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Abstract

In this paper we consider two processes driven by diffusions and jumps. The jump components

are Lévy processes and they can both have finite activity and infinite activity. Given discrete obser-

vations we estimate the covariation between the two diffusion parts and the co-jumps. The detection

of the co-jumps allows to gain insight in the dependence structure of the jump components and has

important applications in finance.

Our estimators are based on a threshold principle allowing to isolate the jumps. This work follows

Gobbi and Mancini (2006) where the asymptotic normality for the estimator of the covariation, with

convergence speed
√

h, was obtained when the jump components have finite activity. Here we show

that the speed is
√

h only when the activity of the jump components is moderate.1

Keywords: co-jumps, diffusion correlation coefficient, stable Lévy jumps, threshold estimator.

1 Introduction

We consider two state variables evolving as follows

dX
(1)
t = a

(1)
t dt + σ

(1)
t dW

(1)
t + dJ

(1)
t ,

dX
(2)
t = a

(2)
t dt + σ

(2)
t dW

(2)
t + dJ

(2)
t ,

for t ∈ [0, T ], T fixed, where W
(2)
t = ρtW

(1)
t +

√

1 − ρ2
t W

(3)
t ; W (1) = (W

(1)
t )t∈[0,T ] and W (3) =

(W
(3)
t )t∈[0,T ] are independent Wiener processes. J (1) and J (2) are possibly correlated pure jump pro-

cesses. We are interested in the separate identification of the dependence elements of the processes

X(q), i.e. both of the covariation
∫ T

0
ρtσ

(1)
t σ

(2)
t dt between the two diffusion parts and of the co-jumps

∆J
(1)
t ∆J

(2)
t , the simultaneous jumps of X(1) and X(2).
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Given discrete equally spaced observations X
(1)
tj

, X
(2)
tj

, j = 1..n, in the interval [0, T ] (with tj = j T
n
), a

commonly used approach to estimate
∫ T

0 ρtσ
(1)
t σ

(2)
t dt is to take the sum of cross products

∑n

j=1(X
(1)
tj

−
X

(1)
tj−1

)(X
(2)
tj

− X
(2)
tj−1

); however, this estimate can be highly biased when the processes X(q) contain

jumps; in fact, such a sum approaches the global quadratic covariation [X(1), X(2)]T =
∫ T

0
ρtσ

(1)
t σ

(2)
t dt +

∑

0≤t≤T ∆J
(1)
t ∆J

(2)
t containing also the co-jumps. It is crucial to single out the time intervals where the

jumps have not occurred. Our estimator is based on a threshold criterion ([6]) allowing to isolate the

jump part. In particular, we asymptotically identify when jumps larger than a given thershold occurred

in a given time interval ]tj−1, tj ], depending on whether the increment |Xtj
− Xtj−1 | is too big with

respect to the threshold. In Gobbi and Mancini (2006) we derived an asymptotically unbiased estimator

of the continuous part of the covariation process as well as of the co-jumps. More precisely, the following

threshold estimator

ṽ
(n)
1,1 (X(1), X(2))T =

n
∑

j=1

∆jX
(1)1{(∆jX(1))2≤r(h)}∆jX

(2)1{(∆jX(2))2≤r(h)},

is a truncated version of the realized quadratic covariation and it is shown to be consistent to
∫ T

0
ρtσ

(1)
t σ

(2)
t dt,

as the number n of observations tends to infinity. Moreover, in the case where each J (q) is a finite activity

jump process (i.e. only a finite number of jumps can occur, along each path, in each finite time interval)

we show that our estimator is asymptotically Gaussian and converges with speed
√

h. Here we find the

speed of convergence of the estimator of the covariation even in the case of infinite activity jumps, which

turns out to be
√

h only for moderate activity of the jump processes.

For the literature on non parametric inference for stochastic processes driven by diffusions plus jumps,

see Gobbi and Mancini (2006).

Applications of the theory we present here is of strong interest in finance, in particular in financial

econometrics (see e.g. [1]), in the framework of portfolio risk ([3]) and for hedge funds management.

An outline of the paper is as follows. In section 2 we illustrate the framework; in section 3 we present

some preliminary results in the case where each component J (q) of X(q) has finite activity of jump.

In section 4 we deal with the more complex case where each J (q) can have an infinite activity jump

component J̃
(q)
2 (which makes an infinite number of jumps in each finite time interval). We assume that

such component J̃
(q)
2 is a Lévy process and we show that our estimator is consistent and we develop some

preliminaries for the asymptotic normality in the case where J̃
(q)
2 have stable-like laws and the joint law

is characterized by a Copula ranging in a given class.

2 The framework

Given a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ), let X(1) = (X
(2)
t )t∈[0,T ] and X(2) = (X

(2)
t )t∈[0,T ]

be two real processes defined by

X
(1)
t =

∫ t

0
a
(1)
s ds +

∫ t

0
σ

(1)
s dW

(1)
s + J

(1)
t , t ∈ [0, T ],

X
(2)
t =

∫ t

0
a
(2)
s ds +

∫ t

0
σ

(2)
s dW

(2)
s + J

(2)
t , t ∈ [0, T ],

(1)

where
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A1. W (1) = (W
(1)
t )t∈[0,T ] and W (2) = (W

(2)
t )t∈[0,T ] are two correlated Wiener processes, with

ρt = Corr(W
(1)
t , W

(2)
t ), t ∈ [0, T ]; we can write

W
(2)
t = ρtW

(1)
t +

√

1 − ρ2
t W

(3)
t ,

where W (1) and W (3) are independent Wiener processes.

A2. The diffusion stochastic coefficients σ(q) = (σ
(q)
t )t∈[0,T ], a(q) = (a

(q)
t )t∈[0,T ], q = 1, 2, and

ρ = (ρt)t∈[0,T ] are adapted càdlàg.

A3. For q = 1, 2

J (q) = J
(q)
1 + J̃

(q)
2 ,

where J
(q)
1 are finite activity jump processes

J
(q)
1t =

∫ t

0

γ(q)
s dN (q)

s =

N
(q)
t

∑

k=1

γ
τ
(q)
k

, q = 1, 2,

where N (q) = (N
(q)
t )t∈[0,T ] are counting processes with E[N

(q)
T ] < ∞; {τ (q)

k , k = 1, ..., N
(q)
T }

denote the instants of jump of J
(q)
1 and γ

τ
(q)
k

denote the sizes of the jumps occurred at τ
(q)
k .

We assume

P (γ
τ
(q)
k

= 0) = 0, ∀ k = 1, ..., N
(q)
T , q = 1, 2. (2)

Denote, for each q = 1, 2, γ(q) = min
k=1,...,N

(q)
T

|γ
τ
(q)
k

|. By condition (2), a.s. we have γ(q) > 0.

A4. J̃
(q)
2 are infinite activity Lévy pure jump processes of small jumps,

J̃
(q)
2t =

∫ t

0

∫

|x|≤1

x µ̃(q)(dx, ds), (3)

where µ(q) is the Poisson random measure of the jumps of J̃
(q)
2 , µ̃(q)(dx, ds) = µ(q)(dx, ds) −

ν(q)(dx)ds is its compensated measure, where ν(q) is the Lévy measure of J̃
(q)
2 (see [3]).

Each ν(q) has the property that ν(q)(R−{0}) = ∞, which characterizes the fact that the path of J̃
(q)
2

jumps infinitely many times on each compact time interval. J̃
(q)
2 is a compensated sum of jumps, each

of which is bounded in absolute value by 1, so that substantially J
(q)
1 accounts for the ”big” (bigger in

absolute value than γ(q)) and rare jumps of X(q), while J̃
(q)
2 accounts for the very frequent and small

jumps.

Remark 2.1. If J (q) is a pure jump Lévy process, it is always possible to decompose it as

J (q) = J
(q)
1 + J̃

(q)
2 ,

(see [3]) where J1 is a compound Poisson process accounting for the jumps bigger in absolute value than

1, J1 satisfies assumption A3 and J̃2 is as in (3).

Notation. c denotes any constant.
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A5. Let αq be the Blumenthal Getoor index of each J (q), q = 1, 2 (see [3]). Let each ν(q)

satisfy:

A5.1
∫

|x|≤ε
x2ν(q)(dx) = O(ε2−αq )

A5.2
∫

ε<|x|≤1 |x|ν(q)(dx) = O(c − cε1−αq).

Assumption A5 is satisfied if for instance each ν(q) has a density f (q)(x) behaving as K(q)(|x|)
|x|1+αq

when

x → 0, where K(q) is a real function with lim
x→0

K(q)(x) ∈ IR−{0}, and αq is the Blumenthal-Getoor index

of J (q).

In particular A5 is true for anyone of the commonly used models (e.g. NIG, VG, CGMY, α-stable, GHL).

Let, for each n, π
[0,T ]
n = {0 = t0,n < t1.n < · · · < tn,n = T } be a partition of [0, T ]. We assume equally

spaced subdivisions, i.e. hn := tj,n − tj−1,n = T
n

for every n = 1, 2, ..... Hence hn → 0 as n → ∞. Let

∆j,nX be the increment Xtj,n
− Xtj−1,n

. To simplify notations we write h in place of hn and ∆jX in

place of ∆j,nX .

A6. We choose a deterministic function, h 7→ r(h), satisfying the following properties

lim
h→0

r(h) = 0, lim
h→0

hlog 1
h

r(h)
= 0.

We denote r(h) by rh. Denote also, for each q = 1, 2,

D
(q)
t =

∫ t

0

a(q)
s ds +

∫ t

0

σ(q)
s dW (q)

s ,

the diffusion part of X(q), and

Y
(q)
t = D

(q)
t + J

(q)
1t .

3 Preliminary results

By the Paul Lévy law of the modulus of continuity of the Brownian motion paths (see [14]), we know

that the increments of the diffusion part of each ∆jX
(q) tend to zero at speed

√

h ln 1
h
. This is the key

point to understand when an increment ∆jX
(q) is likely to contain some jumps. In fact if, for small h,

|∆jX
(q)| > rh >

√

h ln 1
h
, then or some jumps of J

(q)
1 occurred, or some jumps of J̃

(q)
2 larger than 2

√
rh

occurred (Mancini, 2005). In Gobbi and Mancini (2006) we obtain the following consequences.

Remark 3.1. (Mancini, 2005) Under A2 we have a.s.

sup
1≤j≤n

|∆jD
(q)|

√

2hlog 1
h

≤ Kq(ω) < ∞, q = 1, 2,

where Kq are finite random variables.

4



Theorem 3.2. (Estimation of the correlation between the continuous parts) Let (X
(1)
t )t∈[0,T ] and (X

(2)
t )t∈[0,T ]

two processes of the form (1). Assume A1-A4 and A6 are satisfied. Then

ṽ
(n)
1,1 (X(1), X(2))T

P−→
∫ T

0

ρtσ
(1)
t σ

(2)
t dt,

as n → ∞, where for r and l ∈ IN

ṽ
(n)
r,l (X(1), X(2))T = h1− r+l

2

n
∑

j=1

(∆jX
(1))r1{(∆jX(1))2≤rh}(∆jX

(2))l1{(∆jX(2))2≤rh}.

v
(n)
r,l (X(1), X(2))T = h1− r+l

2

∑n

j=1(∆jX
(1))r(∆jX

(2))l, was used in [2] to estimate the covariation in the

case of diffusion processes. ṽ
(n)
r,l (X(1), X(2))T is a threshold modified version for the case of jump diffusion

processes where we exclude from the sums the terms containing some jumps.

Remark 3.3. An estimate of the sum of the co-jumps is obtained simply subtracting the diffusion

covariation estimator from the quadratic covariation estimator. In fact

n
∑

j=1

∆jX
(1)∆jX

(2) − ṽ
(n)
1,1 (X(1), X(2))T

P−→
∑

0≤s≤T

∆J (1)
s ∆J (2)

s ,

as n → ∞. Therefore an estimate of each ∆J
(1)
s ∆J

(2)
s is obtained using

∆jX
(1)∆jX

(2) − ∆jX
(1)1{(∆jX(1))2≤rh}∆jX

(2)1{(∆jX(2))2≤rh},

with j such that s ∈]tj−1, tj ], whose limit for h → 0 coincides with the limit of

∆jX
(1)1{(∆jX(1))2>rh}∆jX

(2)1{(∆jX(2))2>rh}.

Theorem 3.4. If J̃
(q)
2 ≡ 0, under the assumptions A1-A3, and choosing rh as in A6, we have

NB(h) :=
ṽ
(n)
1,1 (X(1), X(2))T −

∫ T

0
ρtσ

(1)
t σ

(2)
t dt

√
h

√

ṽ
(n)
2,2 (X(1), X(2))T − w̃(n)(X(1), X(2))T

d−→ Z,

where Z has law N (0, 1) and

w̃(n)(X(1), X(2))T =h−1
n−1
∑

j=1

1
∏

i=0

∆j+iX
(1)1{(∆j+iX(1))2≤rh}

1
∏

i=0

∆j+iX
(2)1{(∆j+iX(2))2≤rh}.

4 Main results

In this paper we study the behavior of the normalized bias NB(h) when infinite activity jump components

J̃
(q)
2 are included in the models X(q). First we show that the standard error

√
h

√

ṽ
(n)
2,2 (X(1), X(2))T − w̃(n)(X(1), X(2))T

converges even in the present framework. We need the following notations and remarks.

Remark 4.1. [Remark 4.3 in [4]] Under assumptions A2 and A5.2

5



1. If processes a and σ are càdlàg then, under A5, a.s., for small h, 1{(∆jD(q))2>rh} = 0, uniformly

in j;

2. Let us consider the sequence ṽ
(n)
1,1 , n ∈ IN. As long as J̃

(q)
2 is a semimartingale, we can find a

subsequence nk for which a.s., for large k, for all j = 1..nk, on {∆jX
(q) ≤ 4r(hk)} we have that

(∆J̃2,s)
2 ≤ 4r(hk), ∀s ∈]tj−1, tj ].

3. If J̃
(q)
2 is Lévy and independent of N (q), and if P{∆jN 6= 0} = O(h) as h → 0, then for any

j = 1..n, nP{∆jN 6= 0, (∆iJ̃2)
2 > r(h)} → 0 as h → 0.

Notations. For each q = 1, 2 we denote

∆j J̃
(q)
2m :=

∫ tj

tj−1

∫

|x|≤2
√

rh

x µ̃(q)(dx, dt), ∆j J̃
(q)
2c :=

∫ tj

tj−1

∫

2
√

rh<|x|≤1

x ν(q)(dx)dt

so that

∆j J̃
(q)
2 1{|∆j J̃

(q)
2 |≤2

√
rh} = ∆j J̃

(q)
2m − ∆j J̃

(q)
2c . (4)

We also set

∆j⋆H
(q) := ∆jH

(q)1{(∆jX(q))2≤rh}

for any process H(q) (e.g. H(q) = Y (q), or H(q) = J̃
(q)
2 and so on).

Note that for each q = 1, 2

E[(∆j J̃
(q)
2m)2] = h

∫

|x|≤2
√

rh

x2ν(q)(dx) := hη2
q(2

√
rh) → 0

as h → 0, and under assumption A5 we have

∆j J̃
(q)
2c = O

(

h(c − cr
1−αq

2

h )
)

. (5)

Theorem 4.2 (standard error). Under the assumptions A1-A6, if
hlog2 1

h

rh
→ 0, and rh = hβ, β ∈]0, 1[,

then

ṽ
(n)
2,2 (X(1), X(2))T − w̃(n)(X(1), X(2))T

P−→
∫ T

0

(1 + ρ2
t )(σ

(1)
t )2(σ

(2)
t )2dt

as n → ∞.

Proof. We prove that

ṽ
(n)
2,2 (X(1), X(2))T

P−→
∫ T

0

(2ρ2
t + 1)(σ

(1)
t )2(σ

(2)
t )2dt

and

w̃(n)(X(1), X(2))T
P−→

∫ T

0

ρ2
t (σ

(1)
t )2(σ

(2)
t )2dt.

Note that a.s. for small h that

1{(∆jX(q))2≤rh} = 1{(∆jX(q))2≤rh,(∆j J̃
(q)
2 )2≤4rh} + 1{(∆jX(q))2≤rh,(∆j J̃

(q)
2 )2>4rh}, (6)

and, trivially, we also have that

1{|∆jX(q)|≤√
rh,|∆j J̃

(q)
2 |≤2

√
rh} = 1{|∆jX(q)|≤√

rh,|∆j J̃
(q)
2 |≤2

√
rh,∆jN(q)=0}. (7)

6



Let us now deal with ṽ
(n)
22 . As in the proof of proposition 3.5 in [4] we can write

ṽ
(n)
2,2 (X(1), X(2))T −

∫ T

0
(2ρ2

t + 1)(σ
(1)
t )2(σ

(2)
t )2dt =

[

h−1
∑n

j=1(∆j⋆Y (1))2(∆j⋆Y (2))2 −
∫ T

0 (2ρ2
t + 1)(σ

(1)
t )2(σ

(2)
t )2dt

]

+

h−1
∑n

j=1

[

(∆j⋆Y (1))2(∆j⋆J̃
(2)
2 )2 + 2(∆j⋆Y

(1))2(∆j⋆Y
(2))(∆j J̃

(2)
2 ) + (∆j⋆J̃

(1)
2 )2(∆j⋆Y

(2))2+

+(∆j⋆J̃
(1)
2 )2(∆j⋆J̃

(2)
2 )2 + 2(∆j J̃

(1)
2 )2(∆j⋆Y (2))(∆j⋆J̃

(2)
2 ) + 2(∆j⋆Y

(1))(∆j⋆J̃
(1)
2 )(∆jY

(2))2+

2(∆j⋆Y
(1))(∆j J̃

(1)
2 )(∆j⋆J̃

(2)
2 )2 + 4(∆j⋆Y

(1))(∆j J̃
(1)
2 )(∆j⋆Y

(2))(∆j J̃
(2)
2 )

]

:=
9

∑

k=1

Ik(h).

(8)

The terms of the right hand side within brackets are denoted by I1(h) and can be split into two parts

by adding and subtracting the quantity h−1
∑n

j=1(∆jY
(1))21{(∆jY (1))2≤4rh}(∆jY

(2))21{(∆jY (2))2≤4rh} in

the following way

|I1(h)| =
∣

∣h−1
∑n

j=1(∆j⋆Y (1))2(∆j⋆Y
(2))2 −

∫ T

0 (2ρ2
t + 1)(σ

(1)
t )2(σ

(2)
t )2dt

∣

∣ ≤

∣

∣h−1
∑n

j=1(∆jY
(1))21{(∆jY (1))2≤4rh}(∆jY

(2))21{(∆jY (2))2≤4rh} −
∫ T

0
(2ρ2

t + 1)(σ
(1)
t )2(σ

(2)
t )2dt

∣

∣+

∣

∣h−1
∑n

j=1(∆jY
(1))2(∆jY

(2))2(1{(∆jX(1))2≤rh}1{(∆jX(2))2≤rh} − 1{(∆jY (1))2≤4rh}1{(∆jY (2))2≤4rh})
∣

∣

(9)

The first term of the right hand side of (9) tends to zero in probability by proposition 5.1. Developing

the second one we find that it is the sum of terms which a.s. for small h are zero because by remark 4.1

point 1 we have

1{(∆jX(q))2≤rh,(∆jY (q))2>4rh} ≤ 1{|∆j J̃
(q)
2 |>√

rh} (10)

and

1{(∆jX(q))2>rh,(∆jY (q))2≤4rh} ≤ 1{|∆jD(q)|>
√

rh
2 } + 1{|∆j J̃

(q)
2 |>

√
rh
2 } = 1{|∆j J̃

(q)
2 |>

√
rh
2 }, (11)

uniformly in j, so that the terms containing ∆jJ
(q)
1 tends to zero by remark 4.1 point 3, whereas

h−1
n

∑

j=1

(∆jD
(1))2(∆jD

(2))21{|∆j J̃
(1)
2 |>√

rh}1{|∆j J̃
(2)
2 |>√

rh} ≤

K2
1 (ω)K2

2 (ω)hlog2 1

h

n
∑

j=1

1{|∆j J̃
(1)
2 |>√

rh},

which converges to zero in L1

E
∣

∣hlog2 1

h

n
∑

j=1

1{|∆j J̃
(1)
2 |>√

rh}
∣

∣ ≤ nhlog2 1

h
E

[

1{|∆1J̃
(1)
2 |>√

rh}
]

= T
hlog2 1

h

rh

η2
2(1) → 0

The other terms in the right hand side of (8) tend to zero in probability. We only deal with I2, I3, I5, I8

and I9, the other ones being analogue. Note that for each q = 1, 2

E



 sup
1≤j≤n

(∆j J̃
(q)
2 )21{|∆j J̃

(q)
2 |≤2

√
rh}

h



 ≤ 2 sup
1≤j≤n

E(∆j J̃
(q)
2m)2

h
+ 2 sup

1≤j≤n

E(∆j J̃
(q)
2c )2

h

7



= 2η2
q

(

2
√

rh

)

+ O
(

2h(c − cr
1−α2

2

h )2
)

= O
(

h1+β(1−αq)
)

and h1+β(1−αq) tends to zero as h → 0. That is trivial if αq ≤ 1; however even if αq belongs to ]1, 2[ it is

ensured that 1 + β(1 − αq) > 0, i.e. β < 1
αq−1 , since β < 1 while 1

αq−1 > 1. We have then that as h → 0

sup
1≤j≤n

(∆j J̃
(q)
2 )21{|∆j J̃

(q)
2 |≤2

√
rh}

h

P−→ 0. (12)

Now, by (6) and (7) a.s. for small h

|I2 + I3 + I5 + I8 + I9| ≤ h−1
n

∑

j=1

∣

∣

∣
(∆jD

(1))2(∆j J̃
(2)
2 )2 + 2(∆jD

(1))2(∆jD
(2))(∆j J̃

(2)
2 )

+(∆j J̃
(1)
2 )2(∆j J̃

(2)
2 )2 + 2(∆jD

(1))(∆j J̃
(1)
2 )(∆j J̃

(2)
2 )2

+4(∆jD
(1))(∆j J̃

(1)
2 )(∆jD

(2))(∆j J̃
(2)
2 )

∣

∣

∣
1{(∆jX(1))2≤rh}1{(∆jX(1))2≤rh},

and since 1{(∆jX(q))2≤rh} = 1{(∆jX(1))2≤rh,∆j J̃
(q)
2 )2≤2

√
rh} +1{(∆jX(1))2≤rh,∆j J̃

(q)
2 )2>2

√
rh} by (7) the terms

containing the indicator of the set {∆j J̃
(q)
2 )2 ≤ 2

√
rh} are dominated by

sup
1≤j≤n

(∆j J̃
(2)
2 )21{|∆jJ̃

(2)
2 |≤2

√
rh}

h

[

n
∑

j=1

(∆jD
(1))2 +

n
∑

j=1

(∆j J̃
(1)
2 )2 +

n
∑

j=1

(∆jD
(1))(∆j J̃

(1)
2 )

]

+2K̄2h ln
1

h

n
∑

j=1

(∆jD
(2))(∆j J̃

(2)
2 )

+4 sup
1≤j≤n

|∆j J̃
(1)
2 |1{|∆j J̃

(1)
2 |≤2

√
rh}√

h
sup

1≤j≤n

|∆j J̃
(2)
2 |1{|∆j J̃

(2)
2 |≤2

√
rh}√

h

n
∑

j=1

(∆jD
(1))(∆jD

(2)),

where K̄ :=
√

2(K1 ∨ K2). Each term tends to zero in probability by (12) and using that

n
∑

j=1

(∆jD
(q))2

P−→
∫ T

0

(σ
(q)
t )2dt < ∞ a.s. , (13)

∑n

j=1(∆j J̃
(1)
2 )2

P−→ T
∫

|x|≤1
x2ν(1)(dx) < ∞ a.s.,

∑n

j=1(∆jD
(q))(∆j J̃

(q)
2 )

P−→ [D(1), J̃
(1)
2 ]T = 0 and

∑n
j=1(∆jD

(1))(∆jD
(2))

P−→
∫ T

0
ρtσ

(1)
t σ

(2)
t dt < ∞ a.s., where by [M, N ] we denote the quadratic covari-

ation process associated to two semimartingales M and N (see [3]).

It remains to consider

h−1
n

∑

j=1

∣

∣

∣
(∆jD

(1))2(∆j J̃
(2)
2 )2 + 2(∆jD

(1))2(∆jD
(2))(∆j J̃

(2)
2 )

+(∆j J̃
(1)
2 )2(∆j J̃

(2)
2 )2 + 2(∆jD

(1))(∆j J̃
(1)
2 )(∆j J̃

(2)
2 )2

+4(∆jD
(1))(∆j J̃

(1)
2 )(∆jD

(2))(∆j J̃
(2)
2 )

∣

∣

∣
1{(∆jX(1))2≤rh,(∆j J̃

(1)
2 )2>2

√
rh}1{(∆jX(1))2≤rh,(∆j J̃

(2)
2 )2>2

√
rh}.

Now observing that on {(∆jX
(q))2 ≤ rh, (∆j J̃

(q)
2 )2 > 2

√
rh}, q = 1, 2, we have {(∆jY

(q))2 > rh}, so

that, a.s. for small h

1{(∆jX(q))2≤rh,(∆j J̃
(q)
2 )2>2

√
rh} ≤ 1{|∆jJ

(q)
1 |>

√
rh
2 } + 1{|∆jD(q) |>

√
rh
2 } ≤ 1{∆jN(q) 6=0}

8



by remark 4.1 point 3 we note that all terms tend to zero.

We can conclude that I2 +I3+I5+I8+I9
P−→ 0 as h → 0, and this concludes the proof of the convergence

of ṽ22.

Now, we show that w̃(n)(X(1), X(2))T
P−→

∫ T

0 ρ2
t (σ

(1)
t )2(σ

(2)
t )2dt. Note that

∣

∣

∣

∣

∣

∣

h−1
n−1
∑

j=1

2
∏

q=1

∆j⋆X
(q)

2
∏

q=1

∆j+1,⋆X
(q) −

∫ T

0

ρ2
t (σ

(1)
t )2(σ

(2)
t )2dt

∣

∣

∣

∣

∣

∣

is the sum of
∣

∣

∣

∣

∣

∣

h−1
n−1
∑

j=1

2
∏

q=1

∆j⋆Y (q)
2

∏

q=1

∆j+1,⋆Y
(q) −

∫ T

0

ρ2
t (σ

(1)
t )2(σ

(2)
t )2dt

∣

∣

∣

∣

∣

∣

(14)

and of other 15 terms of type h−1
∑n

j=1 ∆j⋆M
(1)∆j+1,⋆H

(1)∆j⋆M
(2)∆j+1,⋆H

(2) where (since ∆jX
(q) =

∆jY
(q) + ∆j J̃2 for each q = 1, 2) both M and H can be Y or J̃2 and at least one factor is the increment

of one of the two J̃
(q)
2 , q = 1, 2. Each one of the 15 terms tends to zero in probability as h → 0. In fact

the terms where only one factor is the increment of one of the J̃
(q)
2 s are bounded by

√

√

√

√h−1

n
∑

j=1

(∆j+sJ̃
(q)
2 )21{|∆j+sJ̃

(q)
2 |≤2

√
r(h)}(∆j+sD(r))2

√

√

√

√h−1

n
∑

j=1

(∆j+s̄D(1))2(∆j+s̄D(2))2, (15)

where s = 0 or 1, s̄ is 1 iff s is 0 and q, r ∈ {1, 2}. Using (12), (13) and using that h−1
∑n

j=1(∆j+s̄D
(1))2·

(∆j+s̄D
(2))2 = v22(D

(1), D(2))T converges to the a.s. finite correlation term
∫ T

0 (1 + 2ρ2
t )(σ

(1)
t )2(σ

(2)
t )2dt

([2], and cfr proposition 5.1), we reach that (15) tends to zero in probability.

The terms containing two increments of kind J̃
(q)
j+s are dominated in probability, thanks to (12), by

o(1)

n
∑

j=1

∆jD
(r)∆j+sD

(q) ≤ o(1)

√

√

√

√

n
∑

j=1

(∆jD(r))2

√

√

√

√

n
∑

j=1

(∆j+sD(q))2
P−→ 0.

The terms containing three increments of kind J̃
(q)
j+s are dominated by

o(1)

n
∑

j=1

∆j+uJ̃
(r)
2 ∆j+sD

(q) ≤ o(1)

√

√

√

√

n
∑

j=1

(∆j+uJ̃
(r)
2 )2

√

√

√

√

n
∑

j=1

(∆j+sD(q))2
P−→ 0,

where u, s ∈ {0, 1}. The unique term of type (??) containing four increments of kind J̃
(q)
j+s is simply

dominated, thanks to (12), by o(1)nh → 0.

As for (14), adding and subtracting

h−1
n−1
∑

j=1

2
∏

q=1

∆jY
(q)1{(∆jY (q))2≤4rh}

2
∏

q=1

∆j+1Y
(q)1{(∆j+1Y (q))2≤4rh},

we obtain

∣

∣

∣
h−1

n−1
∑

j=1

[

2
∏

q=1

∆jY
(q)1{(∆jX(q))2≤rh}

2
∏

q=1

∆j+1Y
(q)1{(∆j+1X(q))2≤rh}

]

−
∫ T

0

ρ2
t (σ

(1)
t )2(σ

(2)
t )2dt

∣

∣

∣

≤
∣

∣

∣
h−1

n−1
∑

j=1

[

2
∏

q=1

∆jY
(q)1{(∆jY (q))2≤4rh}

2
∏

q=1

∆j+1Y
(q)1{(∆j+1Y (q))2≤4rh}

]

−
∫ T

0

ρ2
t (σ

(1)
t )2(σ

(2)
t )2dt

∣

∣

∣

9



+
∣

∣

∣
h−1

n−1
∑

j=1

∆jY
(1)∆j+1Y

(1)∆jY
(1)∆j J̃

(2)
2 ×

×
(

1{(∆jX(1))2≤rh,(∆j+1X(1))2≤rh,(∆jX(2))2≤rh,(∆j+1X(2))2≤rh}+

−1{(∆jY (1))2≤4rh,(∆j+1Y (1))2≤4rh,(∆jY (2))2≤4rh,(∆j+1Y (2))2≤4rh}
)

∣

∣

∣
.

The first term tends to zero in probability by theorem 5.1, whereas for the second one we note that

developing the difference of the two indicators we obtain a sum of terms which are dominated by indicators

as in (10) and (11) and thus they vanish a.s. for small h (analogously as in (9)).

Next we check the speed of convergence to zero of the estimation error ṽ
(n)
1,1 (X(1), X(2))T−

∫ T

0 ρtσ
(1)
t σ

(2)
t dt.

Within ṽ
(n)
1,1 (X(1), X(2))T −

∫ T

0
ρtσ

(1)
t σ

(2)
t dt it is the co-jumps term

∑

s≤t ∆J̃
(1)
2s ∆J̃

(2)
2s to determine such

a speed. However the speed of convergence of such term depends both on the amount of jump activity of

each J̃
(q)
2 and on the dependence structure giving the joint law

(

J̃
(1)
2 , J̃

(2)
2

)

(P ). We specialize our analysis

to the case where J̃
(q)
2 have stable-like laws and the joint law is characterized by a copula C ranging in

a given class.

A7 Assume αq ∈]0, 2[ for each q = 1, 2. Consider (w.l.g.) α1 ≤ α2.

Each marginal law
(

J̃
(q)
2

)

(P ) has a Stable-like density of the form

ν(q) = cqx
−1−αq1{x>0} + dq |x|−1−αq 1{x<0}.

For simplicity, but w.l.g., we develop our proofs for the case where each J̃
(q)
2 has only positive

jump sizes, i.e.

ν(q) = cqx
−1−αq1{x>0},

which have support IR+.

We denote for each q = 1, 2 by

Uq(x) := ν(q)
(

[xq, +∞[
)

= cq

x
−αq
q

αq

(16)

the tail integral of the marginal law of J̃
(q)
2 .

A8 The joint law
(

J̃
(1)
2 , J̃

(2)
2

)

(P ) has tail integrals given by

U(x, y) = Cγ(U1(x), U2(y))

where Cγ(u, v) is a Lévy copula (see [3]) of the form

Cγ(u, v) = γC⊥(u, v) + (1 − γ)C‖(u, v),

where C⊥(u, v) = u1{v=∞} + v1{u=∞} is the independence copula, C‖(u, v) = u∧ v is the total

dependence copula and γ ranges in [0, 1].

Such choices are quite representative since in fact many commonly used models in finance (Variance

Gamma model, CGMY model, NIG model, etc.) have ν(q) related to the ones in assumption A7 in the

sense that they are tempered stable processes where the order of magnitude of the tail integrals as xq → 0

10



is as for (16). Moreover C allows to range from a framework of independent components to a framework

where the components are completely positively monotonic.

Remark 4.3. We need assumption A8 in order to control the speed of convergence to zero of integrals like
∫

0≤x,y≤ε
xydν(x, y),

∫

0≤x,y≤ε
x2y2dν(x, y), where ν is the bivariate Lévy measure of (J̃

(1)
2 , J̃

(2)
2 ). Note that

when the copula within ν is the independence copula then both integrals are zero so that under assumption

A8
∫

0≤x,y≤ε

xkykν(dx, dy) = (1 − γ)

∫

0≤x,y≤ε

xkykdC‖(U1(x), U2(y))

for k = 1, 2, and the speed is given only by the complete dependence component.

Now we compute the speed of convergence to zero of the small co-increments of the two J̃
(q)
2 .

Theorem 4.4. Choose rh = hβ , β ∈]0, 1[ and Cγ(u, v) ≡ C‖(u, v) (i.e. γ = 0). Assume A1-A8. Then

∑n

j=1 ∆j J̃
(1)
2 1{(∆j J̃

(1)
2 )2≤4rh}∆j J̃

(2)
2 1{(∆j J̃

(2)
2 )2≤4rh} − nE[H ′

n1]
√

nV ar(H ′
n1)

d−→ N (0, 1),

as h → 0, where for j = 1..n

H ′
nj := ∆j J̃

(1)
2 1{(∆j J̃

(1)
2 )2≤4rh}∆j J̃

(2)
2 1{(∆j J̃

(2)
2 )2≤4rh}

is such that as h → 0

E[H ′
nj ] = O(h

1+β
α1+α2−α1α2

2α1 ) + h2O
(

(c − chβ
1−α1

2 )(c − chβ
1−α2

2 )
)

and

V ar(H ′
nj) = O(h2+ β

2 (4−α1−α2)) + O(h
1+β

2α1+2α2−α1α2
2α1 ).

Proof. We use the Lindeberg-Feller theorem. Using A7 and (4) we have

E[H ′
nj ] = h

∫

]0,h
β
2 ]

∫

]0,h
β
2 ]

xyν(dx, dy) + ∆j J̃
(1)
2c ∆j J̃

(2)
2c

= h

∫

]0,h
β
2 ]

∫

]0,h
β
2 ]

xydC‖(U1(x), U2(y)) + ∆j J̃
(1)
2c ∆j J̃

(2)
2c

= h

∫ +∞

(h
β
2 )−α1

α1
∨ (h

β
2 )−α2

α2

U−1
1 (u)U−1

2 (u)du + ∆j J̃
(1)
2c ∆j J̃

(2)
2c

= O(h
1+β

α1+α2−α1α2
2α1 ) + O(h(c − chβ

1−α1
2 ))O(h(c − chβ

1−α2
2 )).

Moreover, since

E[∆j J̃
(1)
2m∆j J̃

(2)
2m]2 = h

∫

]0,h
β
2 ]

∫

]0,h
β
2 ]

x2y2ν(dx, dy)

+h2
(

∫

]0,h
β
2 ]

∫

]0,h
β
2 ]

x2ν(dx, dy)
)(

∫

]0,h
β
2 ]

∫

]0,h
β
2 ]

y2ν(dx, dy)
)

+2h2
(

∫

]0,h
β
2 ]

∫

]0,h
β
2 ]

xyν(dx, dy)
)2

,

E[(∆j J̃
(1)
2m)2 ∆j J̃

(2)
2m] = h

∫

]0,h
β
2 ]

∫

]0,h
β
2 ]

x2yν(dx, dy)
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and

E[∆j J̃
(1)
2m (∆j J̃

(2)
2m)2] = h

∫

]0,h
β
2 ]

∫

]0,h
β
2 ]

xy2ν(dx, dy),

we get

V ar(H ′
nj) = O(h2+ β

2 (4−α1−α2)) + O(+h
1+β

2α1+2α2−α1α2
2α1 ).

Notice that ∀αq ∈]0, 2[ we have α1+α2−α1α2

2α1
> 0. Denote

Hnj =
H ′

nj − E[H ′
nj ]

√

nV ar(H ′
nj)

the normalized versions of H ′
nj . In order to verify the Lindeberg condition we consider the following sets

{|Hnj| > η} =







H ′
nj − E[H ′

nj ]
√

nV ar(H ′
nj)

> η







=
{

|H ′
nj − E[H ′

nj ]| > η
√

nV ar(H ′
nj)

}

.

We show that in fact, for small h, H ′
nj ≤ E[H ′

nj ] +
√

nV ar(H ′
nj) ∀j, thus {|Hnj | > η} = ∅. Actually,

after boring computations2 we reach that

E[H ′
nj ] + η

√

n V ar(H ′
nj) = O(h

1+β
α1+α2−α1α2

2α1 ) + O
(

√

h1+ β
2 (4−α1−α2) + h

β
2α1+2α2−α1α2

2α1

)

as h → 0. Note that, using (4) and (5),

H ′
nj = ∆j J̃

(1)
2m∆j J̃

(2)
2m − ∆j J̃

(1)
2m∆j J̃

(2)
2c − ∆j J̃

(1)
2c ∆j J̃

(2)
2m + ∆j J̃

(1)
2c ∆j J̃

(2)
2c

= ∆j J̃
(1)
2m∆j J̃

(2)
2m − ∆j J̃

(1)
2mO(h(c − chβ

1−α2
2 ))+

−∆jJ̃
(2)
2mO(h(c − chβ

1−α1
2 )) + O(h(c − chβ

1−α1
2 ))O(h(c − chβ

1−α2
2 )),

therefore

H ′
nj = o

(

E[H ′
nj ] + η

√

nV ar(H ′
nj)

)

as h → 0. Since h2(c−ch
β

1−α1
2 )(c−ch

β
1−α2

2 )
q

h
1+

β
2

(4−α1−α2)

→ 0 it follows that h2(c−chβ
1−α1

2 )(c−chβ
1−α2

2 ) = o
(

E[H ′
nj ]+

η
√

nV ar(H ′
nj)

)

. Moreover for each q = 1, 2

∆j J̃
(q)
2mO(h(c − chβ

1−αq

2 ))

=
(

∆j J̃
(q)
2 1{|∆j J̃

(q)
2 |≤2

√
rh} +

∫ tj

tj−1

∫

2
√

rh≤|x|<1

xν(q)(dx)dt
)

O(h(c − chβ
1−αq

2 ))

≤
(

2
√

rh + O(h(c − chβ
1−αq

2 ))
)

O(h(c − chβ
1−αq

2 ))

=
(

O(h
β
2 ) + O(h(c − chβ

1−αq
2 ))

)

O(h(c − chβ
1−αq

2 ))

= o(

√

h1+ β
2 (4−α1−α2)),

so that as h → 0

∆j J̃
(q)
2mO(h(c − chβ

1−αq
2 )) = o

(

E[H ′
nj ] + η

√

nV ar(H ′
nj)

)

. (17)

2These are available if requested.
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Now using (4) we can write

∆j J̃
(1)
2m∆j J̃

(2)
2m ≤ ∆j J̃

(2)
2mO(h

β
2 ) + ∆j J̃

(2)
2mO(h(c − chβ

1−α1
2 )).

But

E

∣

∣

∣

∣

∣

(∆j J̃
(2)
2m)h

β
2

√

h1+ β
2 (4−α1−α2)

∣

∣

∣

∣

∣

≤ h
β
2

h
1
2+ β

4 (4−α1−α2)

√

E[(∆j J̃
(2)
2m)2] =

hβ− βα2
4

h
β
2 (4−α1−α2)

→ 0,

as h → 0. It follows, using also (17), that ∆j J̃
(1)
2m∆j J̃

(2)
2m = o

(

E[H ′
nj ] + η

√

nV ar(H ′
nj)

)

. Therefore for

small h, uniformly on j, we have {|Hnj | < η} = ∅ and the Lindeberg condition is satisfied and the proof

of theorem is complete.

5 Appendix

Proposition 5.1. (Proposition 3.5 in [4]) If J̃
(q)
2 ≡ 0, under the assumptions A1-A3, and choosing rh

as in A5, we have

ṽ
(n)
2,2 (X(1), X(2))T

P−→
∫ T

0

(2ρ2
t + 1)(σ

(1)
t )2(σ

(2)
t )2dt,

and

w̃(n)(X(1), X(2))T
P−→

∫ T

0

ρ2
t (σ

(1)
t )2(σ

(2)
t )2dt.

Theorem 5.2 (Lindeberg-Feller). Let {Hnj, j = 1, ...., jn, n = 1, 2, ....} be a double array of r.v.s

independent in each row such that EHnj = 0 and EH2
nj = σ2

nj < ∞ for each n and j and moreover
∑jn

j=1 σ2
nj = 1. Let Fnj be the distribution function of Hnj. In order that

1. max1≤j≤jn
P (|Hnj | > ǫ) → 0, ∀ǫ > 0,

2.
∑jn

j=1 Hnj
d−→ N (0, 1),

it is necessary and sufficient that for each η > 0 that the Lindeberg condition holds, i.e.

jn
∑

j=1

∫

|x|>η

x2Fnj(dx) =

jn
∑

j=1

EH2
nj1{|Hnj|>η} → 0.
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