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Abstract

The telegraph process models a random motion with finite velocity and
it is usually proposed as an alternative to diffusion models. The process
describes the position of a particle moving on the real line,alternatively with
constant velocity+v or −v. The changes of direction are governed by an
homogeneous Poisson process with rateλ > 0. In this paper, we consider
a change point estimation problem for the rate of the underlying Poisson
process by means of least squares method. The consistency and the rate of
convergence for the change point estimator are obtained andits asymptotic
distribution is derived. Applications to real data are alsopresented.
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1 Introduction

The telegraph process describes a random motion with finite velocity and it is usu-
ally proposed as an alternative to classical diffusion models (see Goldstein, 1951
and Kac, 1974). The process defines the position of a particleinitially located at
the origin of the real line and moving alternatively with constant velocity+v or
−v. The changes of direction are governed by an homogeneous Poisson process
with rateλ > 0. The telegraph process ortelegrapher’sprocess is defined as

X(t) = V (0)

∫ t

0

(−1)N(s)ds, t > 0, (1.1)

whereV (0) is the initial velocity taking values±v with equal probability and
independently of the Poisson process{N(t), t > 0}. Many authors analyzed
probabilistic properties of the process over the years (seefor example Orsingher,
1990, 1995; Foong and Kanno, 1994; Stadje and Zacks, 2004; Zacks 2004).
Di Crescenzo and Pellerey (2002) proposed the geometric telegraph process as
a model to describe the dynamics of the price of risky assets whereX(t) replaces
the standard Brownian motion of the original Black-Scholes-Merton model. Con-
versely to the geometric Brownian motion, given thatX(t) is of bounded varia-
tion, so is the geometric telegraph process. This seems a realistic way to model
paths of assets in the financial markets. Mazza and Rulliere (2004) linked the
process (1.1) and the ruin processes in the context of risk theory. Di Masiet al.
(1994) proposed to model the volatility of financial marketsin terms of the tele-
graph process. Ratanov (2004, 2005) proposed to model financial markets using
a telegraph process with two intensitiesλ± and two velocitiesv±. The telegraph
process has also been used in ecology to model population dynamics (see Holmes
et al., 1994) and the displacement of wild animals on the soil. In particular, this
model is chosen because it preserves the property of animalsto move at finite ve-
locity and for a certain period along one direction (see e.g.Holmes, 1993, for an
account).

For the telegraph process{X(t), 0 ≤ t ≤ T} observed at equidistant discrete
times0 = t0 < . . . < tn, with ti = i∆n, i = 0, . . . , n, n∆n = T and∆n → 0 as
n → ∞, De Gregorio and Iacus (2006) proposed pseudo-maximum likelihood and
implicit moment based estimators for the rateλ of the telegraph process. Under
the additional conditionn∆n → ∞ asn → ∞, Iacus and Yoshida (2007) studied
the asymptotic properties of explicit moment type estimators and further propose
a consistent, asymptotically gaussian and asymptoticallyefficient estimator based
on the increments of the process.

In this paper we suppose that for a telegraph process occurs aswitch of the rate
from λ1 to λ2 at some time instantθ0 ∈ [0, T ] and the interest is in the estimation
of the change pointθ0 and bothλ1 andλ2.
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The change point estimation theory has been employed widelyby means of
the likelihood function (see Csörgő and Horváth, 1997).Unfortunately, the like-
lihood function for the telegraph process is not known and the pseudo likelihood
proposed in De Gregorio and Iacus (2006) is not easy to treat in this framework.
We will then proceed using the alternative method based on least squares proposed
in Bai (1994, 1997) and used in different contexts by many authors including Hsu
(1977, 1979) for the i.i.d. case and Chenet al. (2005) for the mixing case. Our
model is peculiar in itself for the properties ofX(t) described in the above, be-
causeλ is a parameter related to the mean and the variance of the Poisson process
and because the mesh∆n plays a role in the definition of the rate of convergence
of our estimators.

The paper is organized as follows. Section 2 describes the model, the obser-
vation scheme and the change point estimator. The consistency of change point
estimator is discussed in Section 3 and distributional results are presented in Sec-
tion 4. Finally, Section 5 contains an application of our method to real data: we
will reanalyze the classical change point data sets of Dow-Jones weekly closing
(see Hsu, 1977, 1979) and IBM stock prices (see Box and Jenkins, 1970).

2 Observation scheme and least squares estimator

We consider a telegraph process{X(t), 0 ≤ t ≤ T < ∞} defined as in (1.1)
and assume to observe its trajectory only inn + 1 equidistant discrete times
0 < t1 < . . . < tn, with ti = i∆n, i = 1, . . . , n andn∆n = T . We assume that
a rate of changes of direction shift occurs during the interval [0, T ] at an unknown
time θ0 = τT , τ ∈ (0, 1). Therefore the changes of direction are governed by
an inhomogeneous Poisson process with parameterλ(t) = λ11{t≤θ0} + λ21{t>θ0}
where the positive valuesλ1, λ2 and the change pointτ (or θ0) are unknown and
to be estimated given the observationsX(t1), X(t2), . . . ,X(tn). In order to sim-
plify the formulas we use the following notation:X(ti) = X(i∆n) = Xi. The
asymptotic framework is the following:∆n → 0 andn∆n = T → ∞ asn → ∞.

The telegraph process is not Markovian and, as mentioned in the Introduction,
it is not possible to derive the explicit likelihood function of the observationsXi’s,
therefore we can not apply the statistical methods based on the likelihood function.
To work out our estimation problem, we shall follow the approach developed in
Bai (1994), which involves least squares-type estimators.The same point of view
has been applied by Chenet al., 2005, in a context of financial time series. For our
model, the time increment∆n plays an active role in the study of the asymptotics
of our estimators so the proofs, although in some cases alongthe lines of Bai
(1994) require some technical, but crucial, adjustments.
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In order to obtain our estimator we introduce some basic notations. Let

Yi =
1{|ηi|<v∆n}

∆n
, i = 1, ..., n,

whereηi = Xi−Xi−1 is the increment between two consecutive observations. We
indicate the mean value ofYi with γm = 1−e−λm∆n

∆n
= λm + o(1), m = 1, 2. We

observe that the random variablesYi are independent and identically distributed
because depend by the increments|ηi|. Iacus and Yoshida (2007) proved that the
estimators

γ̂n =
1

n

n
∑

i=1

Yi and λ̂n = − 1

∆n
log(1 − γ̂n∆n)

are consistent, gaussian and asymptotically efficient estimators ofγ andλ respec-
tively. We will use these properties in the following without necessarily mention-
ing them.

We assume that the change occurs exactly at timeti = tk0
= k0∆n = θ0,

thereforek0 = [nτ ], τ ∈ (0, 1), where[ · ] represents the integer-valued function.
The change point estimator is obtained as follows

k̂0 = arg min
k

(

min
γ1,γ2

{

k
∑

i=1

(Yi − γ1)
2 +

n
∑

i=k+1

(Yi − γ2)
2

})

= arg min
k

{

k
∑

i=1

(Yi − Ȳk)
2 +

n
∑

i=k+1

(Yi − Ȳk+1)
2

}

, (2.1)

where

min
γ1

k
∑

i=1

(Yi − γ1)
2 =

1

k

k
∑

i=1

Yi = Ȳk,

min
γ2

n
∑

i=k+1

(Yi − γ2)
2 =

1

n − k

n
∑

i=k+1

Yi = Ȳn−k.

We indicate the sum of the squares of residuals in the following manner

U2
k =

k
∑

i=1

(Yi − Ȳk)
2 +

n
∑

i=k+1

(Yi − Ȳk+1)
2, (2.2)

then

k̂0 = arg min
k

U2
k , (2.3)

4



andγ̂1 = Ȳk̂0
, γ̂2 = Ȳn−k̂0

are respectively the least squares estimators ofγ1 and
γ2. This gives the two estimators

λ̂1 = − 1

∆n

log(1 − γ̂1∆n), λ̂2 = − 1

∆n

log(1 − γ̂2∆n). (2.4)

By settingȲn = 1
n

∑n
i=1 Yi, Sn =

∑n
i=1 Yi, simple algebra leads to

n
∑

i=1

(Yi − Ȳ )2 = U2
k + nV 2

k , 1 ≤ k ≤ n − 1,

where

Vk =

√

k(n − k)

n2
(Ȳn−k − Ȳk) =

1
√

k(n − k)
SnDk, (2.5)

and

Dk =
k

n
− Sk

Sn
. (2.6)

Therefore, formula (2.3) implies that

k̂0 = arg max
k

V 2
k = arg max

k
|Dk| = arg max

k

√

k(n − k)|Vk|. (2.7)

Our first result concerns the asymptotic distribution ofk̂0 under the null hy-
pothesis thatλ1 = λ2. This permits us to test if a shift has taken place during the
interval[0, T ].

Theorem 2.1. UnderH0, i.e.λ2 = λ1 = λ0, we have that for∆n → 0, n∆n → ∞
asn → ∞ the following result hods

√

n∆n

λ0
|Dk| d→ |B0(t)|, (2.8)

where{B0(t), 0 ≤ t ≤ 1} is a Brownian bridge.

Proof. Let ξi = Yi − γ0, γ0 = EYi = 1−e−λ0∆n

∆n
= λ0 + o(1). Then,Eξi = 0 and

σ2
n = V ar(ξi) = (1−e−λ0∆n)e−λ0∆n

∆2
n

. We introduce the following function

Xn(t) =
1

σn

√
n
S[nt] + (nt − [nt])

1

σn

√
n

ξ[nt]+1, 0 < t < 1,

with Sn =
∑n

i=1 ξi. We note that
∣

∣

∣

∣

∣

∣

1

σn

√
n

[nt]
∑

i=1

ξi −
√

t

σn

√

[nt]

[nt]
∑

i=1

ξi

∣

∣

∣

∣

∣

∣

p→ 0, (2.9)
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and

V ar

(
√

t

σn

√

[nt]

[nt]
∑

i=1

ξi

)

= V ar





√
t

σn

√

[nt]∆n

[nt]
∑

i=1

∆nξi



 (2.10)

= V ar





√
t

σn

√

[nt]∆n

[nt]
∑

i=1

1{|ηi|<v∆n} − (1 − e−λ0∆n)√
∆n





= t

Since
∣

∣

∣

1{|ηi|<v∆n}−(1−eλ0∆n )√
∆n

∣

∣

∣
< 1√

∆n
the Lindeberg condition is true

[nt]
∑

i=1

E
{

1{
√

∆n|ξi|≥ε
√

n∆nσn}ξ
2
i

}

∆nσ2
n([nt])2

→ 0. (2.11)

Then from (2.9), (2.10) and (2.11) we can conclude that

1

σn

√
n
S[nt]

d→ N(0, t). (2.12)

Now, by applying Donsker’s theorem (invariance principle)we are able to
write that

Xn(t)
d→ B(t)

{Xn(t) − tXn(1)} d→ B0(t),

with B(t) andB0(t) representing respectively a standard Brownian motion and a
Brownian bridge. Letk = [nt], we can write

Xn(t) − tXn(1) =
1

σn

√
n

[

Sk −
k

n
Sn

]

+
nt − [nt]

σn

√
n

ξ[nt]+1

=
1

σn

√
n

[

k
∑

i=1

(Yi − γ0) −
k

n

n
∑

i=1

(Yi − γ0)

]

+
nt − [nt]

σn

√
n

ξ[nt]+1.

We observe that
k
∑

i=1

(Yi − γ0) −
k

n

n
∑

i=1

(Yi − γ0) = −Dk

n
∑

i=1

Yi,

and consequently

√

n∆n|Dk|
∑n

i=1 Yi

n
√

(1−eλ0∆n)eλ0∆n

∆n

=

∣

∣

∣

∣

Xn(t) − tXn(1) − nt − [nt]

σn

√
n

ξ[nt]+1

∣

∣

∣

∣

. (2.13)
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It is easy to see (by Chebyshev inequality) that

sup
t

∣

∣

∣

∣

nt − [nt]

σn

√
n

ξ[nt]+1

∣

∣

∣

∣

p→ 0.

By the law of large number1
n

∑n
i=1 Yi

p→ λ0, while
√

(1−eλ0∆n)eλ0∆n

∆n
→

√
λ0.

Therefore from (2.13) follows that
√

n∆n

λ0
|Dk| d→ |B0(t)|.

Corollary 2.1. The same convergence result of the Theorem 2.1 follows when we
consider √

n∆n
√

λ̃0

|Dk|,

whereλ̃0 is any consistent estimator forλ0.

Remark 2.1. From Theorem 2.1 we derive immediately that forδ ∈ (0, 1/2)
√

n∆n

λ0
sup

δn≤k≤(1−δ)n

|Dk| d→ sup
δ≤t≤(1−δ)

|B0(t)|, (2.14)

√

n∆n

λ0
sup

δn≤k≤(1−δ)n

|Vk| d→ sup
δ≤t≤(1−δ)

(t(1 − t))−1/2|B0(t)|. (2.15)

The last asymptotic results are useful to test if doesn’t exist a change point. In
particular it is possible to obtain the asymptotic criticalvalues for the distribution
(2.15)by means of the same arguments used in Csörgő and Horv́ath (1997), pag.
25.

3 The consistency properties of the estimator

We shall study the consistency and the rate of convergence ofthe change point
estimator (2.7). It is convenient to note that the rate of convergence is particularly
important not only to describe how fast the estimator converges to the true value,
but also to get the limiting distribution. The next Theorem represents our first
result on the consistency.

Theorem 3.1. The estimator̂τ = k̂0

n
satisfies

|τ̂ − τ | = (n∆n)−1/2(γ2 − γ1)
−1Op(

√

log n) (3.1)
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Proof. By the same arguments of Bai (1994), Section 3 and by using theformulas
(10)-(14) therein, we have that

|τ̂ − τ | ≤ Cτ (γ2 − γ1)
−1 sup

k
|Vk − EVk|, (3.2)

whereCτ is a constant depending only onτ . Let Zi =
1{|ηi|<v∆n}−(1−eλ∆n)√

∆n
, given

that

Vk − EVk =
1√
n∆n

√

k

n

1√
n − k

n
∑

i=k+1

Zi

+
1√
n∆n

√

1 − k

n

1√
k

k
∑

i=1

Zi

we obtain that

|Vk − EVk| ≤
1√
n∆n

{

Z̄n−k + Z̄k

}

. (3.3)

whereZ̄k = 1√
k

∑k
i=1 Zi and Z̄n−k = 1√

(n−k)

∑n
i=k+1 Zi. By applying Hajék-

Renyi inequality for martingales we have that

P

{

max
1≤k≤n

∣

∣

∣

∣

∣

∑k
i=1 Zi

ck

∣

∣

∣

∣

∣

> α

}

≤ 1

α2

n
∑

k=1

E(Zk)
2

c2
k

=
(1 − e−λ∆n)e−λ∆n

α2∆n

n
∑

k=1

1

c2
k

≤ λ∆n + o(∆n)

α2∆n

n
∑

k=1

1

c2
k

=
λ + o(1)

α2

n
∑

k=1

1

c2
k

(3.4)

Choosingck =
√

k and observing that
∑n

k=1 k−1 ≤ C log n, for someC > 0 (see
e.g. Bai, 1994), we have that

max
1≤k≤n

1√
k

k
∑

i=1

Zi = Op

(

√

log n
)

. (3.5)

Then from the relationships (3.3) and (3.5) we obtain the result (3.1).

Remark 3.1. By means of the law of iterated logarithm we obtain immediately
the following rate of convergence which improve the previous result. We have that

|τ̂ − τ | = (n∆n)−1/2(γ2 − γ1)
−1Op(

√

log log n). (3.6)
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Remark 3.2. Theorem 3.1 implies that, under the additional hypothesis∆n =
O(nε), ε ∈ (−1, 0) we have also consistency, i.e.(n∆n)β(τ̂ − τ) → 0 in proba-
bility for anyβ ∈ (0, 1/2).

We are able to improve the rate of convergence ofτ̂ .

Theorem 3.2. We have the following result

τ̂ − τ = Op

(

1

n∆n(γ2 − γ1)2

)

. (3.7)

Proof. We use the same framework of the proof of the Proposition 3 in Bai (1994),
Section 4, therefore we omit the details.

We choose aδ > 0 such thatτ ∈ (δ, 1 − δ). Sincek̂/n is consistent forτ ,
for everyε > 0, Pr{k̂/n 6∈ (δ, 1 − δ)} < ε whenn is large. In order to prove
(3.7) it is sufficient to show thatPr{|τ̂ − τ | > M(n∆nγ2

n)−1} is small whenn
andM are large, whereγn = γ2 − γ1. We are interested to study the behavior
of Vk for nδ ≤ k ≤ n(1 − δ), 0 < δ < 1. We define for anyM > 0 the set
Dn,M = {k : nδ ≤ k ≤ n(1 − δ), |k − k0| > M∆−1

n γ−2
n }. Then we have that

Pr{|τ̂ − τ | > M(n∆nγ2
n)

−1} ≤ ε + Pr{ sup
k∈Dn,M

|Vk| ≥ |Vk0
|},

for everyε > 0. Thus we study the behavior ofPr{supk∈Dn,M
|Vk| ≥ |Vk0

|}. It is
possible to prove that

Pr

{

sup
k∈Dn,M

|Vk| ≥ |Vk0
|
}

≤ Pr

{

sup
k∈Dn,M

Vk − Vk0
≥ 0

}

+ Pr

{

sup
k∈Dn,M

Vk + Vk0
≤ 0

}

= P + Q

(3.8)

Furthermore

Q ≤ 2Pr

{

sup
k≤n(1−δ)

1

n − k

∣

∣

∣

∣

∣

n
∑

i=k+1

(Yi − γ2)

∣

∣

∣

∣

∣

≥ 1

4
EVk0

}

(3.9)

+2Pr

{

sup
k≥nδ

1

k

∣

∣

∣

∣

∣

k
∑

i=1

(Yi − γ1)

∣

∣

∣

∣

∣

≥ 1

4
EVk0

}

.

By observing that
∑∞

i=m i−2 = O(m−1), the Hajék-Renyi inequality yields

P

{

max
k≥m

∣

∣

∣

∣

∣

1

k

k
∑

i=1

Zi

∣

∣

∣

∣

∣

> α

}

≤ 1

α2m

(1 − eλ∆n)e−λ∆n

√
∆n

, (3.10)
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where r.v.’sZi are defined in the proof of Theorem 3.1. The inequality (3.10)im-
plies that (3.9) tends to zero asn tends to infinity. Letb(k) =

√

((k/n)(1 − k/n)), k =
1, 2, ..., n, for the first term in the right-hand of (3.8) we have that

P ≤ Pr

{

sup
k∈Dn,M

n

|k0 − k| |G(k)| >
γnCτ

2

}

+ Pr

{

sup
k∈Dn,M

n

|k0 − k| |H(k)| >
γnCτ

2

}

= P1 + P2,

(3.11)

where

G(k) = b(k0)
1

k0

k0
∑

i=1

(Yi − γ1) − b(k)
1

k

k
∑

i=1

(Yi − γ1) (3.12)

H(k) = b(k)
1

n − k

n
∑

i=k+1

(Yi − γ2) − b(k0)
1

n − k0

n
∑

i=k0+1

(Yi − γ2) (3.13)

We prove thatP1 tends to zero whenn andM are large. Thus we consider only
k ≤ k0 or more precisely those values ofk such thatnδ ≤ k ≤ nτ − M∆−1

n γ−2
n .

Fork ≥ nδ, we have

|G(k)| ≤ k0 − k

nδk0

∣

∣

∣

∣

∣

k0
∑

i=1

(Yi − γ1)

∣

∣

∣

∣

∣

+B
k0 − k

n

1

nδ

∣

∣

∣

∣

∣

k
∑

i=1

(Yi − γ1)

∣

∣

∣

∣

∣

+
1

nδ

∣

∣

∣

∣

∣

k0
∑

i=k+1

(Yi − γ1)

∣

∣

∣

∣

∣

,

(3.14)
whereB ≥ 0 satisfies|b(k0) − b(k)| ≤ B|k0 − k|/n. By means of (3.4), (3.10)
and (3.14), we obtain

P1 ≤ Pr







1

nτ

∣

∣

∣

∣

∣

∣

[nτ ]
∑

i=1

(Yi − γ1)

∣

∣

∣

∣

∣

∣

>
δγnCτ

6







+Pr

{

sup
1≤k≤n

1

n

∣

∣

∣

∣

∣

k
∑

i=1

(Yi − γ1)

∣

∣

∣

∣

∣

>
δγnCτ

6B

}

+Pr







sup
k≤nτ−M∆−1

n γ−2
n

1

nτ − k

∣

∣

∣

∣

∣

∣

[nτ ]
∑

i=k+1

(Yi − γ1)

∣

∣

∣

∣

∣

∣

>
δγnCτ

6







≤ 36D

(δCτ )2τn∆nγ2
n

+
36B2D

(δCτ )2n∆nγ2
n

+
36D

δC2
τ M

whereD = (1−e−λ∆n)e−λ∆n

∆n
≤ λ + o(1). Whenn andM are large the last three

terms are negligible. Analogously we derive the proof ofP2.
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4 Asymptotic distributions

We want to study in this Section the asymptotic distributionof τ̂ under our limiting
framework for small variations of the rate of change of the direction. The case
λn = λ2 − λ1 equal to a constant is less interesting because whenλn is large the
estimate ofk0 is quite precise.

We note thatλn = λ2 − λ1 → 0 impliesγn = γ2 − γ1 → 0. By adding the
condition

λn → 0,

√
n∆nγn√
log n

→ ∞, (4.1)

the consistency of̂τ follows immediately either from Theorem 3.1 or Theorem
3.2. In order to obtain the main result of this Section, it is useful to observe that

k̂0 = arg max
k

V 2
k = arg max

k
n∆n(V 2

k − V 2
k0

) (4.2)

and to define a two-sided Brownian motionW (v) in the following manner

W (u) =

{

W1(−u), u < 0

W2(u), u ≥ 0
(4.3)

whereW1, W2 are two independent Brownian motions. Now we present the fol-
lowing convergence in distribution result.

Theorem 4.1. Under assumption(4.1), for n∆n → ∞, ∆n → 0 asn → ∞, we
have that

n∆nγ2
n(τ̂ − τ)

λ̃

d→ arg max
v

{

W (v) − |v|
2

}

, (4.4)

whereW (v) is a two-sided Brownian motion and̃λ is any consistent estimator for
λ1 or λ2.

Proof. The proof follows the same steps in Bai (1994), Theorem 1, hence we
only sketch the parts of the proof that differ. We consider only v ≤ 0 because of
symmetry. LetKn(v) = {k : k = [k0 + v∆−1

n γ−2
n ],−M ≤ v ≤ 0, M > 0} and

Λn(v) = n∆n(V 2
k − V 2

k0
) (4.5)

with k ∈ Kn(v). We note that

n∆n(V 2
k − V 2

k0
) = 2n∆nEVk0

(Vk − Vk0
)

+2n∆n(Vk0
− EVk0

)(Vk − Vk0
)

+n∆n(Vk − Vk0
)2 (4.6)

11



The last two terms in (4.6) are negligible onKn(v). Since
√

n∆n(Vk0
− EVk0

) is
bounded by (3.2), we have to show that

√
n∆n|Vk−Vk0

| is bounded. In particular,
we can write

√

n∆n|Vk − Vk0
| ≤

√

n∆n|G(k) + H(k)| +
√

n∆n|EVk − EVk0
|,

whereG(k) andH(k) are defined respectively in (3.12) and (3.13). The upper
bound (3.14) isop(1), because the first term is such that

√

n∆n
k0 − k

nδk0

∣

∣

∣

∣

∣

k0
∑

i=1

(Yi − γ1)

∣

∣

∣

∣

∣

≤ M

δτn∆nγ2
n

∣

∣

∣

∣

∣

k0
∑

i=1

√

∆n(Yi − γ1)

∣

∣

∣

∣

∣

=
Op(1)

n∆nγ2
n

= op(1),

(4.7)

similarly for the second term and for the third term we apply the invariance prin-
ciple (2.12). Now we explicit the limiting distribution for

2n∆nEVk0
(Vk − Vk0

) = 2
√

τ(1 − τ)n∆nγn(V[k0+v∆−1
n λ−2

n ] − Vk0
). (4.8)

For simplicity we shall assume thatk0 + v∆−1
n γ−2

n andv∆−1
n γ−2

n are integers. We
observe that

n∆nγn(Vk − Vk0
) = n∆nγn(G(k) + H(k)) − n∆nγn(EVk0

− EVk), (4.9)

whereG(k), H(k) are defined in the expressions (3.12), (3.13). We can rewrite
G(k) as follws

G(k) = b(k0)
k − k0

kk0

k0
∑

i=1

(Yi − γ1) +
b(k0) − b(k)

k

k
∑

i=1

(Yi − γ1)

+ b(k0)
1

k

k0
∑

i=k+1

(Yi − γ1).

(4.10)

By the same arguments used to prove (4.7) we can show that the first two terms
in (4.10) multiplied byn∆nγn are negligible onKn(M). Furthermoreb(k0) =
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√

τ(1 − τ) andn/k → 1/τ for k ∈ Kn(M), then we get that

n∆nγnG(k0 + v∆−1
n γ−2

n ) = n∆nγnb(k0)
1

k

k0
∑

i=k+1

(Yi − γ1) + op(1)

= b(k0)
n

k

{

γn

√

∆n

k0
∑

i=k+1

√

∆n(Yi − γ1)

}

+ op(1)

= b(k0)
n

k







γn

√

∆n

|v|∆−1
n γ−2

n
∑

i=1

√

∆n(Yi+k − γ1)







+ op(1)

d→
√

(1 − τ)τ

τ

√

λ1W1(−v) (4.11)

where in the last step we have used the invariance principle (2.12). Analogously
we show that

n∆nγnH(k0 + v∆−1
n γ−2

n )
d→
√

(1 − τ)τ

1 − τ

√

λ1W1(−v). (4.12)

Since

n∆nγn(EVk0
− EVk) →

|v|
1
√

τ(1 − τ)
(4.13)

we obtain that

Λn(v)
d→ 2

{

√

λ1W1(−v) − |v|
2

}

. (4.14)

In the same way, forv > 0, we can prove that

Λn(v)
d→ 2

{

√

λ1W2(v) − |v|
2

}

. (4.15)

By applying the continuous mapping theorem and Theorem 3.2.

n∆nγ2
n(τ̂ − τ)

λ̂

d→ 1

λ1

arg max
v

Λn(v). (4.16)

SinceaW (v)
d
= W (a2v), a ∈ R, a change in variable transformsarg maxv Λn(v)

into λ1 arg maxv

{

W (v) − |v|
2

}

, which concludes the proof.

Using the consistency result, we are able to obtain the asymptotic distributions
for the estimatorŝλ1, λ̂2, defined in (2.4).
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Theorem 4.2. Under the assumption(4.1)we have that

√

n∆n

(

λ̂1

λ̂2

)

d→ N (0, Σ) , (4.17)

where

Σ =

(

τ−1λ1 0
0 (1 − τ)−1λ2

)

. (4.18)

Proof. We start noticing that
√

n∆n(γ̂1(k̂) − γ̂1(k0)) (4.19)

=
√

n∆n





1

k̂

k̂
∑

i=1

Yi −
1

k0

k0
∑

i=1

Yi





= 1{k̂≤k0}





√

n∆n
k0 − k̂

k0k̂

k0
∑

i=1

(Yi − γ1) −
√

n∆n
1

k̂

k0
∑

i=k̂

(Yi − γ1)





+1{k̂>k0}

(

√

n∆n
k0 − k̂

k0k̂

k0
∑

i=1

(Yi − γ1) +
√

n∆n
1

k̂

k̂
∑

i=k0

(Yi − γ2)

+
√

n∆nγn
k̂ − k0

k̂

)

.

Sincek0 = [τn], k̂ = k0 + Op(∆
−1
n γ−2

n ), and n∆nγ2
n → ∞, we have that

(4.19) is(
√

nγn)−1Op(1), which converges to zero in probability. Thenλ̂1(k̂) =

− 1
∆n

log(1− γ̂1(k̂)∆n) andλ̂1(k0) = − 1
∆n

log(1− γ̂1(k0)∆n) have the same lim-

iting distribution. Obviously the same result holds forλ̂2. By Theorem 4.1 in
Iacus and Yoshida (2007), the convergence result (4.17) follows.

5 Application to real data

In this section we consider an application of our model to twowell known real
data sets. The first data set is about the Dow-Jones industrial average and the
second one is the IBM stock prices. In both cases, the data mesh ∆n is not close
to zero, hence the asymptotics of our set up does not hold. Nevertheless, our
findings seems to confirm the results of previous analyses.
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Figure 1: Weekly closings of the Dow-Jones industrial average July 1971 - Aug
1974 (up) and correspoind returns (down).

5.1 Dow-Jones data

This data set contains the weekly closings of the Dow-Jones industrial average in
the period July 1971 - Aug 1974. These data have been proposedby Hsu (1977,
1979) and used by many other authors to test change point estimators. There are
162 data and the main evidence found by several authors is that a change in the
variance occurred at point 89th which corresponds to the third week of March
1973. Instead of working on the values we transform the data into returns as usual
X(ti) = (W (ti) − W (ti−1))/W (ti−1), i = 1, . . . , n with W the series of Dow-
Jones closings andX the returns. We assume thatX follows a telegraph process.
In this application, the data are not sampled at high frequency, i.e.∆n is not close
to zero, hence we test our estimator of the change point even if the asymptotics
is not realized. Further, and for the same reason, we cannot assume as known the
velocity v of the process hence we first estimatev by the average of the rescaled
increments. i.e.

v̂n =
1

n

n
∑

i=1

ηi

∆n

This is a consistent estimator ofv, hence we construct the estimator ofγ as follows

γ̂ =
1

n

n
∑

i=1

Yi where Yi =
1{|ηi|<v̂n∆n}

∆n
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Dow−Jones returns

1971.5 1972.0 1972.5 1973.0 1973.5 1974.0

−
0.

06
−

0.
02

0.
00

0.
02

0.
04

0.
06

k̂1 k̂0

Figure 2: Change point estimates on the returns of the weeklyclosings of the
Dow-Jones industrial average July 1971 - Aug 1974. Major change point estimate
k̂0 = 89 which corresponds to the 3rd week of March 1973; second change point
estimatêk1 = 27, August 1971.

With these quantities, we construct the statisticsDk in (2.6) and maximize it. The
maximum is reached at̂k0 = 89 which confirms the evidence in Hsu (1974, 1979).
Once we obtained the estimation of the change point, we re-estimate the velocity
in both part of the series (before and after point 89th) and the two lambda’s. We
obtained respectivelyv1 = 0.61, λ1 = 48.53 andv2 = 1.24 andλ2 = 34.61 which
confirms the intuition from the graphical inspection of the returns (i.e. in the first
period there is a high number of switches but with low velocity which correspond
to low variance of the returns; conversely for the second period). Looking better at
the first part of the series, we observe that variance is not stable, so we re-run the
procedure and obtained a new change pointk̂1 = 27 around august 1971. Figure
2 contains the two change point estimates plotted against the Dow-Jones returns.

5.2 IBM stock prices

This data set contains 369 closing stock prices of the IBM as,set. They have been
analyzed in Box and Jenkins (1970) and further by Wichernet al. (1976) in order
to discover change points. Box and Jenkins (1970) fitted an ARIMA(0,1,1) on the
first order difference and discover heteroschedasticity; Wichernet al. (1976) fitted
an AR(1) model on the first differences of the logarithms. We consider instead the
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Figure 3: Return of the IBM stock closings (see e.g. Box and Jenkins, 1970).
The major change point occurs at indexk̂0 = 235, the other two at̂k1 = 18 and
k̂2 = 309.

returns as in previous example and apply the same sequentialprocedure. Data
are reported in Figure 3 along with a couple of change points discovered by our
estimates. The first change point was found at pointk̂0 = 235 which confirms the
findings of Wichernet al. (1976). We further discovered another change point at
time indexk̂1 = 18 on the time series on the left tôk0 and a second change point
on the right-hand series at timêk2 = 309.
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