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Abstract

The joint cumulative distribution function for order statistics aris-
ing from several different populations is given in terms of the distri-
bution function of the populations. The computational cost of the
formula in the case of two populations is still exponential in the worst
case, but it is a dramatic improvement compared to the general for-
mula by Bapat and Beg. In the case when only the joint distribution
function of a subset of the order statistics of fixed size is needed, the
complexity is polynomial, for the case of two populations.

Keywords: block matrix, computational complexity, multiple comparison.
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1 INTRODUCTION

The Benjamini and Hochberg (1995) procedure represents one of what has
become a rather large class of techniques in which we would like to be able to
calculate order statistics arising from several populations. The complexity
of the calculations implied by such approaches has remained a barrier to
accurate probability statements. We provide tools which greatly extend the
range of computable cases.

Order statistics obtained by sampling from two different populations oc-
cur, e.g., when p-values arise from null or alternative hypotheses, from men
or women, or from two different types of cancer.

The distribution of order statistics for independent, identically distributed
random variables is well known, and appears in every basic statistics book; for
example, Hogg and Craig (1978, Chapter 4, Section 6). David and Nagaraja
(2003) and Balakrishnan and Rao (1998) provide a thorough review of or-
der statistics. For identically distributed random variables, the cumulative
distribution function is concise and fast to compute.

For independent, but not identically distributed random variables, a for-
mula for computing the joint cumulative distribution function of the order
statistics was given by Bapat and Beg (1989). However, this formula is com-
putationally intractable, because it involves an exponential number of per-
manents of the size of the number of random variables. In addition, the com-
plexity of the computation of the permanent by the best algorithms grows
exponentially (Knuth, 1998, p. 499). Approximate algorithms for computing
the permanent (Valiant, 1979; Forbert and Marx, 2003; Jerrum et al., 2004)
with lower asymptotic complexity are still not practical.

We show that the computational cost of the formula in the case of two
populations is still exponential, but is a dramatic improvement compared
to the general formula by Bapat and Beg. In the case when only the joint
distribution function of a subset of the order statistics of fixed size is needed,
we show that the complexity is polynomial, in the case of two populations.
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2 NOTATION AND PRELIMINARIES

For an m × m matrix A, with entries aij, the permanent is given by Aitken
(1939, p. 30)

per [A] =
∑

π

m
∏

i=1

ai,π(i) . (1)

where π ranges over all permutations of {1, 2, . . . , m}. Hence, the perma-
nent is defined much like the determinant, but with all signs positive. The
permanent can be expanded by row or columns exactly like the determinant.
The computational cost of evaluating the permanent by expansion is O(m!)
operations. The computational cost using the best algorithms is exponential
Knuth (1998, p. 499).

The following notation will be used in all theorems and proofs in this
paper without further explicit reference. Xi, i = 1, . . . , m are independent
real valued random variables with cumulative distribution functions Fi (x).
The order statistics Y1, Y2, . . . , Ym are random variables defined by sorting the
values of Xi. In particular, Y1 ≤ Y2 ≤ . . . ≤ Ym. The arguments of the joint
cumulative distribution function of order statistics are customarily written
omitting redundant arguments; thus let n , 1 ≤ n1 < n2 < · · · < n

k
≤ m,

denote the indices of the remaining arguments and y1 ≤ y2 ≤ · · · ≤ yk their
values. Finally, define the index vector i = (i0, i1, . . . ik+1) and the summation
index set

I =

{

i :
0 = i0 ≤ i1 ≤ · · · ≤ ik ≤ ik+1 = m,

and ij ≥ nj for all 1 ≤ j ≤ k

}

. (2)

Writing summation over the set I in terms of loops is straightforward. Using
the set I instead of the loop in this paper allows an insight into the structure
of the method and its complexity, and it does not tie the mathematical
formulation to any particular implementation.

The joint cumulative distribution function of the set {Yn1
, Yn2

, . . . , Ynk
},

which is a subset of the complete set of order statistics, is defined as

FYn1
,...Ynk

(y1, . . . , yk) = Pr {(Yn1
≤ y1) ∧ (Yn2

≤ y2) ∧ · · · ∧ (Ynk
≤ yk)} .

(3)
For two sequences am and bm, let am ∼ bm denote limm→∞ am/bm = 1.

Let const be a generic positive constant independent of m; that is, const can
have a different value every time it is used. Now am = O (bm) can be written
as |am| ≤ const bm.

4



3 JOINT CUMULATIVE DISTRIBUTION

FUNCTION OF ORDER STATISTICS

First consider the distribution of the order statistics of a random sample
where each sample member is taken from a possibly different population
with its own distribution.

Theorem 1 (Bapat and Beg (1989), Theorem 4.2) The cumulative dis-
tribution function of the order statistics satisfies

FYn1
,...Ynk

(y1, . . . , yk) =
∑

i∈I

Pi1,...,ik (y1, . . . , yk)

(i1 − i0)! (i2 − i1)! · · · (ik+1 − ik)!
, (4)

where

Pi1,...,ik (y1, . . . , yk)

= per
[

[Fi(yj) − Fi(yj−1)](ij−ij−1)×1

]j=k,i=m

j=1,i=1
(5)

is the permanent of the block matrix with the block row index j and block
column index i. The blocks have (ij − ij−1) rows, and 1 column each, which
is denoted by the subscript (ij − ij−1) × 1. Each block has only one distinct
entry, which is [Fi(yj) − Fi(yj−1)]. We take Fi (y0) = 0, Fi (yk+1) = 1.

In expanded form, the permanent (5) can be written as
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








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
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















F1(y1) F2(y1) · · · Fm(y1)
...

...
...

F1(y1) F2(y1) · · · Fm(y1)
−−−−− −−−− − −−−

F1(y2) − F1(y1) F2(y2) − F2(y1) · · · Fm(y2) − Fm(y1)
...

...
...

F1(y2) − F1(y1) F2(y2) − F2(y1) · · · Fm(y2) − Fm(y1)
−−−− −−−− − −−−−

...
...

...
−−−− −−−− − −−−−

F1(yk) − F1(yk−1) F2(yk) − F2(yk−1) · · · Fm(yk) − Fm(yk−1)
...

...
...

F1(yk) − F1(yk−1) F2(yk) − F2(yk−1) Fm(yk) − Fm(yk−1)
−−−− −−−− − −−−−

[1 − F1 (yk)] [1 − F2 (yk)] · · · [1 − Fm (yk)]
...

...
...

[1 − F1 (yk)] [1 − F2 (yk)] · · · [1 − Fm (yk)]
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
















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





























,

(6)
where the j-th group, j = 1, . . . , k + 1, contains ij − ij−1 repetitions of the
same row.

Proof. The theorem is stated, but not proved in Bapat and Beg (1989). We
provide a proof for the sake of completeness, and to prepare the ground for
our result.

Define y0 = −∞, and yk+1 = ∞. Note that for i ∈ {1, 2, . . . , m}, Fi (y0) =
0, and Fi (yk+1) = 1, since the Fi are cumulative distribution functions.
Denote A = FYn1

,...Ynk
(y1, . . . , yk). Then we have

A = Pr

(

k
⋂

j=1

{

Ynj
≤ yj

}

)

= Pr

(

k
⋂

j=1

{at least nj of Xi ≤ yj}

)

. (7)

Denote by Ij the random variable equal to the number of Xi such that Xi ≤
yj. Then I1 ≤ I2 ≤ · · · ≤ Ik, and the condition that at least nj of Xi ≤ yj is
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equivalent to Ij ≥ nj. Thus,

A = Pr

(

k
⋂

j=1

{Ij ≥ nj}
)

= Pr

(

i2
⋃

i∈I

k
⋂

j=1

{Ij = ij}
)

, (8)

and, since the events
⋂k

j=1 {Ij = ij} for different i are disjoint,

A =
∑

i∈I

Pr

(

k
⋂

j=1

{Ij = ij}

)

(9)

=
∑

i∈I

Pr

(

k+1
⋂

j=1

{exactly ij − ij−1 of Xi ∈ (yj−1, yj]}

)

. (10)

Now fix i and write an arbitrary permutation of {1, 2, . . . , m} as

π = (π1, π2, . . . , πk, πk+1) , (11)

where each subsequence πj has exactly ij − ij−1 terms. We will use {πj} to
denote the set of the terms. Then,

∃π∀j ∈ {1, 2, . . . , k + 1} : exactly ij − ij−1 of Xi ∈ (yj−1, yj] (12)

⇐⇒ ∃π∀j ∈ {1, 2, . . . , k + 1} : ∀i ∈ {πj} : Xi ∈ (yj−1, yj]. (13)

Hence,

Pr

(

k+1
⋂

j=1

{exactly ij − ij−1 of Xi ∈ (yj−1, yj]}

)

(14)

=

∑

π Pr
(

⋂k+1
j=1

⋂

i∈{πj}
{Xi ∈ (yj−1, yj]}

)

(i1 − i0)! · · · (ik+1 − ik)!
(15)

=

∑

π

k+1
∏

j=1

∏

i∈{πj}

[Fi (yj) − Fi (yj−1)]

(i1 − i0)! · · · (ik+1 − ik)!
, (16)

because the events in the intersection are independent: there is one event for
each Xi, which are independent random variables. Substituting into (9) and
comparing with the definition of the permanent (1) concludes the proof.
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As noted in the introduction, using a general algorithm for permanents is
prohibitively expensive. Given simplifying assumptions, however, the prob-
lem becomes easier. In the case when the variables X1, X2, . . . , Xm are in-
dependent and identically distributed (that is, the classical case of sampling
from a single population), Theorem 1 reduces to the following well-known
result (David and Nagaraja, 2003, p. 11).

Theorem 2 Suppose that Fi = F for all i. Then the joint cumulative dis-
tribution function of the order statistics satisfies

FYn1
,...Ynk

(y1, . . . , yk) =
∑

i∈I

m!
k+1
∏

j=1

[F (yj) − F (yj−1)]
ij−ij−1

(ij − ij−1)!
. (17)

Now consider drawing a random sample from two populations, each with
a different cumulative distribution function, say F (x), and G (x). Sample
the first n random variables from the first population with the distribution
function F , and then m−n from the second population with the distribution
function G. Then the permanents from Equation 4 (Bapat and Beg (1989))
simplify to the block form with constant blocks,

Pi1,...,ik (y1, . . . , yk)

= per











[F (y1) − F (y0)](i1−i0)×n [G(y1) − G(y0)](i1−i0)×(m−n)

[F (y2) − F (y1)](i2−i1)×n [G(y2) − G(y1)](i2−i1)×(m−n)
...

...
[F (yk+1) − F (yk)](ik+1−ik)×n [G(yk+1) − G(yk)](ik+1−ik)×(m−n)











,

(18)

where the subscripts indicate the dimensions of blocks created by the repe-
tition of the term in the brackets, and we take

F (y0) = G (y0) = 0, F (yk+1) = G (yk+1) = 1. (19)

In expanded form, the permanent (18) can be written as
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per






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























F (y1) · · · F (y1) G(y1) · · · G(y1)
...

...
...

...
F (y1) · · · F (y1) G(y1) · · · G(y1)

−−−−− − −−−− −−− − −−−
F (y2) − F (y1) · · · F (y2) − F (y1) G(y2) − G(y1) · · · G(y2) − G(y1)

...
...

...
F (y2) − F (y1) · · · F (y2) − F (y1) G(y2) − G(y1) · · · G(y2) − G(y1)

−−−− − −−−− −−−− − −−−
...

...
...

...
−−−− − −−−− −−−− − −−−

F (yk) − F (yk−1) · · · F (yk) − F (yk−1) G(yk) − G(yk−1) · · · G(yk) − G(yk−1)
...

...
...

...
F (yk) − F (yk−1) · · · F (yk) − F (yk−1) G(yk) − G(yk−1) · · · G(yk) − G(yk−1)

−−−− − −−−− −−−− − −−−
1 − F (yk) · · · 1 − F (yk) 1 − G (yk) · · · 1 − G (yk)

...
...

...
...

1 − F (yk) · · · 1 − F (yk) 1 − G (yk) · · · 1 − G (yk)





































































.

(20)
This special form of the permanent allows us to evaluate the joint distri-

bution of the order statistic more efficiently.

Theorem 3 Suppose that Fi (x) = F (x), for all 1 ≤ i ≤ n, and Fi (x) =
G (x), for all n + 1 ≤ i ≤ m. Then

FYn1
,...Ynk

(y1, . . . , yk) =

∑

i∈I

∑

λ

k+1
∏

j=1

n! (m − n)!

λj ! (ij − ij−1 − λj)!

· [F (yj) − F (yj−1)]
λj [G (yj) − G (yj−1)]

ij−ij−1−λj , (21)

where λ = (λ1, λ2, . . . , λk+1) ranges over all integer vectors such that

λ1 + λ2 + · · ·+ λk+1 = n, 0 ≤ λj ≤ ij − ij−1. (22)

Proof. We evaluate the permanents Pi1,...,ik (y1, . . . , yk) from (18). Let
S1 = {1, 2, . . . , n} and S2 = {n + 1, n + 2, . . . , m}. Write a permutation

9



Interval (−∞, y1] (y1, y2] · · · (yk,∞) Total
# ∈ S1 λ1 λ2 · · · λk+1 n
# ∈ S2 i1 − λ1 i2 − i1 − λ2 · · · m − ik − λk+1 m − n

Total i1 i2 − i1 · · · m − ik m

Table 1: Total number of order statistics in each interval, and number from
population 1 and 2 in each interval.

of {1, 2, . . . , m} as π = (π1, π2, . . . , πk, πk+1), where each subsequence πj has
exactly ij − ij−1 terms. The subsequence πj is a list of the subscripts of the
random variables that fall in the interval (yj−1, yj). Then the term in the
definition of the permanent (1) associated with π is

m
∏

i=1

ai,π(i) =

k+1
∏

j=1

[F (yj) − F (yj−1)]
λj [G (yj) − G (yj−1)]

ij−ij−1−λj , (23)

where λj is the number of random variables with subscripts listed in {πj} that
are in S1. For illustration, the intervals and the number of order statistics of
each type in them are shown in Table 1.

The number of permutations π such that λj is the number of the elements
from {πj} that are in S1 is found as the product ABC, where

A =
n!

∏k+1
j=1 λj !

(24)

is the number of ways to distribute the n elements of S1 so that set j has λj

elements (the multinomial coefficient),

B =
(m − n)!

∏k+1
j=1 (ij − ij−1 − λj)!

(25)

is the number of ways to distribute the m − n elements of S1 so that set j
has ij − ij−1 − λj elements, and

C =
k+1
∏

j=1

(ij − ij−1)! (26)

10



is the number of permutations that do not change the distribution of the
elements S1 and S2 into those sets. Thus,

Pi1,...,ik (y1, . . . , yk) =
∑

π

m
∏

i=1

ai,π(i)

=
∑

λ

k+1
∏

j=1

(ij − ij−1)!

λj! (ij − ij−1 − λj)!

· [F (yj) − F (yj−1)]
λj [G (yj) − G (yj−1)]

ij−ij−1−λj , (27)

with the sum over all λ that satisfy (22). The result now follows from
Theorem 1.

The proof of Theorem 3 easily carries over to the general case of order
statistics of a sample selected from an arbitrary number of populations. The
proof of the next theorem can therefore be omitted.

Theorem 4 Suppose that Fi = G1 for the first m1 indices i, Fi = G2 for the
next m2 indices i, etc., and Fi = GN for the last mN indices i, with

m1 + · · · + mN = m, ms > 0 for all s. (28)

Then

FYn1
,...Ynk

(y1, . . . , yk) = (29)

=
∑

i∈I

∑

[λjs]

k+1
∏

j=1

N
∏

s=1

ms!

λjs!
[Gs (yj) − Gs (yj−1)]

λjs (30)

where the summation is over all integer matrices [λjs] size k + 1 by N such
that

λjs ≥ 0 for all j and all s, (31)

k+1
∑

j=1

λjs = m for all s, (32)

N
∑

s=1

λjs = ij − ij−1 for all j, (33)

11



and we take Gs (y0) = 0, Gs (yk+1) = 1.

Theorem 4 covers all of the theorems above. In the particular case when
all mi = 1, i.e., every distribution is different because it comes from a dif-
ferent population, it gives exactly the same result as Theorem 1. With two
populations, the complexity of Theorem 4 reduces to the complexity of The-
orem 3. The complexity of Theorem 3 is less than that of the Theorem 1
from Bapat and Beg (1989), as discussed in the next section.

4 COMPLEXITY

We will now compare the relative complexity of Theorem 1, from Bapat and Beg
(1989), and our formula, Theorem 3. We assume that the evaluation of the
cumulative distribution function of each of the statistics takes a constant
number of operations.

For 1 ≤ n1 < n2 < · · · < nk ≤ m, denote the number of elements of the
index set I by

ν (n1, n2, · · · , nk; m) = |I| =
m
∑

ik=nk

ik
∑

ik−1=nk−1

· · ·
i2
∑

i1=n1

1. (34)

Theorem 5 The number ν (n1, n2, · · · , nk; m) of the Bapat-Beg permanents
in Theorem 1 is bounded by

ν (n1, n2, . . . , nk; m) ≤ ν (1, 2, . . . , k; m) ≤ ν (1, 2, . . . , m; m) = Cm, (35)

where

ν (1, 2, . . . , k; m) =

(

m + k

k

)(

1 − k

m + 1

)

, (36)

and

Cm =
1

m + 1

(

2m

m

)

=
(2m)!

(m + 1)! m!
. (37)

Proof. The inequalities in (35) are obtained by taking the smallest numbers
for n1, n2, . . . , nk and the largest possible value for k, which both give the
largest number of terms. We now prove that

ν (1, 2, . . . , k; m) =

(

m + k

k

)

−
(

m + k

k − 1

)

(38)
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by induction over k. For k = 1, (38) follows from

ν (1; m) =

m
∑

i1=1

1 = m (39)

and
(

m + 1

1

)

−
(

m + 1

1 − 1

)

= (m + 1) − 1 = m. (40)

Now assume that (38) holds for some k and we will show that

ν (1, 2, . . . , k + 1, m) =

(

m + k + 1

k + 1

)

−
(

m + k + 1

k

)

. (41)

From the definition (34) and the induction assumption (38), it follows that

ν (1, 2, . . . , k + 1; m) =
m
∑

ik+1=k+1

ν (1, 2, . . . , k; ik+1) (42)

=

m
∑

i=k+1

(

i + k

k

)

−
(

i + k

k − 1

)

(43)

=

m
∑

i=k+1

[(

i + k + 1

k + 1

)

−
(

i + k

k + 1

)]

(44)

−
m
∑

i=k+1

[(

i + k

k

)

−
(

i + k + 1

k

)]

, (45)

where we have used the identity

(

n

r

)

−
(

n − 1

r

)

=

(

n − 1

r − 1

)

(46)

twice. Both sums telescope, and we get

ν (1, 2, . . . , k + 1; m) =

[(

m + k + 1

k + 1

)

−
(

2k + 1

k + 1

)]

(47)

−
[(

m + k + 1

k

)

+

(

2k + 1

k

)]

, (48)
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which, noting that

(

2k + 1

k + 1

)

=
(2k + 1)!

(k + 1)!k!
=

(

2k + 1

k

)

, (49)

gives (41). Equations (36) and (37) follow from (38) by a direct computation:

(

m + k

k

)

−
(

m + k

k − 1

)

=
m + k

1

m + k − 1

2
· · · m + 2

k − 1

m + 1

k
(50)

− m + k

1

m + k − 1

2
· · · m + 2

k − 1
(51)

=

(

m + k

k

)(

1 − k

m + 1

)

, (52)

and
(

m + m

m

)

−
(

m + m

m − 1

)

=

(

2m

m

)(

1 − m

m + 1

)

=
1

m + 1

(

2m

m

)

, (53)

which concludes the proof.
The numbers Cm defined by (37) are known as the Catalan numbers

(Stanley, 1999), and the numbers ak,m = ν (1, 2, . . . , k; m) are called the
Catalan triangle (Shapiro, 1976). From the Stirling approximation m! ∼√

2πmmm/em, the growth of Catalan numbers is exponential,

Cm ∼ const m−3/24m > const αm, (54)

for any 1 < α < 4 (with a different const for each α).

Theorem 6 The worst case complexity of computing the distribution func-
tion of the order statistics from Theorem 1 is

const CmmKm ∼ const m−1/24mP (m), (55)

where P (m) is the number of operations for computing permanent of order
m.

Proof. The denominator in (4) requires at most O (m) operations, and there
are at most Cm terms in the sum by Theorem 5.
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It is known that the complexity of computing the permanent is bounded
by

P (m) = O(ma2m)

for some a, e.g., from the Ryser’s formula (Knuth, 1998). So, the complexity
of the computation of the distribution function from Theorem 1 is exponential
in m. Therefore, the computation is practical only for small m.

Fortunately, a drastic reduction of complexity is possible in the case when
the order statistics come from two populations. In fact, the complexity re-
duces still farther when we need only a small number k of order statistics.

Theorem 7 Let C (k, m, n) be the number of operations in Theorem 3 to
evaluate the joint distribution function of k order statistics from m random
variables from two populations, with n ≤ m of the variables from the first
population. Then

C (k, m, n) ≤ const k

(

m + k

k

)(

n + k

k

)(

1 − k

m + 1

)

. (56)

In the worst case over all k and n, the complexity is bounded by

C (k, m, n) ≤ const m
(2m)2

(m!)4 ∼ const 16m, (57)

For any fixed k, the complexity is bounded by

C (k, m, n) = O
(

mknk
)

. (58)

i.e., the complexity is polynomial in m.

Proof. The complexity is bounded by const CLM , where C =
(

m+k
k

) (

1 − k
m

)

is the number of terms in the sum over i, L is the number of possible index
vectors λ satisfying (22), and M is the complexity of evaluating the products
in one term of the sum, which is M = O (k). To bound L, drop the upper
bounds in (22). Thus L is bounded above by the number of all integer vectors
λ such that

λ1 + λ2 + · · ·+ λk+1 = n, λj ≥ 0 for all j, (59)

which is the same as the number of ways to distribute n indistinguishable
objects to k + 1 distinguishable bins, which equals to

(

n+k
k

)

. This gives (56).
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Figure 1: Times for evaluating the joint cumulative distribution function
of the first k order statistics of m random variables from two distributions,
using the general Bapat-Beg formula (Theorem 1).

The bound (57) follows by taking a pessimistic value of k in each term
(56) - twice k = m, then k = 0, and pessimistic value n = m. The second
part of (57) follows from the Stirling formula.

The polynomial bound (58) follows from (56) and the inequality

(

p + k

k

)

=
(p + k) (p + k − 1) · · · (p + 1)

1 · 2 · · ·k ≤ const(k)pk

applied with p = m and p = n.
Although the complexity of evaluating the cumulative distribution func-

tion of order statistics from Theorem 1 is exponential in the general case, we
have shown in Theorem 7 that the complexity is bounded by a polynomial of
a small degree when there are only two populations, and the number of order
statistics considered, k, is fixed and small. The complexity also depends on
n, the number of random variables from the first population, S1. In general,
n is fixed by the state of nature.

To confirm and illustrate the result, we have conducted a timing experi-
ment. We calculated the joint distribution function in the case of two popula-
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Figure 2: Times for evaluating the joint cumulative distribution function
of the first k order statistics of m random variables from two distributions,
using the new formula from Theorem 3.

Bapat-Beg formula New formula Improvement
Theorem 1, Fig. 1 Theorem 3, Fig. 2 Fig. 3

10−2.9−0.36km2.0+1.1k 10−2.6−0.01km0.06+1.02k 10−0.30−0.34km1.93+0.09k

Table 2: Fit of timing in Mathematica of the evaluation of the joint distribu-
tion of the first k statistics of m variables from two populations (n=1 from
one population, m − n from the other). For fixed k, regression was used to
fit the logarithm of the time with a linear function of log m, and regression
was then used again to fit the coefficients by linear functions of k.
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Figure 3: Ratio of times for evaluating the joint cumulative distribution
function of the first k order statistics of m random variables from two dis-
tributions, using the Bapat-Beg formula (Theorem 1) and the new formula
from Theorem 3.
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tions. We considered k = 1, k = 2, and k = 3, and fixed n = 1. We measured
the amount of time it took to compute the joint distribution function using
the general Bapat Beg formula with permanents (Fig. 1) and the new special
formula (Fig. 2). Both theorems were implemented in Mathematica . The
permanents were computed in Mathematica using the code

Permanent[A List] :=With[v = Array[x, Length[A]],

Coefficient[Times@@(A.v), Times@@v]

from Weisstein (2006). This function computes the permanent of matrix A
by Vardi’s formula as the coefficient of x1 · · ·xm in

m
∏

i=1

(ai1x1 + ai2x2 + · · · + aimxm) ,

using symbolic manipulation with automatic caching of partial results by
the Mathematica kernel. Amazingly, calculating the permanent from (18) in
Mathematica results in times that grow polynomially with m, the number of
rows in the permanent. Consequently, for two populations, while the theoret-
ical complexity of Bapat Beg is exponential, the actual time observed while
calculating the formulas in Mathematica was polynomial (Fig. 1). Graphing
the time versus the log of m produces almost straight lines in a log-log plot.
We attribute this speedup to the reuse of partial results by the Mathematica
kernel.

Mathematica calculates the Bapat Beg formula more rapidly than pre-
dicted. In the timing experiment, the observed times for the new formula
(Theorem 3) are much faster than the Bapat Beg formula. The observed
improvement was quite dramatic (Fig. 3). The observed improvement is of
the order m2 (Table 2). The observed complexity of the new formula for two
populations was of the order mk, which confirms the result of Theorem 7 for
constant n = 1.

All calculations were done using a custom New Tech Solutions workstation
with 4 AMD Opteron 848 processors running Mathematica 5.2, under the
SuSE Linux Enterprise Server 10 operating system.

Mathematica code to calculate the cumulative distribution function for
arbitrary collections of order statistics of independent random variables which
may have different distributions is available free from the authors. Examples
demonstrating the use of the software are also available from the authors.
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