\\/k— EVy|, (3.2)
—(1—ern .
where(C’. is a constant depending only enlLet Z; = 1“”“”\"/%(1 ), given
that
1 ko1 &
Vi — BV, = \ﬁ Z,
R VAV nvn—k _Xk:
1=k+1
k
1 k1
+ Ji-——% "z
ni\, n\k ;
we obtain that .
Vi — EVj| < W{Zn—k‘i‘zk}- (3.3)

where 7, = ﬁ St ZiandZ, = \/ﬁ > ki1 Zi. By applying Hajék-

Renyi inequality for martingales we have that

k n 2
7 1 E(Z
P{male;l>a} < —25 (2k)
1<k<n Ck o Py (e
(1 - e—AAn)e—AAn n

1
- a2, Z 2

IA

_ )‘+0(1)Zi (3.4)

Choosings;, = vk and observing that",_, k' < C'logn, for someC > 0 (see
e.g. Bai, 1994), we have that

IflaX = Xk:Zi =0, <\/@) . (3.5

Then from the relationships (3.3) arid (3.5) we obtain thalt€3.1). O

Remark 3.1. By means of the law of iterated logarithm we obtain immetjate
the following rate of convergence which improve the previ@sult. We have that

|7 — 7| = (nAn)_l/2(72 — )70, (y/loglogn). (3.6)
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Remark 3.2. Theoreni 311 implies that, under the additional hypothésjs=
O(nf), e € (—1,0) we have also consistency, i@A,)?(7 — 7) — 0 in proba-
bility for any 5 € (0,1/2).

We are able to improve the rate of convergence.of

Theorem 3.2. We have the following result

. 1
T—7=0, (nAn('yg — 71)2) . (3.7)

Proof. We use the same framework of the proof of the Proposition Zir{B94),
Section 4, therefore we omit the details.

We choose & > 0 such thatr € (9,1 — §). Sincek/n is consistent forr,
for everye > 0, Pr{k/n ¢ (0,1 — 6)} < ¢ whenn is large. In order to prove
B1) it is sufficient to show thaPr{|7 — 7| > M(nA,~?)~'} is small whenn
and M are large, where,, = o — v;. We are interested to study the behavior
of Vi fornd < k < n(l —90),0 < < 1. We define for any > 0 the set
Doy ={k:nd <k <n(l—190),|k— k| >MA 1~ 2} Then we have that

Pri{|# — 7| > M(nA,2) 'y <e+ Pr{ sup |Vi| > Vi |},

k€Dy M

for everye > 0. Thus we study the behavior éfr{sup,.,
possible to prove that

n,M

Pr{ sup \Vk|2\Vk0\} < Pr{ sup Vk—Vkon}

kGDn_’]\/j kGDn,]\/l
(3.8)
+Prq sup Vip+ Vi <0
kGDn_’]\/j
= P+Q
Furthermore
= 1
Q < 2Pr< sup Y, — > —EV, 3.9
k<n(1-6) 0 — Zzzk;l( 72) 4 ko ( )
1| 1
2P — Y, — > -FEV, ».
+ r{:;%k ;( Y1) = ko}
By observing thad~>° i~% = O(m™!), the Hajék-Renyi inequality yields
k
1 1 (1—en)e?on
P "N Z|sab < : 3.10
{mm 3 a} “@m VA (310
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where r.v.sZ; are defined in the proof of Theorém 83.1. The inequality (3id0)
plies that[(3.D) tends to zero asends to infinity. Leb(k) = /((k/n)(1 — k/n)), k =
1,2, ...,n, for the first term in the right-hand df (3.8) we have that

P< Pr{ sup — |G(k)\>%CT}

- k€Dp, m Vfo - k| 2
n YnC- (3.11)
+ P S —|H (k)| >
T{keBEM\ko—k\‘ (k)| > 28 }
= P+ D,
where
1 ko 1 k
G(k) = b(kO)k;_o Z(Yz —n) - b(k)E Z(Yz - M) (3.12)
i=1 1=1
R 1 -
H(k) = b(k)— > | (¥; = 72) = b(ko) — i Y (Yi—m) (313

i=ko+1

We prove thatP; tends to zero when and M are large. Thus we consider only
k < ko or more precisely those values/obuch thatd < k < nt — MA 12
Fork > nd, we have

ko — k
<
- 715]{30

ko

Z(Yi —71)

1=

k

Z(Yi —’Yl)

i=1

ko

Z (Y;_’Yl)'>

i=k+1

(3.14)
whereB > 0 satisfiegb(ky) — b(k)| < B|ko — k|/n. By means of[(314)[(3.10)
and [3.14), we obtain

1 07, Cr
P < Pr{— Y, —

0 Cr
~ 6B }

ko—k 1

1
B —
IGE) * n  no +n(5

k

IS

[nT]
1 07, C-
+Pr { sup Z Y, —m)| > 76 }

h<nr—MA; 42 T — K ikt

< 36D n 36B%D n 36D
— (0C)2TnA2 T (0C)PnAy2 T 0C2M

e—)\An)e—AAn

whereD = U= " < A+ o(1). Whenn and M are large the last three
terms are negligible. Analogously we derive the prooPef
L
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4 Asymptoticdistributions

We want to study in this Section the asymptotic distributbf under our limiting
framework for small variations of the rate of change of thection. The case
A, = Ay — A1 equal to a constant is less interesting because whes large the
estimate of, is quite precise.

We note that\, = A\ — \; — 0 impliesy,, = 72 — 1 — 0. By adding the

condition
VALY
— _) Cx)’
Vlogn
the consistency of follows immediately either from Theorem 3.1 or Theorem
[3.2. In order to obtain the main result of this Section, itseful to observe that

An — 0, (4.1)

ko = arg max V2= arg max nA, (V2 — V,fo) (4.2)
and to define a two-sided Brownian motidn(v) in the following manner

~JWi(~u), u<0
W) = {m(u), w>0 (4-3)

wherelV;, W, are two independent Brownian motions. Now we present the fol
lowing convergence in distribution result.

Theorem 4.1. Under assumptiod.1), for nA,, — oo, A,, — 0 asn — oo, we

have that A n2(s

%(T_T) KR arg max {W(U) — %} , (4.4)
wherelV (v) is a two-sided Brownian motion andis any consistent estimator for
A1 OF Ao,

Proof. The proof follows the same steps in Bai (1994), Theorem lchewme
only sketch the parts of the proof that differ. We considdyan< 0 because of
symmetry. LetK,(v) = {k : k = [ky + vA 'y %], - M <v <0,M >0} and

A (v) = nA, (V2 — V,fo) (4.5)
with & € K, (v). We note that

nA, (V2= V2) = 2n0,EVi, (Vi — Vi)
+2nA, (Vag = EVig) (Vi — Vi)
A, (Vi — Vi )? (4.6)
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The last two terms i (416) are negligible éf,(v). Sincey/nA,,(Vy, — EVy,) is
bounded by((312), we have to show that A, |V, — V;, | is bounded. In particular,
we can write

AV nAn|Vk — Vko‘ S AV nAn|G(k) + H(k’)‘ + \/ TLAn‘EVk — EVkO|>

whereG (k) and H (k) are defined respectively in (3]12) ahnd (3.13). The upper
bound [3.14) i®, (1), because the first term is such that

ko

\/nAnkO — K Z(Y m)| <

Z\ﬁY ")

noko — - (57'nAn7n — @.7)
Op(1)
= nApn'Y?L = OP(1)7

similarly for the second term and for the third term we apply invariance prin-
ciple (2.12). Now we explicit the limiting distribution for

QnAnEVkO(Vk - Vko) = 2\/ T(l - T)nAn’yn(‘/[k0+UA;1)\;2} — Vko)' (48)

For simplicity we shall assume thiag + vA 1.2 andvA 1~-2 are integers. We
observe that

whereG(k), H (k) are defined in the expressions (3.12), (8.13). We can rewrite
G(k) as follws

By the same arguments used to prdvel(4.7) we can show thatsheafo terms
in (4.10) multiplied bynA,,v, are negligible onk,,(M). Furthermoreb(kq) =
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V7(1—7)andn/k — 1/7 for k € K,(M), then we get that

ko

1
nA, Gy + vA 'y ?) = nAn%b(ko)E Z (Y — 1) 4+ 0,(1)

i=k+1

= {WA? 55 @(m—m} Fol1)

1=k+1

vl ALy
= b(ko)% {%\/Kn Z VAL (Vi — 71)} +0p(1)
7V<1T—T)T AW (=) (4.11)

l=

where in the last step we have used the invariance prin@pl&). Analogously
we show that

vi=nr 1_7 LMW (— (4.12)

nAn’Yn (l{;O—i_UA rYn

Since
v

nN\, Vo ( BV — BVy) 5 ——————
n(EVio ) 1v/7T(1=171)

(4.13)

we obtain that
Al _>2{\/ Wi(— ‘;"} (4.14)

In the same way, for > 0, we can prove that

A Hz{\ﬁwz M} (4.15)

2
By applying the continuous mapping theorem and Thedrem 3.2.

2n
%(TT) KR )\iarg max A, (v). (4.16)
1 v

SincealV (v) £ W (a?v),a € R, a change in variable transformss max, A, (v)

into \, arg max, {W(v) ‘”‘} which concludes the proof. ]

Using the consistency result, we are able to obtain the amtroplistributions
for the estlmatorsxl, /\2, defined in[(Z.1).
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Theorem 4.2. Under the assumptiof.1) we have that

VA, < ?1 ) L N(0,%), (4.17)

where )
. T )\1 0
_( . u—Tyu2)' (4.18)
Proof. We start noticing that
V(3 (k) = 31 (ko)) (4.19)

ko — k A
+1{1;>k0}< nA, (;H% S V=) + VA=Y (Vi)

k — ko
VA — -

Sinceky = [rn], k = ko + O,(A;'7;2), andnA,72 — oo, we have that
(@19) is(v/ny,) ' 0,(1), which converges to zero in probability. Than(k) =

— - log(1—=A1(k)A,) and; (ko) = —z-log(1 — &1(k0)AAn) have the same lim-
iting distribution. Obviously the same result holds for. By Theorem 4.1 in

lacus and Yoshida (2007), the convergence relsulti(4.1iovsl
L]

5 Application toreal data

In this section we consider an application of our model to wedl known real

data sets. The first data set is about the Dow-Jones industgeage and the
second one is the IBM stock prices. In both cases, the dath thgss not close

to zero, hence the asymptotics of our set up does not hold.erdmless, our
findings seems to confirm the results of previous analyses.
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Dow-Jones closings
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Figure 1: Weekly closings of the Dow-Jones industrial agerduly 1971 - Aug
1974 (up) and correspoind returns (down).

5.1 Dow-Jonesdata

This data set contains the weekly closings of the Dow-Jaméissitrial average in
the period July 1971 - Aug 1974. These data have been projysedu (1977,
1979) and used by many other authors to test change pointastis. There are
162 data and the main evidence found by several authorstis ttt@ange in the
variance occurred at point 89th which corresponds to the thieek of March
1973. Instead of working on the values we transform the cdtereturns as usual
X(t;) = W(t;) — W(tie)/W(tiz1), i = 1,...,n with W the series of Dow-
Jones closings andl the returns. We assume thidtfollows a telegraph process.
In this application, the data are not sampled at high frequere. A, is not close
to zero, hence we test our estimator of the change point étbe asymptotics
IS not realized. Further, and for the same reason, we cassatre as known the
velocity v of the process hence we first estimatBy the average of the rescaled
increments. i.e.

This is a consistent estimatorefhence we construct the estimatornas follows

1 <on0,}

1
Y = — Y; where Y, =
i nz A,

15



Dow-Jones returns
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Figure 2: Change point estimates on the returns of the wedkbings of the
Dow-Jones industrial average July 1971 - Aug 1974. Majongkgoint estimate
ko = 89 which corresponds to the 3rd week of March 1973; second ehpomt
estimatek; = 27, August 1971.

With these quantities, we construct the statisfigan (2.6) and maximize it. The
maximum is reached &t = 89 which confirms the evidence in Hsu (1974, 1979).
Once we obtained the estimation of the change point, wetne&t® the velocity
in both part of the series (before and after point 89th) aedwo lambda’s. We
obtained respectively; = 0.61, \; = 48.53 andv, = 1.24 and )\, = 34.61 which
confirms the intuition from the graphical inspection of teéurns (i.e. in the first
period there is a high number of switches but with low velpaihich correspond
to low variance of the returns; conversely for the seconbd@rLooking better at
the first part of the series, we observe that variance is abtestso we re-run the
procedure and obtained a new change pbint 27 around august 1971. Figure
contains the two change point estimates plotted agaia$dtiw-Jones returns.

5.2 |BM stock prices

This data set contains 369 closing stock prices of the IBMedasThey have been
analyzed in Box and Jenkins (1970) and further by Wiclegral. (1976) in order
to discover change points. Box and Jenkins (1970) fitted alivi¥0,1,1) on the
first order difference and discover heteroschedasticiigh@fnet al. (1976) fitted
an AR(1) model on the first differences of the logarithms. \Wesider instead the
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Figure 3: Return of the IBM stock closings (see e.g. Box anmkihs, 1970).
The major change point occurs at index= 235, the other two ak;, = 18 and
ko = 309.

returns as in previous example and apply the same sequprizédure. Data
are reported in Figurle 3 along with a couple of change poiisisogtered by our
estimates. The first change point was found at pljnt 235 which confirms the
findings of Wicherret al. (1976). We further discovered another change point at
time indexk; = 18 on the time series on the left g and a second change point
on the right-hand series at tinke = 309.
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