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t-Wise Independence with Local Dependencies

Ronen Gradwohl ∗ Amir Yehudayoff †

Abstract

In this note we prove a large deviation bound on the sum of random variables with the
following dependency structure: there is a dependency graph G with a bounded chromatic
number, in which each vertex represents a random variable. Variables that are represented by
neighboring vertices may be arbitrarily dependent, but collections of variables that form an
independent set in G are t-wise independent.

1 Introduction

It is often useful to consider a random variable X =
∑n

i=1 Xi and bound the probability that such
a sum deviates from its expectation. For independent Xi’s, famous bounds are those of Chernoff
[3] and Hoeffding [6].

Sums of variables that are not fully independent but have some sort of a dependency structure
have also been studied – see for example Pemmaraju [10] or the survey of Janson and Ruciński
[8]. Here we are interested in a setting studied by Janson [7]: roughly, in his formulation there is a
dependency graph G of n vertices, in which each variable is represented by a vertex. Two variables
whose corresponding vertices are connected by an edge may be dependent, whereas independent
sets of the graph are independent (see Section 2 for a more formal description). Janson provides
several applications for his bound, such as U-statistics and the existence of long patterns in random
strings (see [7] for more details).

A different form of dependency structure is motivated by the computer science literature. This
is the setting in which the Xi’s are t-wise independent (see for example Bellare and Rompel [1]).
This means that every set of t variables is independent, but any t + 1 may not be.

In this note we consider the situation in which the random variables Xi are dependent in both
fashions: on the one hand, their dependencies are described by a dependency graph G. On the
other hand, variables represented by independent sets of the graph are not fully independent, but
only t-wise independent. We combine standard techniques used in tail bounds for sums of t-wise
independent random variables with the technique of Janson [7], and in this manner obtain a tail
bound for sums of random variables that are both t-wise independent and have local dependencies.
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1.1 Motivation

The tail bounds we prove seem to be applicable in numerous situations, and we will now state two
such examples. First, our inequality was used in a recent game theoretic work of Gradwohl and
Reingold [5]. Second, the inequality can be used in the hidden pattern problem as a bound on the
number of patterns in a random string that is not fully independent.

1.1.1 Game theory

In a recent work in game theory, Kalai [9] showed that in certain types of large Bayesian games,
the Nash equilibria are not affected by such details as order of play, possibility of revision, and
more. One of the necessary assumptions in obtaining this result is the independence of certain
random variables related to the players. This was necessary because of the repeated application of
a Chernoff bound.

In a generalization of this work, Gradwohl and Reingold [5] showed how to replace this assump-
tion of independence by a more general one of limited correlation. One of the tools used by [5] is
Corollary 3.2.

1.1.2 Hidden Pattern Problem

In the hidden pattern problem, we are given a sequence of n random letters from a finite alphabet A,
say X1, . . . ,Xn. Given a word of fixed length d, say w ∈ Ad, one seeks the number of subsequences
i1 < . . . < id such that Xi1◦. . .◦Xid = w. The case in which the Xi’s are independent was studied by
Flajolet et al. as well as Janson [7]. Bourdon and Vallée generalize the work by considering strings
X1, . . . ,Xn in which the Xi’s are not fully independent, but rather are generated by dynamical
sources (see [2]). Theorem 3.1 can be used in a straightforward manner to obtain a result similar
to that of [7], but applied to variables that are t-wise independent.

2 Definitions

Let n ∈ N be an integer. We denote [n] = {1, . . . , n}. For a graph G, we denote by V (G) the vertex
set of G, and by E(G) the edge set of G (we will consider only simple undirected graphs). Let G

be a graph of size |V (G)| = n. We usually think of V (G) as [n]. The following three definitions are
standard graph definitions.

Definition 2.1 (independent set) S ⊆ V (G) is an independent set of vertices in G if no two
vertices in S share an edge (according to G).

Definition 2.2 (coloring) For k ∈ N, a k-coloring of G is a map from V (G) to [k] such that each
two adjacent vertices are mapped to different integers.

Definition 2.3 (chromatic number) The chromatic number of G, denoted by χ(G), is the
smallest integer k such that there exists a k-coloring of G.

Note that if the degree of G is at most d ∈ N, then χ(G) ≤ d + 1 (since the greedy algorithm
for coloring works).
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Next, we give three definitions concerning distributions: the first one is the standard definition
of t-wise independence, the second definition is of a dependency graph, and the third definition,
which combines the first two definitions, is of the family of distributions for which our tail bounds
apply.

Definition 2.4 (t-wise independence) For m, t ∈ N, the random variables Y1, . . . , Ym are t-wise
independent, if for every T ⊆ [m] of size t the set of variables {Yi : i ∈ T} is independent.

Definition 2.5 (agree) Let n ∈ N, and let G be a graph of size n. We say that the random
variables X1, . . . ,Xn agree with the graph G, if for every independent set of vertices S ⊆ V (G), the
set of variables {Xi : i ∈ S} is independent (G is sometimes called a dependency graph).

Definition 2.6 (t-agree) For a dependency graph G as above, we say that the random variables
X1, . . . ,Xn t-agree with G, if for every independent set of vertices S ⊆ V (G), the set of variables
{Xi : i ∈ S} is t-wise independent.

3 Results

We are now ready to state our main result, which is a large deviation bound on the sum of random
variables that t-agree with a graph G of chromatic number χ(G).

Theorem 3.1 Let n, t ∈ N be such that t > 0 is even. Let G be a graph of size n, and let
X1, . . . ,Xn be random variables that take values in [0, 1] and t-agree with G. Let X =

∑

i∈[n] Xi

and let µ = E[X]. Then, for every positive real a > 0,

P [|X − µ| ≥ a] < 2
√

πt ·
(

√

nt · χ(G)

a

)t

.

When the random variables are Bernoulli and the graph is of bounded degree we have the following
corollary:

Corollary 3.2 Let n, d, t ∈ N be such that t > 0 is even. Let G be a graph of size n and degree
at most d. Let p ∈ (0, 1), and let X1, . . . ,Xn be Be(p) random variables that t-agree with G. Let
X =

∑

i∈[n] Xi. Then for every positive real a > 0,

P [X ≥ (1 + a)pn] < 2
√

πt ·
(

√

(d + 1) · t
ap

√
n

)t

.

The same bound holds for P [X ≤ (1 − a)pn].

4 Proof of Main Result

In our proof we will need to bound the t-moment of the sum of t-wise independent random variables.
The following bound is well known – see Bellare and Rompel [1] for a proof.
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Lemma 4.1 Let m, t ∈ N be such that t > 0 is even, and let Y1, . . . , Ym be t-wise independent
random variables taking values in [0, 1]. Let Y =

∑

i∈[m] Yi and let µ = E [Y ]. Then

E

[

(Y − µ)t
]

< 2 · e 1

6t ·
√

πt ·
(

mt

e

)t/2

.

We now prove Theorem 3.1.

Proof: Let G be a graph of size n, and let X1, . . . ,Xn be random variables that t-agree with G.
Let X =

∑

i∈[n] Xi and let µ = E [X]. Let f be a k-coloring of G such that k = χ(G). For every
j ∈ [k], denote

Vj = f−1(j),

which is an independent set of vertices. So for all j ∈ [k], the set of variables {Xi : i ∈ Vj} is
t-wise independent. By Lemma 4.1, for every j ∈ [k],

E

[

(Yj − µj)
t
]

< 2 · e 1

6t ·
√

πt ·
( |Vj |t

e

)t/2

,

where Yj =
∑

i∈Vj
Xi and µj = E [Yj ].

We now bound the t-moment of X. Let p1, . . . , pk be k non-negative real numbers such that
∑

j∈[k] pj = 1 (to be determined later). By Jensen’s inequality and linearity of expectation,

E

[

(X − µ)t
]

= E









∑

j∈[k]

pj
Yj − µj

pj





t



≤
∑

j∈[k]

pj
E

[

(Yj − µj)
t
]

pt
j

<
∑

j∈[k]

pj

2 · e 1

6t ·
√

πt ·
(

|Vj |t
e

)t/2

pt
j

.

For j ∈ [k], set qj ∈ R to be such that

qt
j = 2 · e 1

6t ·
√

πt ·
( |Vj |t

e

)t/2

,

and set
pj =

qj
∑

ℓ∈[k] qℓ
.

Substituting these values of pj yields

E

[

(X − µ)t
]

<





∑

j∈[k]

qj





t

=





∑

j∈[k]

(2 · e 1

6t ·
√

πt)1/t ·
( |Vj |t

e

)1/2




t

,
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which implies that

E

[

(X − µ)t
]

< 2 ·
√

πt ·
(√

knt
)t

by Cauchy-Schwartz. Since t is even we now use Markov’s Inequality, implying that for every real
number a > 0,

P [|X − µ| ≥ a] = P

[

(X − µ)t ≥ at
]

≤ E

[

(X − µ)t
]

at
< 2

√
πt ·

(√
knt

a

)t

.

Substituting k = χ(G), we get that

P [|X − µ| ≥ a] < 2
√

πt ·
(

√

nt · χ(G)

a

)t

.

References

[1] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. Proceedings 35th Annual
Symposium on the Foundations of Computer Science, IEEE, 1994.

[2] J. Bourdon and B. Vallée. Generalized pattern matching statistics. In Mathematics and Com-
puter Science (Colloquium Proceedings, Versailles, 2002). B. Chauvin et al. editors, Birkhäuser
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